Novel pyrazine analogs of chalcones: synthesis and evaluation of their antifungal and antimycobacterial activity

. 2015 Jan 12 ; 20 (1) : 1104-17. [epub] 20150112

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25587786

Infectious diseases, such as tuberculosis and invasive mycoses, represent serious health problems. As a part of our long-term efforts to find new agents for the treatment of these diseases, a new series of pyrazine analogs of chalcones bearing an isopropyl group in position 5 of the pyrazine ring was prepared. The structures of the compounds were corroborated by IR and NMR spectroscopy and their purity confirmed by elemental analysis. The susceptibility of eight fungal strains to the studied compounds was tested. The results have been compared with the activity of some previously reported propyl derivatives. The only strain that was susceptible to the studied compounds was Trichophyton mentagrophytes. It was found that replacing a non-branched propyl with a branched isopropyl did not have a decisive and unequivocal influence on the in vitro antifungal activity against T. mentagrophytes. In vitro activity against Trichophyton mentagrophytes comparable with that of fluconazole was exhibited by nitro-substituted derivatives. Unfortunately, no compound exhibited efficacy comparable with that of terbinafine, which is the most widely used agent for treating mycoses caused by dermatophytes. Some of the prepared compounds were assayed for antimycobacterial activity against M. tuberculosis H37Rv. The highest potency was also displayed by nitro-substituted compounds. The results of the present study are in a good agreement with our previous findings and confirm the positive influence of electron-withdrawing groups on the B-ring of chalcones on the antifungal and antimycobacterial activity of these compounds.

Zobrazit více v PubMed

Lonnroth K., Castro K.G., Chakaya J.M., Chauhan L.S., Floyd K., Glaziou P., Raviglione M.C. Tuberculosis control and elimination 2010–50: Cure, care, and social development. Lancet. 2010;375:1814–1829. doi: 10.1016/S0140-6736(10)60483-7. PubMed DOI

Lawn S.D., Zumla A.I. Tuberculosis. Lancet. 2011;378:57–72. doi: 10.1016/S0140-6736(10)62173-3. PubMed DOI

Raviglione M., Marais B., Floyd K., Lonnroth K., Getahun H., Migliori G.B., Harries A.D., Nunn P., Lienhardt C., Graham S., et al. Scaling up interventions to achieve global tuberculosis control: Progress and new developments. Lancet. 2012;379:1902–1913. doi: 10.1016/S0140-6736(12)60727-2. PubMed DOI

Gandhi N.R., Nunn P., Dheda K., Schaaf H.S., Zignol M., van Soolingen D., Jensen P., Bayona J. Multidrug-resistant and extensively drug-resistant tuberculosis: A threat to global control of tuberculosis. Lancet. 2010;375:1830–1843. doi: 10.1016/S0140-6736(10)60410-2. PubMed DOI

Albanna A.S., Menzies D. Drug-resistant tuberculosis: What are the treatment options? Drugs. 2011;71:815–825. doi: 10.2165/11585440-000000000-00000. PubMed DOI

Lange C., Abubakar I., Alffenaar J.W., Bothamley G., Caminero J.A., Carvalho A.C., Chang K.C., Codecasa L., Correia A., Crudu V., et al. Management of patients with multidrug-resistant/extensively drug-resistant tuberculosis in europe: A TBNET consensus statement. Eur. Respir. J. 2014;44:23–63. doi: 10.1183/09031936.00188313. PubMed DOI PMC

Yapar N. Epidemiology and risk factors for invasive candidiasis. Ther. Clin. Risk Manag. 2014;10:95–105. doi: 10.2147/TCRM.S40160. PubMed DOI PMC

Binder U., Maurer E., Lass-Florl C. Mucormycosis: From the pathogens to the disease. Clin. Microbiol. Infect. 2014;20:60–66. doi: 10.1111/1469-0691.12566. PubMed DOI

Petrikkos G., Skiada A., Drogari-Apiranthitou M. Epidemiology of mucormycosis in Europe. Clin. Microbiol. Infect. 2014;20:67–73. doi: 10.1111/1469-0691.12563. PubMed DOI

