N-substituted 5-amino-6-methylpyrazine-2,3-dicarbonitriles: microwave-assisted synthesis and biological properties

. 2014 Jan 07 ; 19 (1) : 651-71. [epub] 20140107

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24402198

In this work a series of 15 N-benzylamine substituted 5-amino-6-methyl-pyrazine-2,3-dicarbonitriles was prepared by the aminodehalogenation reactions using microwave assisted synthesis with experimentally set and proven conditions. This approach for the aminodehalogenation reaction was chosen due to its higher yields and shorter reaction times. The products of this reaction were characterized by IR, NMR and other analytical data. The compounds were evaluated for their antibacterial, antifungal and herbicidal activity. Compounds 3 (R=3,4-Cl), 9 (R=2-Cl) and 11 (R=4-CF3) showed good antimycobacterial activity against Mycobacterium tuberculosis (MIC=6.25 µg/mL). It was found that the lipophilicity is important for antimycobacterial activity and the best substitution on the benzyl moiety of the compounds is a halogen or trifluoromethyl group according to Craig's plot. The activities against bacteria or fungi were insignificant. The presented compounds also inhibited photosynthetic electron transport in spinach chloroplasts and the IC50 values of the active compounds varied in the range from 16.4 to 487.0 µmol/L. The most active substances were 2 (R=3-CF3), 3 (R=3,4-Cl) and 11 (R=4-CF3). A linear dependence between lipophilicity and herbicidal activity was observed.

Zobrazit více v PubMed

World Health Organization; France: 2013. [(accessed on 15 November 2013)]. Global Tuberculosis Report 2013 [online] pp. 1–27. ISBN 978 92 4 156465 6. Available online: http://apps.who.int/iris/bitstream/10665/91355/1/9789241564656_eng.pdf.

Lima C.H.S., Bispo M.L.F., de Souza M.V.N. Pirazinamida: Um farmaco essencial no tratamento da tuberculose. Rev. Virtual Quim. 2011;3:159–180.

Zhang Y., Chiu Chang K., Leung C., Yew W.W., Gicquel B., Fallows D., Kaplan G., Chaisson R.E., Zhang W. 'ZS-MDR-TB' versus 'ZR-MDR-TB': Improving treatment of MDR-TB by identifying pyrazinamide susceptibility. Emerg. Microbes Infect. 2012;1:e5. doi: 10.1038/emi.2012.18. PubMed DOI PMC

Velayati A.A., Masjedi M.R., Farnia P., Tabarsi P., Ghanavi J., Ziazarifi A.H., Hoffner S.E. Emergence of new forms of totally drug-resistant tuberculosis bacilli: Super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest. 2009;136:420–425. doi: 10.1378/chest.08-2427. PubMed DOI

Zhang Y., Mitchinson D. The curious characteristics of pyrazinamide: A review. Int. J. Tubercul. Lung Dis. 2003;7:6–21. PubMed

Zhang Y., Wade M.M., Scorpio A. Mode of action of pyrazinamide: Disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J. Antimicrob. Chemother. 2003;52:790–795. doi: 10.1093/jac/dkg446. PubMed DOI

Konno K., Feldmann F.M., McDermott W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am. Rev. Respir. Dis. 1967;95:461–469. PubMed

Zhang Y., Scorpio A., Nikaido H., Sun Z. Role of acid ph and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide. J. Bacteriol. 1999;181:2044–2049. PubMed PMC

Scorpio A., Zhang Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat. Med. 1996;2:662–667. doi: 10.1038/nm0696-662. PubMed DOI

Boshoff H.I., Mizrahi V., Barry C.E., III. Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase I. J. Bacteriol. 2002;184:2167–2172. doi: 10.1128/JB.184.8.2167-2172.2002. PubMed DOI PMC

Zimhony O., Cox J.S., Welch J.T., Vilcheze C., Jacobs W.R. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FAS-I) of Mycobacterium tuberculosis. Nat. Med. 2000;6:1043–1047. doi: 10.1038/79558. PubMed DOI

Zimhony O., Vilcheze C., Arai M., Welch J.T., Jacobs W.R. Pyrazinoic acid and its n-propyl ester inhibit fatty acid synthase type I in replicating tubercle bacilli. Antimicrob. Agents Chemother. 2007;51:752–754. doi: 10.1128/AAC.01369-06. PubMed DOI PMC

