Comprehensive insight into anti-staphylococcal and anti-enterococcal action of brominated and chlorinated pyrazine-based chalcones

. 2022 ; 13 () : 912467. [epub] 20220817

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36060765

The greatest threat and medicinal impact within gram-positive pathogens are posed by two bacterial genera, Staphylococcus and Enterococcus. Chalcones have a wide range of biological activities and are recognized as effective templates in medicinal chemistry. This study provides comprehensive insight into the anti-staphylococcal and anti-enterococcal activities of two recently published brominated and chlorinated pyrazine-based chalcones, CH-0y and CH-0w. Their effects against 4 reference and 12 staphylococcal and enterococcal clinical isolates were evaluated. Bactericidal action, the activity in combination with selected conventional antibiotics, the study of post-antimicrobial effect (PAE, PAE/SME), and in vitro and in vivo toxicity, were included. In CH-0y, anti-staphylococcal activity ranging from MIC = 15.625 to 62.5 μM, and activity against E. faecium from 31.25 to 62.5 μM was determined. In CH-0w, anti-staphylococcal activity ranging from 31.25 to 125 μM, and activity against E. faecium and E. faecalis (62.5 μM) was revealed. Both CH-0y and CH-0w showed bactericidal action, beneficial impact on bacterial growth delay within PAE and PAE/SME studies, and non/low toxicity in vivo. Compared to CH-0w, CH-0y seems to have higher anti-staphylococcal and less toxic potential. In conclusion, chalcones CH-0y and CH-0w could be considered as structural pattern for future adjuvants to selected antibiotic drugs.

Zobrazit více v PubMed

Abouelhassan Y., Garrison A. T., Yang H., Chávez-Riveros A., Burch G. M., Huigens R. W., III (2019). Recent progress in natural-product-inspired programs aimed to address antibiotic resistance and tolerance. PubMed DOI PMC

Ahmed M. O., Baptiste K. E. (2018). Vancomycin-resistant enterococci: A review of antimicrobial resistance mechanisms and perspectives of human and animal health. PubMed DOI

Ahmed N., Konduru N. K., Owais M. (2019). Design, synthesis and antimicrobial activities of novel ferrocenyl and organic chalcone based sulfones and bis-sulfones. DOI

Allegra E., Titball R. W., Carter J., Champion O. L. (2018). PubMed DOI

Barsoumian A. E., Mende K., Sanchez C. J., Jr., Beckius M. L., Wenke J. C., Murray C. K., et al. (2015). Clinical infectious outcomes associated with biofilm-related bacterial infections: A retrospective chart review. PubMed PMC

Battenberg O. A., Yang Y., Verhelst S. H., Sieber S. A. (2013). Target profiling of 4-hydroxyderricin in PubMed DOI

Becker K., Heilmann C., Peters G. (2014). Coagulase-negative staphylococci. PubMed DOI PMC

Bender J. K., Cattoir V., Hegstad K., Sadowy E., Coque T. M., Westh H., et al. (2018). Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. PubMed DOI

Bocquet L., Sahpaz S., Bonneau N., Beaufay C., Mahieux S., Samaillie J., et al. (2019). Phenolic compounds from PubMed DOI PMC

Bowman M. D., O’Neill J. C., Stringer J. R., Blackwell H. E. (2007). Rapid identification of antibacterial agents effective against PubMed

Božić D. D., Milenković M., Ivković B., Ćirković I. (2014). Antibacterial activity of three newly-synthesized chalcones & synergism with antibiotics against clinical isolates of methicillin-resistant PubMed PMC

Burmaoglu S., Algul O., Gobek A., Aktas Anil D., Ulger M., Erturk B. G., et al. (2017). Design of potent fluoro-substituted chalcones as antimicrobial agents. PubMed DOI PMC

Chambers H. F., Deleo F. R. (2009). Waves of resistance: PubMed PMC

Chen H., Li L., Liu Y., Wu M., Xu S., Zhang G., et al. (2018). In vitro activity and post-antibiotic effects of linezolid in combination with fosfomycin against clinical isolates of PubMed DOI PMC

Chen Z. H., Zheng C. J., Sun L. P., Piao H. R. (2010). Synthesis of new chalcone derivatives containing a rhodanine-3-acetic acid moiety with potential antibacterial activity. PubMed DOI

Chlupacova M., Opletalova V., Kunes J., Silva L., Buchta V., Duskova L., et al. (2005). Synthesis and biological evaluation of some ring-substituted (E)-3-aryl-1-pyrazin-2-ylprop-2-en-1-ones.