Malcolm T.R., Chin-Hong P.V. Endemic mycoses in immunocompromised hosts. Curr. Infect. Dis. Rep. 2013;15:536–543. doi: 10.1007/s11908-013-0387-4. PubMed DOI PMC

Harborne J.B., Williams C.A. Anthocyanins and other flavonoids. Nat. Prod. Rep. 2001;18:310–333. doi: 10.1039/b006257j. PubMed DOI

Srinivasan B., Johnson T.E., Lad R., Xing C. Structure-activity relationship studies of chalcone leading to 3-hydroxy-4,3',4',5'-tetramethoxychalcone and its analogues as potent nuclear factor κb inhibitors and their anticancer activities. J. Med. Chem. 2009;52:7228–7235. doi: 10.1021/jm901278z. PubMed DOI

Sahu N.K., Balbhadra S.S., Choudhary J., Kohli D.V. Exploring pharmacological significance of chalcone scaffold: A review. Curr. Med. Chem. 2012;19:209–225. doi: 10.2174/092986712803414132. PubMed DOI

Balsera B., Mulet J., Fernandez-Carvajal A., de la Torre-Martinez R., Ferrer-Montiel A., Hernandez-Jimenez J.G., Estevez-Herrera J., Borges R., Freitas A.E., Lopez M.G., et al. Chalcones as positive allosteric modulators of α7 nicotinic acetylcholine receptors: A new target for a privileged structure. Eur. J. Med. Chem. 2014;86:724–739. doi: 10.1016/j.ejmech.2014.09.039. PubMed DOI

Batovska D.I., Todorova I.T. Trends in utilization of the pharmacological potential of chalcones. Curr. Clin. Pharmacol. 2010;5:1–29. doi: 10.2174/157488410790410579. PubMed DOI

Katsori A.M., Hadjipavlou-Litina D. Recent progress in therapeutic applications of chalcones. Exp. Opin. Ther. Pat. 2011;21:1575–1596. doi: 10.1517/13543776.2011.596529. PubMed DOI

Bukhari S.N., Jasamai M., Jantan I. Synthesis and biological evaluation of chalcone derivatives (mini review) Mini Rev. Med. Chem. 2012;12:1394–1403. PubMed

Singh P., Anand A., Kumar V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem. 2014;85:758–777. doi: 10.1016/j.ejmech.2014.08.033. PubMed DOI

Zheng C.J., Jiang S.M., Chen Z.H., Ye B.J., Piao H.R. Synthesis and anti-bacterial activity of some heterocyclic chalcone derivatives bearing thiofuran, furan, and quinoline moieties. Arch. Pharm. (Weinheim) 2011;344:689–695. doi: 10.1002/ardp.201100005. PubMed DOI

Tran T.D., Nguyen T.T.N., Do T.H., Huynh T.N.P., Tran C.D., Thai K.M. Synthesis and antibacterial activity of some heterocyclic chalcone analogues alone and in combination with antibiotics. Molecules. 2012;17:6684–6696. doi: 10.3390/molecules17066684. PubMed DOI PMC

Raj C.G.D., Sarojini B.K., Hegde S., Sreenivasa S., Ravikumar Y.S., Bhanuprakash V., Revanaiah Y., Ragavendra R. In vitro biological activities of new heterocyclic chalcone derivatives. Med. Chem. Res. 2013;22:2079–2087. doi: 10.1007/s00044-012-0193-9. DOI

Kumar C.S., Loh W.S., Ooi C.W., Quah C.K., Fun H.K. Structural correlation of some heterocyclic chalcone analogues and evaluation of their antioxidant potential. Molecules. 2013;18:11996–12011. doi: 10.3390/molecules181011996. PubMed DOI PMC

Konieczny M.T., Bulakowska A., Polak J., Pirska D., Konieczny W., Gryn P., Skladanowski A., Sabisz M., Lemka K., Pieczykolan A., et al. Structural factors affecting cytotoxic activity of (E)-1-(benzo[d][1,3]oxathiol-6-yl)-3-phenylprop-2-en-1-one derivatives. Chem. Biol. Drug Des. 2014;84:86–91. doi: 10.1111/cbdd.12296. PubMed DOI

Vontor T., Palat K., Odlerova Z. Functional derivatives of 3-alkyl-2-pyrazinecarboxylic acid. Cesk. Farm. 1986;35:162–167.

Dlabal K., Dolezal M., Machacek M. Preparation of some 6-substituted N-pyrazinyl-2-pyrazinecarboxamides. Collect. Czechoslov. Chem. Commun. 1993;58:452–454. doi: 10.1135/cccc19930452. DOI

Krinkova J., Dolezal M., Hartl J., Buchta V., Pour M. Synthesis and biological activity of 5-alkyl-6-(alkylsulfanyl)- or 5-alkyl-6-(arylsulfanyl)pyrazine-2-carboxamides and corresponding thioamides. Farmaco. 2002;57:71–78. doi: 10.1016/S0014-827X(01)01156-9. PubMed DOI

Dolezal M., Palek L., Vinsova J., Buchta V., Jampilek J., Kralova K. Substituted pyrazinecarboxamides: Synthesis and biological evaluation. Molecules. 2006;11:242–256. doi: 10.3390/11040242. PubMed DOI PMC

Opletalova V., Kalinowski D.S., Vejsova M., Kunes J., Pour M., Jampilek J., Buchta V., Richardson D.R. Identification and characterization of thiosemicarbazones with antifungal and antitumor effects: Cellular iron chelation mediating cytotoxic activity. Chem. Res. Toxicol. 2008;21:1878–1889. doi: 10.1021/tx800182k. PubMed DOI

Dolezal M., Zitko J., Kesetovicova D., Kunes J., Svobodova M. Substituted N-phenylpyrazine-2-carboxamides: Synthesis and antimycobacterial evaluation. Molecules. 2009;14:4180–4189. doi: 10.3390/molecules14104180. PubMed DOI PMC

Dolezal M., Zitko J., Osicka Z., Kunes J., Vejsova M., Buchta V., Dohnal J., Jampilek J., Kralova K. Synthesis, antimycobacterial, antifungal and photosynthesis-inhibiting activity of chlorinated N-phenylpyrazine-2-carboxamides. Molecules. 2010;15:8567–8581. doi: 10.3390/molecules15128567. PubMed DOI PMC

Jandourek O., Dolezal M., Paterova P., Kubicek V., Pesko M., Kunes J., Coffey A., Guo J.H., Kralova K. N-substituted 5-amino-6-methylpyrazine-2,3-dicarbonitriles: Microwave-assisted synthesis and biological properties. Molecules. 2014;19:651–671. doi: 10.3390/molecules19010651. PubMed DOI PMC

Opletalova V., Hartl J., Patel A., Palat K., Buchta V. Ring substituted 3-phenyl-1-(2-pyrazinyl)-2-propen-1-ones as potential photosynthesis-inhibiting, antifungal and antimycobacterial agents. Farmaco. 2002;57:135–144. doi: 10.1016/S0014-827X(01)01187-9. PubMed DOI

Chlupacova M., Opletalova V., Kunes J., Silva L., Buchta V., Duskova L., Kralova K. Synthesis and biological evaluation of some ring-substituted (E)-3-aryl-1-pyrazin-2-ylprop-2-en-1-ones. Folia Pharm. Univ. Carol. 2005;33:31–43.

Opletalova V., Pour M., Kunes J., Buchta V., Silva L., Kralova K., Chlupacova M., Meltrova D., Peterka M., Poslednikova M. Synthesis and biological evaluation of (E)-3-(nitrophenyl)-1-(pyrazin-2-yl)prop-2-en-1-ones. Collect. Czechoslov. Chem. Commun. 2006;71:44–58. doi: 10.1135/cccc20060044. DOI

Minisci F., Bernardi R., Bertini F., Galli R., Perchinu M. Nucleophilic character of alkyl radicals. VI. New convenient selective alkylation of heteroaromatic bases. Tetrahedron. 1971;27:3575–3580. doi: 10.1016/S0040-4020(01)97768-3. DOI

Fontana F., Minisci F., Barbosa M.C.N., Vismara E. Homolytic alkylation of heteroaromatic bases: The problem of monoalkylation. Tetrahedron. 1990;46:2525–2538. doi: 10.1016/S0040-4020(01)82033-0. DOI

Tauber J., Imbri D., Opatz T. Radical addition to iminium ions and cationic heterocycles. Molecules. 2014;19:16190–16222. doi: 10.3390/molecules191016190. PubMed DOI PMC

Punta C., Minisci F. Minisci reaction: A Friedel-Crafts type process with opposite reactivity and selectivity: Selective homolytic alkylation, acylation carboxylation and carbamoylation of heterocyclic aromatic bases. Trends Heterocycl. Chem. 2008;13:1–68.