Ngo S.C., Zimhony O., Chung W.J., Sayahi H., Jacobs W.R., Jr., Welch J.T. Inhibition of isolated mycobacterium tuberculosis fatty acid synthase I by pyrazinamide analogs. Antimicrob. Agents Chemother. 2007;51:2430–2435. doi: 10.1128/AAC.01458-06. PubMed DOI PMC

Shi W., Zhang X., Jiang X., Yuan H., Lee J.S., Barry C.E., Wang H., Zhang W., Zhang Y. Pyrazinamide inhibits trans.-translation in Mycobacterium tuberculosis. Science. 2011;333:1630–1632. doi: 10.1126/science.1208813. PubMed DOI PMC

Dolezal M., Cmedlova P., Palek L., Vinsova J., Kunes J., Buchta V., Jampilek J., Kralova K. Synthesis and antimycobacterial evaluation of substituted pyrazinecarboxamides. Eur. J. Med. Chem. 2008;43:1105–1113. doi: 10.1016/j.ejmech.2007.07.013. PubMed DOI

Dolezal M. Biologically active pyrazines of natural and synthetic origin. Chem. Listy. 2006;100:959–966.

Chaluvaraju K.C., Ishwar B.K. Synthesis and antimicrobial activities of amino benzylated mannich bases of pyrazinamide. Int. J. Chem. Tech. Res. 2010;2:1368–1371.

Dolezal M., Zitko J., Osicka Z., Kunes J., Buchta V., Vejsova M., Dohnal J., Jampilek J., Kralova K. Synthesis, antimycobacterial, antifungal and photosynthesis-inhibiting activity of chlorinated N-phenylpyrazine-2-carboxamides. Molecules. 2010;15:8567–8581. doi: 10.3390/molecules15128567. PubMed DOI PMC

Whitehead R.P., Unger J.M., Flaherty L.E., Kraut E.H., Mills G.M., Klein C.E., Chapman R.A., Doolittle G.C., Hammond N., Sondak V.K. A phase II trial of pyrazine diazohydroxide in patients with disseminated malignant melanoma and no prior chemotherapy—southwest oncology group study. Invest. New Drug. 2002;20:105–111. doi: 10.1023/A:1014484821460. PubMed DOI

Furuta Y., Takahashi K., Fukuda Y., Kuno M., Kamiyama T., Kozaki K., Nomura N., Egawa H., Minami S., Watanabe Y., et al. In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob. Agents Chemother. 2002;46:977–981. doi: 10.1128/AAC.46.4.977-981.2002. PubMed DOI PMC

Ritter A.M., Shaw J.L., Williams W.M., Travis K.Z. Characterizing aquatic ecological risks from pesticides using a diquat bromide case study. I. Probabilistic exposure estimates. Environ. Toxicol. Chem. 2000;19:749–759.

Dolezal M., Kralova K. Synthesis and Evaluation of Pyrazine Derivatives with Herbicidal Activity. In: Soloneski S., Larramendy M.L., editors. Herbicides, Theory and Applications. InTech; Vienna, Austria: 2011. pp. 581–610.

Tamai R., Ito M., Kobayashi M., Mitsunari T., Nakano Y. Oxopyrazine Derivative and Herbicide. US 2013/0137577. US Patent Appl. 2013 May 30;

Reingruber R., Kraus H., Hutzler J., Newton T.W., Witschel M., Moberg W.K., Rapado L.P., Besong G., Rack N., van der Kloet A., et al. Substituted Pyrazines Having Herbicidal Activity. US 2013/0274109BA1. US Patent Appl. 2013 Oct 17;

Nakamura A., Ataka T., Segawa H., Takeuchi Y., Takematsu T. Studies on herbicidal 2,3-dicyanopyrazines. 2. Structure-activity relationships of herbicidal 5-ethylamino- and 5-propylamino-2,3-dicyanopyrazines. Agric. Biol. Chem. 1983;47:1561–1567. doi: 10.1271/bbb1961.47.1561. DOI

Dolezal M., Tumova L., Kesetovicova D., Tuma J., Kralova K. Substituted N-phenylpyrazine-2-carboxamides, their synthesis and evaluation as herbicides and abiotic elicitors. Molecules. 2007;12:2589–2598. doi: 10.3390/12122589. PubMed DOI PMC

Hosseini S., Monajjemi M., Rajaeian E., Haghgu M., Salari A., Gholami M.R.A. Computational study of cytotoxicity of substituted amides of pyrazine-2-carboxylic acids using QSAR and DFT based molecular surface electrostatic potential. Iran. J. Pharm. Res. 2013;12:745–750. PubMed PMC

Hayes B.L. Microwave Synthesis: Chemistry at the Speed of Light. CEM Publishing; Matthews, NC, USA: 2002.