Coskun D., Dalkilic S., Dalkilic L. K., Coskun M. F. (2021). Synthesis, characterization, and antimicrobial potential of some chlorinated benzofuran chalcones. DOI

Dan W., Dai J. (2020). Recent development of chalcones as potential antibacterial agents in medicinal chemistry. PubMed DOI

Elkhalifa D., Al-Hashimi I., Al Moustafa A. E., Khalil A. (2021). A comprehensive review on the antiviral activities of chalcones. PubMed DOI

European Committee for Antimicrobial Susceptibility Testing [EUCAST] of the European Society for Clinical Microbiology Infectious Diseases [ESCMID]. (2003). Eucast discussion document E. Dis 5.1: Determination of Minimum Inhibitory Concentrations (MICs) of antibacterial agents by broth dilution. DOI

Feng L., Maddox M. M., Alam M. Z., Tsutsumi L. S., Narula G., Bruhn D. F., et al. (2014). Synthesis, structure–activity relationship studies, and antibacterial evaluation of 4-chromanones and chalcones, as well as olympicin a and derivatives. PubMed DOI PMC

Friedman N. D., Temkin E., Carmeli Y. (2016). The negative impact of antibiotic resistance. PubMed DOI

Fukai T., Marumo A., Kaitou K., Kanda T., Terada S., Nomura T. (2002). Antimicrobial activity of licorice flavonoids against methicillin-resistant PubMed DOI

Gupta V. K., Gaur R., Sharma A., Akther J., Saini M., Bhakuni R. S., et al. (2019). A novel bi-functional chalcone inhibits multidrug resistant PubMed DOI

Hamada N. M., Abdo N. Y. (2015). Synthesis, characterization, antimicrobial screening and free-radical scavenging activity of some novel substituted pyrazoles. PubMed DOI PMC

Hamilton V., Harris C., Hall C. L., Potticary J., Cremeens M. E., D’Ambruoso G. D., et al. (2021). Structural effects of halogen bonding in iodochalcones. PubMed DOI

Haraguchi H., Ishikawa H., Mizutani K., Tamura Y., Kinoshita T. (1998). Antioxidative and superoxide scavenging activities of retrochalcones in PubMed DOI

Hatano T., Shintani Y., Aga Y., Shiota S., Tsuchiya T., Yoshida T. (2000). Phenolic constituents of licorice. VIII. Structures of glicophenone and glicoisoflavanone, and effects of licorice phenolics on methicillin-resistant PubMed

Haydakm M. H. (1936). Is wax a necessary constituent of the diet of wax moth larvae? DOI

Heilmann C., Ziebuhr W., Becker K. (2019). Are coagulase-negative staphylococci virulent? PubMed DOI

Ignasiak K., Maxwell A. (2017). PubMed DOI PMC

Jin X., Zheng C. J., Song M. X., Wu Y., Sun L. P., Li Y. J., et al. (2012). Synthesis and antimicrobial evaluation of L-phenylalanine-derived C5-substituted rhodanine and chalcone derivatives containing thiobarbituric acid or 2-thioxo-4-thiazolidinone. PubMed

Junqueira J. C. (2012). PubMed DOI PMC

Kant R., Kumar D., Agarwal D., Gupta R. D., Tilak R., Awasthi S. K., et al. (2016). Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. PubMed DOI

Kaur D. C., Chate S. S. (2015). Study of antibiotic resistance pattern in methicillin resistant PubMed DOI PMC

Khan S. N., Khan A. U. (2016). Breaking the spell: Combating multidrug resistant ‘superbugs’. PubMed DOI PMC

Konieczny M. T., Konieczny W., Sabisz M., Skladanowski A., Wakiec R., Augustynowicz-Kopec E., et al. (2007). Acid-catalyzed synthesis of oxathiolone fused chalcones. Comparison of their activity toward various microorganisms and human cancer cells line. PubMed DOI

Koudokpon H., Armstrong N., Dougnon T. V., Fah L., Hounsa E., Bankolé H. S., et al. (2018). Antibacterial activity of chalcone and dihydrochalcone compounds from PubMed DOI PMC

Krawczyk B., Wysocka M., Kotłowski R., Bronk M., Michalik M., Samet A. (2020). Linezolid-resistant PubMed DOI PMC

Kucerova-Chlupacova M., Kunes J., Buchta V., Vejsova M., Opletalova V. (2015). Novel pyrazine analogs of chalcones: Synthesis and evaluation of their antifungal and antimycobacterial activity. PubMed DOI PMC

Kucerova-Chlupacova M., Vyskovska-Tyllova V., Richterova-Finkova L., Kunes J., Buchta V., Vejsova M., et al. (2016). Novel halogenated pyrazine-based chalcones as potential antimicrobial drugs. PubMed DOI PMC

Kumar S., Siji J. V., Nambisan B., Mohandas C. (2012). Activity and synergistic interactions of stilbenes and antibiotic combinations against bacteria PubMed

Lee G. S., Kim E. S., Cho S. I., Kim J. H., Choi G., Ju Y. S., et al. (2010). Antibacterial and synergistic activity of prenylated chalcone isolated from the roots of DOI

