Comprehensive insight into anti-staphylococcal and anti-enterococcal action of brominated and chlorinated pyrazine-based chalcones
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
36060765
PubMed Central
PMC9428509
DOI
10.3389/fmicb.2022.912467
Knihovny.cz E-resources
- Keywords
- checkerboard assays, coagulase-negative staphylococci, halogenated chalcones, in vivo toxicity, methicillin- and vancomycin-resistant Staphylococcus aureus, multidrug-resistant enterococci, post-antimicrobial effect, pyrazine-based chalcones,
- Publication type
- Journal Article MeSH
The greatest threat and medicinal impact within gram-positive pathogens are posed by two bacterial genera, Staphylococcus and Enterococcus. Chalcones have a wide range of biological activities and are recognized as effective templates in medicinal chemistry. This study provides comprehensive insight into the anti-staphylococcal and anti-enterococcal activities of two recently published brominated and chlorinated pyrazine-based chalcones, CH-0y and CH-0w. Their effects against 4 reference and 12 staphylococcal and enterococcal clinical isolates were evaluated. Bactericidal action, the activity in combination with selected conventional antibiotics, the study of post-antimicrobial effect (PAE, PAE/SME), and in vitro and in vivo toxicity, were included. In CH-0y, anti-staphylococcal activity ranging from MIC = 15.625 to 62.5 μM, and activity against E. faecium from 31.25 to 62.5 μM was determined. In CH-0w, anti-staphylococcal activity ranging from 31.25 to 125 μM, and activity against E. faecium and E. faecalis (62.5 μM) was revealed. Both CH-0y and CH-0w showed bactericidal action, beneficial impact on bacterial growth delay within PAE and PAE/SME studies, and non/low toxicity in vivo. Compared to CH-0w, CH-0y seems to have higher anti-staphylococcal and less toxic potential. In conclusion, chalcones CH-0y and CH-0w could be considered as structural pattern for future adjuvants to selected antibiotic drugs.
See more in PubMed
Abouelhassan Y., Garrison A. T., Yang H., Chávez-Riveros A., Burch G. M., Huigens R. W., III (2019). Recent progress in natural-product-inspired programs aimed to address antibiotic resistance and tolerance. J. Med. Chem. 62 7618–7642. 10.1021/acs.jmedchem.9b00370 PubMed DOI PMC
Ahmed M. O., Baptiste K. E. (2018). Vancomycin-resistant enterococci: A review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb. Drug Resist. 24 590–606. 10.1089/mdr.2017.0147 PubMed DOI
Ahmed N., Konduru N. K., Owais M. (2019). Design, synthesis and antimicrobial activities of novel ferrocenyl and organic chalcone based sulfones and bis-sulfones. Arab. J. Chem. 12 1879–1894. 10.1016/j.arabjc.2014.12.008 DOI
Allegra E., Titball R. W., Carter J., Champion O. L. (2018). Galleria mellonella larvae allow the discrimination of toxic and non-toxic chemicals. Chemosphere 198 469–472. 10.1016/j.chemosphere.2018.01.175 PubMed DOI
Barsoumian A. E., Mende K., Sanchez C. J., Jr., Beckius M. L., Wenke J. C., Murray C. K., et al. (2015). Clinical infectious outcomes associated with biofilm-related bacterial infections: A retrospective chart review. BMC Infect. Dis. 15:223. PubMed PMC
Battenberg O. A., Yang Y., Verhelst S. H., Sieber S. A. (2013). Target profiling of 4-hydroxyderricin in S. aureus reveals seryl-tRNA synthetase binding and inhibition by covalent modification. Mol. Biosyst. 9 343–351. 10.1039/c2mb25446h PubMed DOI
Becker K., Heilmann C., Peters G. (2014). Coagulase-negative staphylococci. Clin. Microbiol. Rev. 27 870–926. 10.1128/cmr.00109-13 PubMed DOI PMC
Bender J. K., Cattoir V., Hegstad K., Sadowy E., Coque T. M., Westh H., et al. (2018). Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist. Updat. 40 25–39. 10.1016/j.drup.2018.10.002 PubMed DOI
Bocquet L., Sahpaz S., Bonneau N., Beaufay C., Mahieux S., Samaillie J., et al. (2019). Phenolic compounds from Humulus lupulus as natural antimicrobial products: New weapons in the fight against methicillin resistant Staphylococcus aureus, Leishmania mexicana and Trypanosoma brucei strains. Molecules 24:1024. 10.3390/molecules24061024 PubMed DOI PMC
Bowman M. D., O’Neill J. C., Stringer J. R., Blackwell H. E. (2007). Rapid identification of antibacterial agents effective against Staphylococcus aureus using small-molecule macroarrays. Chem. Biol. 14 351–357. PubMed
Božić D. D., Milenković M., Ivković B., Ćirković I. (2014). Antibacterial activity of three newly-synthesized chalcones & synergism with antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus. Indian J. Med. Res. 140 130–137. PubMed PMC
Burmaoglu S., Algul O., Gobek A., Aktas Anil D., Ulger M., Erturk B. G., et al. (2017). Design of potent fluoro-substituted chalcones as antimicrobial agents. J. Enzyme Inhib. Med. Chem. 32 490–495. 10.1080/14756366.2016.1265517 PubMed DOI PMC
Chambers H. F., Deleo F. R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 7 629–641. PubMed PMC
Chen H., Li L., Liu Y., Wu M., Xu S., Zhang G., et al. (2018). In vitro activity and post-antibiotic effects of linezolid in combination with fosfomycin against clinical isolates of Staphylococcus aureus. Infect. Drug Resist. 11 2107–2115. 10.2147/idr.s175978 PubMed DOI PMC
Chen Z. H., Zheng C. J., Sun L. P., Piao H. R. (2010). Synthesis of new chalcone derivatives containing a rhodanine-3-acetic acid moiety with potential antibacterial activity. Eur. J. Med. Chem. 45 5739–5743. 10.1016/j.ejmech.2010.09.031 PubMed DOI
Chlupacova M., Opletalova V., Kunes J., Silva L., Buchta V., Duskova L., et al. (2005). Synthesis and biological evaluation of some ring-substituted (E)-3-aryl-1-pyrazin-2-ylprop-2-en-1-ones. Folia Pharm. Univ. Carol. 33, 31–43.
Coskun D., Dalkilic S., Dalkilic L. K., Coskun M. F. (2021). Synthesis, characterization, and antimicrobial potential of some chlorinated benzofuran chalcones. Prog. Nutr. 23:e2021256. 10.23751/pn.v23iS2.11963 DOI
Dan W., Dai J. (2020). Recent development of chalcones as potential antibacterial agents in medicinal chemistry. Eur. J. Med. Chem. 187:111980. 10.1016/j.ejmech.2019.111980 PubMed DOI
Elkhalifa D., Al-Hashimi I., Al Moustafa A. E., Khalil A. (2021). A comprehensive review on the antiviral activities of chalcones. J. Drug Target. 29 403–419. 10.1080/1061186x.2020.1853759 PubMed DOI
European Committee for Antimicrobial Susceptibility Testing [EUCAST] of the European Society for Clinical Microbiology Infectious Diseases [ESCMID]. (2003). Eucast discussion document E. Dis 5.1: Determination of Minimum Inhibitory Concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 9 9–15. 10.1046/j.1469-0691.2003.00790.x DOI
Feng L., Maddox M. M., Alam M. Z., Tsutsumi L. S., Narula G., Bruhn D. F., et al. (2014). Synthesis, structure–activity relationship studies, and antibacterial evaluation of 4-chromanones and chalcones, as well as olympicin a and derivatives. J. Med. Chem. 57 8398–8420. 10.1021/jm500853v PubMed DOI PMC
Friedman N. D., Temkin E., Carmeli Y. (2016). The negative impact of antibiotic resistance. Clin. Microbiol. Infect. 22 416–422. 10.1016/j.cmi.2015.12.002 PubMed DOI
Fukai T., Marumo A., Kaitou K., Kanda T., Terada S., Nomura T. (2002). Antimicrobial activity of licorice flavonoids against methicillin-resistant Staphylococcus aureus. Fitoterapia 73 536–539. 10.1016/s0367-326x00168-5 PubMed DOI
Gupta V. K., Gaur R., Sharma A., Akther J., Saini M., Bhakuni R. S., et al. (2019). A novel bi-functional chalcone inhibits multidrug resistant Staphylococcus aureus and potentiates the activity of fluoroquinolones. Bioorg. Chem. 83 214–225. 10.1016/j.bioorg.2018.10.024 PubMed DOI
Hamada N. M., Abdo N. Y. (2015). Synthesis, characterization, antimicrobial screening and free-radical scavenging activity of some novel substituted pyrazoles. Molecules 20 10468–10486. 10.3390/molecules200610468 PubMed DOI PMC
Hamilton V., Harris C., Hall C. L., Potticary J., Cremeens M. E., D’Ambruoso G. D., et al. (2021). Structural effects of halogen bonding in iodochalcones. Acta Crystallogr. B Struct. Sci. 77 347–356. 10.1107/s2052520621002961 PubMed DOI
