Novel Halogenated Pyrazine-Based Chalcones as Potential Antimicrobial Drugs
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27801810
PubMed Central
PMC6273737
DOI
10.3390/molecules21111421
PII: molecules21111421
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial, antifungal, antimycobacterial, chalcone, halogenated, pyrazine,
- MeSH
- antiinfekční látky * chemická syntéza chemie farmakologie MeSH
- Candida glabrata růst a vývoj MeSH
- chalkon * chemická syntéza chemie farmakologie MeSH
- halogenované uhlovodíky * chemická syntéza chemie farmakologie MeSH
- Mycobacterium růst a vývoj MeSH
- pyraziny * chemická syntéza chemie farmakologie MeSH
- Trichophyton růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiinfekční látky * MeSH
- chalkon * MeSH
- halogenované uhlovodíky * MeSH
- pyraziny * MeSH
Chalcones, i.e., compounds with the chemical pattern of 1,3-diphenylprop-2-en-1-ones, exert a wide range of bio-activities, e.g., antioxidant, anti-inflammatory, anticancer, anti-infective etc. Our research group has been focused on pyrazine analogues of chalcones; several series have been synthesized and tested in vitro on antifungal and antimycobacterial activity. The highest potency was exhibited by derivatives with electron withdrawing groups (EWG) in positions 2 and 4 of the ring B. As halogens also have electron withdrawing properties, novel halogenated derivatives were prepared by Claisen-Schmidt condensation. All compounds were submitted for evaluation of their antifungal and antibacterial activity, including their antimycobacterial effect. In the antifungal assay against eight strains of selected fungi, growth inhibition of Candida glabrata and Trichophyton interdigitale (formerly T. mentagrophytes) was shown by non-alkylated derivatives with 2-bromo or 2-chloro substitution. In the panel of selected bacteria, 2-chloro derivatives showed the highest inhibitory effect on Staphylococcus sp. In addition, all products were also screened for their antimycobacterial activity against Mycobacterium tuberculosis H37RV My 331/88, M. kansasii My 235/80, M. avium 152/80 and M. smegmatis CCM 4622. Some of the examined compounds, inhibited growth of M. kansasii and M. smegmatis with minimum inhibitory concentrations (MICs) comparable with those of isoniazid.
Zobrazit více v PubMed
Ni L.M., Meng C.Q., Sikorski J.A. Recent advances in therapeutic chalcones. Expert Opin. Ther. Pat. 2004;14:1669–1691. doi: 10.1517/13543776.14.12.1669. DOI
Batovska D.I., Todorova I.T. Trends in utilization of the pharmacological potential of chalcones. Curr. Clin. Pharmacol. 2010;5:1–29. doi: 10.2174/157488410790410579. PubMed DOI
Singh P., Anand A., Kumar V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem. 2014;85:758–777. doi: 10.1016/j.ejmech.2014.08.033. PubMed DOI
Opletalova V., Pour M., Kunes J., Buchta V., Silva L., Kralova K., Chlupacava M., Meltrova D., Peterka M., Poslednikova M. Synthesis and biological evaluation of (E)-3-(nitrophenyl)-1-(pyrazin-2-yl)prop-2-en-1-ones. Collect. Czechoslov. Chem. Commun. 2006;71:44–58. doi: 10.1135/cccc20060044. DOI
Kucerova-Chlupacova M., Kunes J., Buchta V., Vejsova M., Opletalova V. Novel pyrazine analogs of chalcones: Synthesis and evaluation of their antifungal and antimycobacterial activity. Molecules. 2015;20:1104–1117. doi: 10.3390/molecules20011104. PubMed DOI PMC
Boeck P., Leal P.C., Yunes R.A., Cechinel V., Lopez S., Sortino M., Escalante A., Furlan R.L.E., Zacchino S. Antifungal activity and studies on mode of action of novel xanthoxyline-derived chalcones. Arch. Pharm. 2005;338:87–95. doi: 10.1002/ardp.200400929. PubMed DOI
Lopez S.N., Castelli M.V., Zacchino S.A., Dominguez J.N., Lobo G., Charris-Charris J., Cortes J.C.G., Ribas J.C., Devia C., Rodriguez A.M., et al. In vitro antifungal evaluation and structure-activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall. Bioorg. Med. Chem. 2001;9:1999–2013. doi: 10.1016/S0968-0896(01)00116-X. PubMed DOI
Hasan A., Rasheed L., Malik A. Synthesis and characterization of variably halogenated chalcones and flavonols and their antifungal activity. Asian J. Chem. 2007;19:937–948.
Sivakumar P.M., Kumar T.M., Doble M. Antifungal activity, mechanism and QSAR studies on chalcones. Chem. Biol. Drug Des. 2009;74:68–79. doi: 10.1111/j.1747-0285.2009.00828.x. PubMed DOI
Opletalova V. Chalcones and their heterocyclic analogues as potential therapeutic agents of bacterial diseases. Ceská Slov. Farm. 2000;49:278–284. PubMed
Nowakowska Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem. 2007;42:125–137. doi: 10.1016/j.ejmech.2006.09.019. PubMed DOI
Ritter M., Martins R.M., Dias D., Pereira C.M.P. Recent advances on the synthesis of chalcones with antimicrobial activities: A brief review. Lett. Org. Chem. 2014;11:498–508. doi: 10.2174/1570178611666140218004421. DOI
Mahapatra D.K., Bharti S.K., Asati V. Chalcone scaffolds as anti-infective agents: Structural and molecular target perspectives. Eur. J. Med. Chem. 2015;101:496–524. doi: 10.1016/j.ejmech.2015.06.052. PubMed DOI
Abdullah M.I., Mahmood A., Madni M., Masood S., Kashif M. Synthesis, characterization, theoretical, anti-bacterial and molecular docking studies of quinoline based chalcones as a DNA gyrase inhibitor. Bioorg. Chem. 2014;54:31–37. doi: 10.1016/j.bioorg.2014.03.006. PubMed DOI
Chen Z.H., Zheng C.J., Sun L.P., Piao H.R. Synthesis of new chalcone derivatives containing a rhodanine-3-acetic acid moiety with potential anti-bacterial activity. Eur. J. Med. Chem. 2010;45:5739–5743. doi: 10.1016/j.ejmech.2010.09.031. PubMed DOI
Jin X., Zheng C.J., Song M.X., Wu Y., Sun L.P., Li Y.J., Yu L.J., Piao H.R. Synthesis and antimicrobial evaluation of l-phenylalanine-derived C5-substituted rhodanine and chalcone derivatives containing thiobarbituric acid or 2-thioxo-4-thiazolidinone. Eur. J. Med. Chem. 2012;56:203–209. doi: 10.1016/j.ejmech.2012.08.026. PubMed DOI
Liu X.F., Zheng C.J., Sun L.P., Liu X.K., Piao H.R. Synthesis of new chalcone derivatives bearing 2,4-thiazolidinedione and benzoic acid moieties as potential anti-bacterial agents. Eur. J. Med. Chem. 2011;46:3469–3473. doi: 10.1016/j.ejmech.2011.05.012. PubMed DOI
Lin Y.M., Zhou Y.S., Flavin M.T., Zhou L.M., Nie W.G., Chen F.C. Chalcones and flavonoids as anti-tuberculosis agents. Bioorg. Med. Chem. 2002;10:2795–2802. doi: 10.1016/S0968-0896(02)00094-9. PubMed DOI
Medvecky R., Durinda J., Odlerova Z., Polasek E. Antimykobakteriálna aktivita azachalkónov, ich derivátov a analogických látok I. Farm. Obzor. 1992;61:341–350.
Fanzani L., Porta F., Meneghetti F., Villa S., Gelain A., Lucarelli A.P., Parisini E. Mycobacterium tuberculosis low molecular weight phosphatases (MPtpA and MPtpB): From biological insight to inhibitors. Curr. Med. Chem. 2015;22:3110–3132. doi: 10.2174/0929867322666150812150036. PubMed DOI
Anand N., Singh P., Sharma A., Tiwari S., Singh V., Singh D.K., Srivastava K.K., Singh B.N., Tripathi R.P. Synthesis and evaluation of small libraries of triazolylmethoxy chalcones, flavanones and 2-aminopyrimidines as inhibitors of mycobacterial FAS-II and PknG. Bioorg. Med. Chem. 2012;20:5150–5163. doi: 10.1016/j.bmc.2012.07.009. PubMed DOI
Lim S.S., Kim H.S., Lee D.U. In vitro antimalarial activity of flavonoids and chalcones. Bull. Korean Chem. Soc. 2007;28:2495–2497.
Hasan S.A., Elias A.N., Jwaied A.H., Khuodaer A.R., Hussain S.A. Synthesis of new fluorinated chalcone derivatives with anti-inflammatory activity. Int. J. Pharm. Pharm. Sci. 2012;4:430–434.
Rojas J., Paya M., Dominguez J.N., Ferrandiz M.L. The synthesis and effect of fluorinated chalcone derivatives on nitric oxide production. Bioorg. Med. Chem. Lett. 2002;12:1951–1954. doi: 10.1016/S0960-894X(02)00317-7. PubMed DOI
Bukhari S.N.A., Jantan I., Jasamai M. Anti-inflammatory trends of 1,3-diphenyl-2-propen-1-one derivatives. Mini Rev. Med. Chem. 2013;13:87–94. doi: 10.2174/138955713804484767. PubMed DOI
Mahapatra D.M., Bharti S.K., Asati V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur. J. Med. Chem. 2015;98:69–114. doi: 10.1016/j.ejmech.2015.05.004. PubMed DOI
Bois F., Beney C., Boumendjel A., Mariotte A.M., Conseil G., Di Pietro A. Halogenated chalcones with high-affinity binding to p-glycoprotein: Potential modulators of multidrug resistance. J. Med. Chem. 1998;41:4161–4164. doi: 10.1021/jm9810194. PubMed DOI
Kabir A.M.A., Shimizu K., Aiba Y., Igarashi M., Takagi A., Koga Y. The effect of sofalcone on indomethacin-induced gastric ulcers in a Helicobacter pylori-infected gnotobiotic murine model. Aliment. Pharmacol. Ther. 2000;14:223–229. doi: 10.1046/j.1365-2036.2000.014s1223.x. PubMed DOI
Opletalova V., Patel A., Boulton M., Dundrova A., Lacinova E., Prevorova M., Appeltauerova M., Coufalova M. 5-Alkyl-2-pyrazinecarboxamides, 5-alkyl-2-pyrazinecarbonitriles and 5-alkyl-2-acetylpyrazines as synthetic intermediates for antiinflammatory agents. Collect. Czechoslov. Chem. Commun. 1996;61:1093–1101. doi: 10.1135/cccc19961093. DOI
Kucerova-Chlupacova M., Opletalova V., Jampilek J., Dolezel J., Dohnal J., Pour M., Kunes J., Vorisek V. New hydrophobicity constants of substituents in pyrazine rings derived from RP-HPLC study. Collect. Czechoslov. Chem. Commun. 2008;73:1–18. doi: 10.1135/cccc20080001. DOI
Opletalova V., Hartl J., Patel A., Palat K., Buchta V. Ring substituted 3-phenyl-1-(2-pyrazinyl)-2-propen-1-ones as potential photosynthesis-inhibiting, antifungal and antimycobacterial agents. Farmaco. 2002;57:135–144. PubMed
Chlupacova M., Opletalova V., Kunes J., Silva L., Buchta V., Duskova L., Kralova K. Synthesis and biological evaluation of some ring-substituted (E)-3-aryl-1-pyrazin-2-ylprop-2-en-1-ones. Folia Pharm. Univ. Carol. 2005:31–43.
Opletalová V., Chlupáčová M., Buchta V., Silva L. Antifungal properties of chalcones and their heterocyclic analogues. In: Borelli F., Capasso F., Milic N., Russo A., editors. International Symposium on Natural Drugs. Universita degli Studi di Napoli Federico II, Naples—Indena; Naples, Italy: 2003. pp. 259–261.
Chlupáčová M. Ph.D. Thesis. Charles University in Prague; Hradec Králové, Czech Republic: 2006. Chalcone and Their Analogues as Potential Drugs.
Peterka M. Diploma Thesis. Charles University in Prague; Hradec Králové, Czech Republic: 2000. Chalcones and Their Analogues as Potential Drug I.
Gupta A.K., Kohli Y., Batra R. In vitro activities of posaconazole, ravuconazole, terbinafine, itraconazole and fluconazole against dermatophyte, yeast and non-dermatophyte species. Med. Mycol. 2005;43:179–185. doi: 10.1080/13693780410001731583. PubMed DOI
Gabor M., Sallai J., Szell T., Sipos G. Relation of antibacterial activity and chemical structure of chalcone derivatives. Acta Microbiol. Acad. Sci. Hung. 1967;14:45–64. PubMed
Nielsen S.F., Boesen T., Larsen M., Schonning K., Kromann H. Antibacterial chalcones-bioisosteric replacement of the 4′-hydroxy group. Bioorg. Med. Chem. 2004;12:3047–3054. doi: 10.1016/j.bmc.2004.03.071. PubMed DOI
Rizvi S.U.F., Siddiqui H.L., Parvez M., Ahmad M., Siddiqui W.A., Yasinzai M.M. Antimicrobial and antileishmanial studies of novel (2E)-3-(2-chloro-6-methyl/methoxyquinolin-3-yl)-1-(aryl)prop-2-en-1-ones. Chem. Pharm. Bull. 2010;58:301–306. doi: 10.1248/cpb.58.301. PubMed DOI
Rane R.A., Telvekar V.N. Synthesis and evaluation of novel chloropyrrole molecules designed by molecular hybridization of common pharmacophores as potential antimicrobial agents. Bioorg. Med. Chem. Lett. 2010;20:5681–5685. doi: 10.1016/j.bmcl.2010.08.026. PubMed DOI
Liaras K., Geronikaki A., Glamoclija J., Ciric A., Sokovic M. Thiazole-based chalcones as potent antimicrobial agents. Synthesis and biological evaluation. Bioorg. Med. Chem. 2011;19:3135–3140. doi: 10.1016/j.bmc.2011.04.007. PubMed DOI
Metzner J., Zamocka J., Heger J. Anti-microbial studies on diazachalkones and 2-pyrazoline derivatives. Pharmazie. 1981;36:157–157. PubMed
Zámocká J., Dvořáčková D., Heger J. Darstellung und Strukturbestimmung einiger Diazachalkone. Z. Chem. 1980;20:29–30. doi: 10.1002/zfch.19800200119. DOI
Clinical and Laboratory Standards Institute . Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard, CLSI Document M27-A3. 3rd ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2008.
Clinical and Laboratory Standards Institute . Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi: Approved Standard, CLSI Document M38-A2. 2nd ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2008.
Jones R.N., Barry A.L. Optimal dilution susceptibility testing conditions, recommendations for MIC interpretation, and quality-control guidelines for the ampicillin-sulbactam combination. J. Clin. Microbiol. 1987;25:1920–1925. PubMed PMC
Franzblau S.G., Witzig R.S., McLaughlin J.C., Torres P., Madico G., Hernandez A., Degnan M.T., Cook M.B., Quenzer V.K., Ferguson R.M., et al. Rapid, low-technology MIC determination with clinical mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol. 1998;36:362–366. PubMed PMC