De la Hoz A., Diaz-Ortiz A., Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev. 2005;34:164–178. doi: 10.1039/b411438h. PubMed DOI

Takematsu T., Segawa H., Miura T., Ataka T., Chatani M., Nakamura A. 2,3-Dicyanopyrazines. 4.259.489. U.S. Patent. 1981:42.

Lee J.H., Myung P.K., Kim S.J., Sun N.D. Minimum structural requirements for herbicidal evaluation of 5-(R1)-6-(R2)-N-(R3-phenyl)-pyrazine-2-carboxamide analogues as new class potent herbicide. J. Korean Soc. Appl. Biol. Chem. 2010;53:440–445. doi: 10.3839/jksabc.2010.068. DOI

Prasad R.K., Sharma R. 2D QSAR Analysis of pyrazinecarboxamides derivatives as an herbicidal agent. J. Comput. Method. Mol. Des. 2011;1:7–13.

Dolezal M., Kralova K., Sersen F., Miletin M. The site of action of pyrazine-2-carboxylic acids in the photosynthetic apparatus. Folia Pharm. Univ. Carol. 2001;26:13–20.

Atal N., Saradhi P.P., Mohanty P. Inhibition of the chloroplast photochemical reactions by treatment of wheat seedlings with low concentrations of cadmium: Analysis of electron transport activities and changes in fluorescence yields. Plant Cell Physiol. 1995;32:943–951.

Servusova B., Eibinova D., Dolezal M., Kubicek V., Paterova P., Pesko M., Kralova K. Substituted N-benzylpyrazine-2-carboxamides: Synthesis and biological evaluation. Molecules. 2012;17:13183–13198. doi: 10.3390/molecules171113183. PubMed DOI PMC

Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Gonec T., Bobal P., Kauerova T., Oravec M., Kollar P., et al. Antibacterial and herbicidal activity of ring-substituted 3-hydroxynaphthalene-2-carboxanilides. Molecules. 2013;18:7977–7997. doi: 10.3390/molecules18077977. PubMed DOI PMC

Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013;21:6531–6541. doi: 10.1016/j.bmc.2013.08.030. PubMed DOI

Gonec T., Kos J., Zadrazilova I., Pesko M., Govender R., Keltosova S., Chambel B., Pereira D., Kollar P., Imramovsky A., et al. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-2-carboxanilides. Molecules. 2013;18:9397–9419. doi: 10.3390/molecules18089397. PubMed DOI PMC

Otevrel J., Bobal P., Zadrazilova I., Govender R., Pesko M., Keltosova S., Koleckarova P., Marsalek P., Imramovsky A., Coffey A., et al. Antimycobacterial and photosynthetic electron transport inhibiting activity of ring-substituted 4-arylamino-7-chloroquinolinium chlorides. Molecules. 2013;18:10648–10670. doi: 10.3390/molecules180910648. PubMed DOI PMC

Jones R.N., Barry A.L. Optimal dilution susceptibility testing conditions, recommendations for MIC interpretation, and quality control guidelines for the ampicillin-sulbactam combination. J. Clin. Microbiol. 1987;25:1920–1925. PubMed PMC

National Committee for Clinical Laboratory Standards . Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Proposed Standard M 27-P. National Committee for Clinical Laboratory Standards; Villanova, PA, USA: 1992.

Masarovicova E., Kralova K. Approaches to Measuring Plant Photosynthesis Activity. In: Pessarakli M., editor. Handbook of Photosynthesis. 2nd ed. Taylor & Francis group; Boca Raton, FL, USA: 2005. pp. 617–656.

Kralova K., Sersen F., Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.

Fedke C. Biochemistry and Physiology of Herbicide Action. Springer Verlag; Berlin, Germany: 1982.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace