Comprehensive insight into anti-staphylococcal and anti-enterococcal action of brominated and chlorinated pyrazine-based chalcones
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36060765
PubMed Central
PMC9428509
DOI
10.3389/fmicb.2022.912467
Knihovny.cz E-zdroje
- Klíčová slova
- checkerboard assays, coagulase-negative staphylococci, halogenated chalcones, in vivo toxicity, methicillin- and vancomycin-resistant Staphylococcus aureus, multidrug-resistant enterococci, post-antimicrobial effect, pyrazine-based chalcones,
- Publikační typ
- časopisecké články MeSH
The greatest threat and medicinal impact within gram-positive pathogens are posed by two bacterial genera, Staphylococcus and Enterococcus. Chalcones have a wide range of biological activities and are recognized as effective templates in medicinal chemistry. This study provides comprehensive insight into the anti-staphylococcal and anti-enterococcal activities of two recently published brominated and chlorinated pyrazine-based chalcones, CH-0y and CH-0w. Their effects against 4 reference and 12 staphylococcal and enterococcal clinical isolates were evaluated. Bactericidal action, the activity in combination with selected conventional antibiotics, the study of post-antimicrobial effect (PAE, PAE/SME), and in vitro and in vivo toxicity, were included. In CH-0y, anti-staphylococcal activity ranging from MIC = 15.625 to 62.5 μM, and activity against E. faecium from 31.25 to 62.5 μM was determined. In CH-0w, anti-staphylococcal activity ranging from 31.25 to 125 μM, and activity against E. faecium and E. faecalis (62.5 μM) was revealed. Both CH-0y and CH-0w showed bactericidal action, beneficial impact on bacterial growth delay within PAE and PAE/SME studies, and non/low toxicity in vivo. Compared to CH-0w, CH-0y seems to have higher anti-staphylococcal and less toxic potential. In conclusion, chalcones CH-0y and CH-0w could be considered as structural pattern for future adjuvants to selected antibiotic drugs.
Zobrazit více v PubMed
Abouelhassan Y., Garrison A. T., Yang H., Chávez-Riveros A., Burch G. M., Huigens R. W., III (2019). Recent progress in natural-product-inspired programs aimed to address antibiotic resistance and tolerance. PubMed DOI PMC
Ahmed M. O., Baptiste K. E. (2018). Vancomycin-resistant enterococci: A review of antimicrobial resistance mechanisms and perspectives of human and animal health. PubMed DOI
Ahmed N., Konduru N. K., Owais M. (2019). Design, synthesis and antimicrobial activities of novel ferrocenyl and organic chalcone based sulfones and bis-sulfones. DOI
Allegra E., Titball R. W., Carter J., Champion O. L. (2018). PubMed DOI
Barsoumian A. E., Mende K., Sanchez C. J., Jr., Beckius M. L., Wenke J. C., Murray C. K., et al. (2015). Clinical infectious outcomes associated with biofilm-related bacterial infections: A retrospective chart review. PubMed PMC
Battenberg O. A., Yang Y., Verhelst S. H., Sieber S. A. (2013). Target profiling of 4-hydroxyderricin in PubMed DOI
Becker K., Heilmann C., Peters G. (2014). Coagulase-negative staphylococci. PubMed DOI PMC
Bender J. K., Cattoir V., Hegstad K., Sadowy E., Coque T. M., Westh H., et al. (2018). Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. PubMed DOI
Bocquet L., Sahpaz S., Bonneau N., Beaufay C., Mahieux S., Samaillie J., et al. (2019). Phenolic compounds from PubMed DOI PMC
Bowman M. D., O’Neill J. C., Stringer J. R., Blackwell H. E. (2007). Rapid identification of antibacterial agents effective against PubMed
Božić D. D., Milenković M., Ivković B., Ćirković I. (2014). Antibacterial activity of three newly-synthesized chalcones & synergism with antibiotics against clinical isolates of methicillin-resistant PubMed PMC
Burmaoglu S., Algul O., Gobek A., Aktas Anil D., Ulger M., Erturk B. G., et al. (2017). Design of potent fluoro-substituted chalcones as antimicrobial agents. PubMed DOI PMC
Chambers H. F., Deleo F. R. (2009). Waves of resistance: PubMed PMC
Chen H., Li L., Liu Y., Wu M., Xu S., Zhang G., et al. (2018). In vitro activity and post-antibiotic effects of linezolid in combination with fosfomycin against clinical isolates of PubMed DOI PMC
Chen Z. H., Zheng C. J., Sun L. P., Piao H. R. (2010). Synthesis of new chalcone derivatives containing a rhodanine-3-acetic acid moiety with potential antibacterial activity. PubMed DOI
Chlupacova M., Opletalova V., Kunes J., Silva L., Buchta V., Duskova L., et al. (2005). Synthesis and biological evaluation of some ring-substituted (E)-3-aryl-1-pyrazin-2-ylprop-2-en-1-ones.
Coskun D., Dalkilic S., Dalkilic L. K., Coskun M. F. (2021). Synthesis, characterization, and antimicrobial potential of some chlorinated benzofuran chalcones. DOI
Dan W., Dai J. (2020). Recent development of chalcones as potential antibacterial agents in medicinal chemistry. PubMed DOI
Elkhalifa D., Al-Hashimi I., Al Moustafa A. E., Khalil A. (2021). A comprehensive review on the antiviral activities of chalcones. PubMed DOI
European Committee for Antimicrobial Susceptibility Testing [EUCAST] of the European Society for Clinical Microbiology Infectious Diseases [ESCMID]. (2003). Eucast discussion document E. Dis 5.1: Determination of Minimum Inhibitory Concentrations (MICs) of antibacterial agents by broth dilution. DOI
Feng L., Maddox M. M., Alam M. Z., Tsutsumi L. S., Narula G., Bruhn D. F., et al. (2014). Synthesis, structure–activity relationship studies, and antibacterial evaluation of 4-chromanones and chalcones, as well as olympicin a and derivatives. PubMed DOI PMC
Friedman N. D., Temkin E., Carmeli Y. (2016). The negative impact of antibiotic resistance. PubMed DOI
Fukai T., Marumo A., Kaitou K., Kanda T., Terada S., Nomura T. (2002). Antimicrobial activity of licorice flavonoids against methicillin-resistant PubMed DOI
Gupta V. K., Gaur R., Sharma A., Akther J., Saini M., Bhakuni R. S., et al. (2019). A novel bi-functional chalcone inhibits multidrug resistant PubMed DOI
Hamada N. M., Abdo N. Y. (2015). Synthesis, characterization, antimicrobial screening and free-radical scavenging activity of some novel substituted pyrazoles. PubMed DOI PMC
Hamilton V., Harris C., Hall C. L., Potticary J., Cremeens M. E., D’Ambruoso G. D., et al. (2021). Structural effects of halogen bonding in iodochalcones. PubMed DOI
Haraguchi H., Ishikawa H., Mizutani K., Tamura Y., Kinoshita T. (1998). Antioxidative and superoxide scavenging activities of retrochalcones in PubMed DOI
Hatano T., Shintani Y., Aga Y., Shiota S., Tsuchiya T., Yoshida T. (2000). Phenolic constituents of licorice. VIII. Structures of glicophenone and glicoisoflavanone, and effects of licorice phenolics on methicillin-resistant PubMed
Haydakm M. H. (1936). Is wax a necessary constituent of the diet of wax moth larvae? DOI
Heilmann C., Ziebuhr W., Becker K. (2019). Are coagulase-negative staphylococci virulent? PubMed DOI
Ignasiak K., Maxwell A. (2017). PubMed DOI PMC
Jin X., Zheng C. J., Song M. X., Wu Y., Sun L. P., Li Y. J., et al. (2012). Synthesis and antimicrobial evaluation of L-phenylalanine-derived C5-substituted rhodanine and chalcone derivatives containing thiobarbituric acid or 2-thioxo-4-thiazolidinone. PubMed
Junqueira J. C. (2012). PubMed DOI PMC
Kant R., Kumar D., Agarwal D., Gupta R. D., Tilak R., Awasthi S. K., et al. (2016). Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. PubMed DOI
Kaur D. C., Chate S. S. (2015). Study of antibiotic resistance pattern in methicillin resistant PubMed DOI PMC
Khan S. N., Khan A. U. (2016). Breaking the spell: Combating multidrug resistant ‘superbugs’. PubMed DOI PMC
Konieczny M. T., Konieczny W., Sabisz M., Skladanowski A., Wakiec R., Augustynowicz-Kopec E., et al. (2007). Acid-catalyzed synthesis of oxathiolone fused chalcones. Comparison of their activity toward various microorganisms and human cancer cells line. PubMed DOI
Koudokpon H., Armstrong N., Dougnon T. V., Fah L., Hounsa E., Bankolé H. S., et al. (2018). Antibacterial activity of chalcone and dihydrochalcone compounds from PubMed DOI PMC
Krawczyk B., Wysocka M., Kotłowski R., Bronk M., Michalik M., Samet A. (2020). Linezolid-resistant PubMed DOI PMC
Kucerova-Chlupacova M., Kunes J., Buchta V., Vejsova M., Opletalova V. (2015). Novel pyrazine analogs of chalcones: Synthesis and evaluation of their antifungal and antimycobacterial activity. PubMed DOI PMC
Kucerova-Chlupacova M., Vyskovska-Tyllova V., Richterova-Finkova L., Kunes J., Buchta V., Vejsova M., et al. (2016). Novel halogenated pyrazine-based chalcones as potential antimicrobial drugs. PubMed DOI PMC
Kumar S., Siji J. V., Nambisan B., Mohandas C. (2012). Activity and synergistic interactions of stilbenes and antibiotic combinations against bacteria PubMed
Lee G. S., Kim E. S., Cho S. I., Kim J. H., Choi G., Ju Y. S., et al. (2010). Antibacterial and synergistic activity of prenylated chalcone isolated from the roots of DOI
Liaras K., Geronikaki A., Glamoèlija J., Cirić A., Soković M. (2011). Thiazole-based chalcones as potent antimicrobial agents. Synthesis and biological evaluation. PubMed DOI
Lipinski C. A., Lombardo F., Dominy B. W., Feeney P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. PubMed DOI
Liu X. F., Zheng C. J., Sun L. P., Liu X. K., Piao H. R. (2011). Synthesis of new chalcone derivatives bearing 2,4-thiazolidinedione and benzoic acid moieties as potential antibacterial agents. PubMed DOI
Löwdin E., Odenholt-Tornqvist I., Bengtsson S., Cars O. (1993). A new method to determine postantibiotic effect and effects of subinhibitory antibiotic concentrations. PubMed DOI PMC
Mahapatra D. K., Bharti S. K., Asati V. (2017). Chalcone derivatives: Anti-inflammatory potential and molecular targets perspectives. PubMed DOI
Matos M. J., Vazquez-Rodriguez S., Uriarte E., Santana L. (2015). Potential pharmacological uses of chalcones: A patent review (from June 2011-2014). PubMed DOI
Matuschek E., Brown D. F., Kahlmeter G. (2014). Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. PubMed DOI
Mbaveng A. T., Ngameni B., Kuete V., Simo I. K., Ambassa P., Roy R., et al. (2008). Antimicrobial activity of the crude extracts and five flavonoids from the twigs of PubMed DOI
McGuinness W. A., Malachova N., DeLeo F. R. (2017). Vancomycin resistance in PubMed PMC
Meier D., Hernández M. V., van Geelen L., Muharini R., Proksch P., Bandow J. E., et al. (2019). The plant-derived chalcone Xanthoangelol targets the membrane of Gram-positive bacteria. PubMed DOI
Miller W. R., Munita J. M., Arias C. A. (2014). Mechanisms of antibiotic resistance in enterococci. PubMed DOI PMC
Moawad A. A., Hotzel H., Awad O., Roesler U., Hafez H. M., Tomaso H., et al. (2019). Evolution of antibiotic resistance of coagulase-negative staphylococci isolated from healthy turkeys in Egypt: First report of linezolid resistance. PubMed DOI PMC
Nielsen S. F., Boesen T., Larsen M., Schonning K., Kromann H. (2004). Antibacterial chalcones-bioisosteric replacement of the 4’-hydroxy group. PubMed DOI
Nielsen S. F., Larsen M., Boesen T., Schonning K., Kromann H. (2005). Cationic chalcone antibiotics. Design, synthesis, and mechanism of action. PubMed DOI
Opletalova V., Hartl J., Patel A., Palat K., Buchta V. (2002). Ring substituted 3-phenyl-1-(2-pyrazinyl)-2-propen-1-ones as potential photosynthesis-inhibiting, antifungal and antimycobacterial agents. PubMed DOI
Opletalova V., Pour M., Kunes J., Buchta V., Silva L., Kralova K., et al. (2006). Synthesis and biological evaluation of (E)-3-(nitrophenyl)-1-(pyrazin-2-yl)prop-2-en-1-ones.
Ouyang Y., Li J., Chen X., Fu X., Sun S., Wu Q. (2021). Chalcone derivatives: Role in anticancer therapy. PubMed DOI PMC
Quiloan M. L. G., Vu J., Carvalho J. (2012). DOI
Rukayadi Y., Lee K., Han S., Yong D., Hwang J. K. (2009). PubMed DOI PMC
Spangler S. K., Lin G., Jacobs M. R., Appelbaum P. C. (1998). Postantibiotic effect and postantibiotic sub-MIC effect of levofloxacin compared to those of ofloxacin, ciprofloxacin, erythromycin, azithromycin, and clarithromycin against 20 pneumococci. PubMed DOI PMC
Stubbings W. J., Bostock J. M., Ingham E., Chopra I. J. (2004). Assessment of a microplate method for determining the post-antibiotic effect in PubMed DOI
Tsukiyama R. I., Katsura H., Tokuriki N., Kobayashi M. (2002). Antibacterial activity of licochalcone A against spore-forming bacteria. PubMed DOI PMC
Ventola C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. PubMed PMC
World Health Organization [WHO] (2021).
World Health Organization [WHO] (2017).
Xu M., Wu P., Shen F., Ji J., Rakesh K. P. (2019). Chalcone derivatives and their antibacterial activities: Current development. PubMed DOI
Zhang M. M., Prior A. M., Maddox M. M., Shen W. J., Hevener K. E., Bruhn D. F., et al. (2018). Pharmacophore modeling, synthesis, and antibacterial evaluation of chalcones and derivatives. PubMed DOI PMC
Zhuang C., Zhang W., Sheng C., Zhang W., Xing C., Miao Z. (2017). Chalcone: A privileged structure in medicinal chemistry. PubMed DOI PMC