Opletalova V., Patel A., Boulton M., Dundrova A., Lacinova E., Prevorova M., Appeltauerova M., Coufalova M. 5-alkyl-2-pyrazinecarboxamides, 5-alkyl-2-pyrazinecarbonitriles and 5-alkyl-2-acetylpyrazines as synthetic intermediates for antiinflammatory agents. Collect. Czechoslov. Chem. Commun. 1996;61:1093–1101. doi: 10.1135/cccc19961093. DOI

Kucerova-Chlupacova M., Opletalova V., Jampilek J., Dolezel J., Dohnal J., Pour M., Kunes J., Vorisek V. New hydrophobicity constants of substituents in pyrazine rings derived from RP-HPLC study. Collect. Czechoslov. Chem. Commun. 2008;73:1–18. doi: 10.1135/cccc20080001. DOI

Chlupacova M. Ph.D. Thesis. Charles University in Prague; Hradec Kralove, Czech Republic: 2006. Chalcones and Their Analogues as Potential Drugs.

Tchernev G., Penev P.K., Nenoff P., Zisova L.G., Cardoso J.C., Taneva T., Ginter-Hanselmayer G., Ananiev J., Gulubova M., Hristova R., et al. Onychomycosis: Modern diagnostic and treatment approaches. Wien. Med. Wochenschr. 2013;163:1–12. doi: 10.1007/s10354-012-0139-3. PubMed DOI

Gupta A.K., Drummond-Main C., Paquet M. Evidence-based optimal fluconazole dosing regimen for onychomycosis treatment. J. Dermatol. Treat. 2013;24:75–80. doi: 10.3109/09546634.2012.703308. PubMed DOI

Schmid-Wendtner M.-H., Korting H. Terbinafin-Topika: Ultimative Verkurzung der Therapiedauer bei Tinea pedis. Hautarzt. 2008;59:986–991. doi: 10.1007/s00105-008-1552-9. PubMed DOI

Czaika V., Nenoff P., Glockner A., Becker K., Fegeler W., Schmalreck A.F. Detection of azole susceptibility patterns in clinical yeast strains isolated from 1998 to 2008. New Microbiol. 2014;37:465–494. PubMed

Scott L.J., Simpson D. Voriconazole: A review of its use in the management of invasive fungal infections. Drugs. 2007;67:269–298. doi: 10.2165/00003495-200767020-00009. PubMed DOI

Mikulska M., Novelli A., Aversa F., Cesaro S., de Rosa F.G., Girmenia C., Micozzi A., Sanguinetti M., Viscoli C. Voriconazole in clinical practice. J. Chemother. 2012;24:311–327. doi: 10.1179/1973947812Y.0000000051. PubMed DOI

Opletalova V., Dolezel J., Buchta V., Vejsova M., Paterova P. Antifungal effects of (5Z)-5-arylmethylidenerhodanines with a special view to members of Mucorales. Folia Pharm. Univ. Carol. 2014;42:2–13.

Gupta A.K., Kohli Y. In vitro susceptibility testing of ciclopirox, terbinafine, ketoconazole and itraconazole against dermatophytes and nondermatophytes, and in vitro evaluation of combination antifungal activity. Br. J. Dermatol. 2003;149:296–305. doi: 10.1046/j.1365-2133.2003.05418.x. PubMed DOI

Clinical and Laboratory Standards Institute (CLSI) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard. 3rd ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2008. CLSI document M27-A3.

Clinical and Laboratory Standards Institute (CLSI) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi: Approved Standard. 2nd ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2008. CLSI Document M38-A2.

Collins L., Franzblau S.G. Microplate alamar blue assay versus Bactec 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob. Agents Chemother. 1997;41:1004–1009. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...