Liaras K., Geronikaki A., Glamoèlija J., Cirić A., Soković M. (2011). Thiazole-based chalcones as potent antimicrobial agents. Synthesis and biological evaluation. PubMed DOI

Lipinski C. A., Lombardo F., Dominy B. W., Feeney P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. PubMed DOI

Liu X. F., Zheng C. J., Sun L. P., Liu X. K., Piao H. R. (2011). Synthesis of new chalcone derivatives bearing 2,4-thiazolidinedione and benzoic acid moieties as potential antibacterial agents. PubMed DOI

Löwdin E., Odenholt-Tornqvist I., Bengtsson S., Cars O. (1993). A new method to determine postantibiotic effect and effects of subinhibitory antibiotic concentrations. PubMed DOI PMC

Mahapatra D. K., Bharti S. K., Asati V. (2017). Chalcone derivatives: Anti-inflammatory potential and molecular targets perspectives. PubMed DOI

Matos M. J., Vazquez-Rodriguez S., Uriarte E., Santana L. (2015). Potential pharmacological uses of chalcones: A patent review (from June 2011-2014). PubMed DOI

Matuschek E., Brown D. F., Kahlmeter G. (2014). Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. PubMed DOI

Mbaveng A. T., Ngameni B., Kuete V., Simo I. K., Ambassa P., Roy R., et al. (2008). Antimicrobial activity of the crude extracts and five flavonoids from the twigs of PubMed DOI

McGuinness W. A., Malachova N., DeLeo F. R. (2017). Vancomycin resistance in PubMed PMC

Meier D., Hernández M. V., van Geelen L., Muharini R., Proksch P., Bandow J. E., et al. (2019). The plant-derived chalcone Xanthoangelol targets the membrane of Gram-positive bacteria. PubMed DOI

Miller W. R., Munita J. M., Arias C. A. (2014). Mechanisms of antibiotic resistance in enterococci. PubMed DOI PMC

Moawad A. A., Hotzel H., Awad O., Roesler U., Hafez H. M., Tomaso H., et al. (2019). Evolution of antibiotic resistance of coagulase-negative staphylococci isolated from healthy turkeys in Egypt: First report of linezolid resistance. PubMed DOI PMC

Nielsen S. F., Boesen T., Larsen M., Schonning K., Kromann H. (2004). Antibacterial chalcones-bioisosteric replacement of the 4’-hydroxy group. PubMed DOI

Nielsen S. F., Larsen M., Boesen T., Schonning K., Kromann H. (2005). Cationic chalcone antibiotics. Design, synthesis, and mechanism of action. PubMed DOI

Opletalova V., Hartl J., Patel A., Palat K., Buchta V. (2002). Ring substituted 3-phenyl-1-(2-pyrazinyl)-2-propen-1-ones as potential photosynthesis-inhibiting, antifungal and antimycobacterial agents. PubMed DOI

Opletalova V., Pour M., Kunes J., Buchta V., Silva L., Kralova K., et al. (2006). Synthesis and biological evaluation of (E)-3-(nitrophenyl)-1-(pyrazin-2-yl)prop-2-en-1-ones.

Ouyang Y., Li J., Chen X., Fu X., Sun S., Wu Q. (2021). Chalcone derivatives: Role in anticancer therapy. PubMed DOI PMC

Quiloan M. L. G., Vu J., Carvalho J. (2012). DOI

Rukayadi Y., Lee K., Han S., Yong D., Hwang J. K. (2009). PubMed DOI PMC

Spangler S. K., Lin G., Jacobs M. R., Appelbaum P. C. (1998). Postantibiotic effect and postantibiotic sub-MIC effect of levofloxacin compared to those of ofloxacin, ciprofloxacin, erythromycin, azithromycin, and clarithromycin against 20 pneumococci. PubMed DOI PMC

Stubbings W. J., Bostock J. M., Ingham E., Chopra I. J. (2004). Assessment of a microplate method for determining the post-antibiotic effect in PubMed DOI

Tsukiyama R. I., Katsura H., Tokuriki N., Kobayashi M. (2002). Antibacterial activity of licochalcone A against spore-forming bacteria. PubMed DOI PMC

Ventola C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. PubMed PMC

World Health Organization [WHO] (2021).

World Health Organization [WHO] (2017).

Xu M., Wu P., Shen F., Ji J., Rakesh K. P. (2019). Chalcone derivatives and their antibacterial activities: Current development. PubMed DOI

Zhang M. M., Prior A. M., Maddox M. M., Shen W. J., Hevener K. E., Bruhn D. F., et al. (2018). Pharmacophore modeling, synthesis, and antibacterial evaluation of chalcones and derivatives. PubMed DOI PMC

Zhuang C., Zhang W., Sheng C., Zhang W., Xing C., Miao Z. (2017). Chalcone: A privileged structure in medicinal chemistry. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...