Haraguchi H., Ishikawa H., Mizutani K., Tamura Y., Kinoshita T. (1998). Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflata. Bioorg. Med. Chem. 6 339–347. 10034-7 10.1016/s0968-0896 PubMed DOI
Hatano T., Shintani Y., Aga Y., Shiota S., Tsuchiya T., Yoshida T. (2000). Phenolic constituents of licorice. VIII. Structures of glicophenone and glicoisoflavanone, and effects of licorice phenolics on methicillin-resistant Staphylococcus aureus. Chem. Pharm. Bull. 48 1286–1292. PubMed
Haydakm M. H. (1936). Is wax a necessary constituent of the diet of wax moth larvae? Ann. Entomol. Soc. Am. 29 581–588. 10.1093/aesa/29.4.581 PubMed DOI
Heilmann C., Ziebuhr W., Becker K. (2019). Are coagulase-negative staphylococci virulent? Clin. Microbiol. Infect. 25 1071–1080. 10.1016/j.cmi.2018.11.012 PubMed DOI
Ignasiak K., Maxwell A. (2017). Galleria mellonella (greater wax moth) larvae as a model for antibiotic susceptibility testing and acute toxicity trials. BMC Res. Notes 10:428. 10.1186/s13104-017-2757-8 PubMed DOI PMC
Jin X., Zheng C. J., Song M. X., Wu Y., Sun L. P., Li Y. J., et al. (2012). Synthesis and antimicrobial evaluation of L-phenylalanine-derived C5-substituted rhodanine and chalcone derivatives containing thiobarbituric acid or 2-thioxo-4-thiazolidinone. Eur. J. Med. Chem. 56 203–209. PubMed
Junqueira J. C. (2012). Galleria mellonella as a model host for human pathogens. Virulence 3 474–476. 10.4161/viru.22493 PubMed DOI PMC
Kant R., Kumar D., Agarwal D., Gupta R. D., Tilak R., Awasthi S. K., et al. (2016). Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. Eur. J. Med. Chem. 113 34–49. 10.1016/j.ejmech.2016.02.041 PubMed DOI
Kaur D. C., Chate S. S. (2015). Study of antibiotic resistance pattern in methicillin resistant Staphylococcus aureus with special reference to newer antibiotic. J. Glob. Infect. Dis. 7 78–84. 10.4103/0974-777x.157245 PubMed DOI PMC
Khan S. N., Khan A. U. (2016). Breaking the spell: Combating multidrug resistant ‘superbugs’. Front. Microbiol. 7:174. 10.3389/fmicb.2016.00174 PubMed DOI PMC
Konieczny M. T., Konieczny W., Sabisz M., Skladanowski A., Wakiec R., Augustynowicz-Kopec E., et al. (2007). Acid-catalyzed synthesis of oxathiolone fused chalcones. Comparison of their activity toward various microorganisms and human cancer cells line. Eur. J. Med. Chem. 42 729–733. 10.1016/j.ejmech.2006.12.014 PubMed DOI
Koudokpon H., Armstrong N., Dougnon T. V., Fah L., Hounsa E., Bankolé H. S., et al. (2018). Antibacterial activity of chalcone and dihydrochalcone compounds from Uvaria chamae roots against multidrug-resistant bacteria. Biomed Res. Int. 2018:1453173. 10.1155/2018/1453173 PubMed DOI PMC
Krawczyk B., Wysocka M., Kotłowski R., Bronk M., Michalik M., Samet A. (2020). Linezolid-resistant Enterococcus faecium strains isolated from one hospital in Poland -commensals or hospital-adapted pathogens? PLoS One 15:e0233504. 10.1371/journal.pone.0233504 PubMed DOI PMC
Kucerova-Chlupacova M., Kunes J., Buchta V., Vejsova M., Opletalova V. (2015). Novel pyrazine analogs of chalcones: Synthesis and evaluation of their antifungal and antimycobacterial activity. Molecules 20 1104–1117. 10.3390/molecules20011104 PubMed DOI PMC
Kucerova-Chlupacova M., Vyskovska-Tyllova V., Richterova-Finkova L., Kunes J., Buchta V., Vejsova M., et al. (2016). Novel halogenated pyrazine-based chalcones as potential antimicrobial drugs. Molecules 21:1421. 10.3390/molecules21111421 PubMed DOI PMC
Kumar S., Siji J. V., Nambisan B., Mohandas C. (2012). Activity and synergistic interactions of stilbenes and antibiotic combinations against bacteria in vitro. World J. Microbiol. Biotechnol. 28 3143–3150. PubMed
Lee G. S., Kim E. S., Cho S. I., Kim J. H., Choi G., Ju Y. S., et al. (2010). Antibacterial and synergistic activity of prenylated chalcone isolated from the roots of Sophora flavescens. J. Korean Soc. Appl. Biol. Chem. 53 290–296. 10.3839/jksabc.2010.045 DOI
Liaras K., Geronikaki A., Glamoèlija J., Cirić A., Soković M. (2011). Thiazole-based chalcones as potent antimicrobial agents. Synthesis and biological evaluation. Bioorg. Med. Chem. 19 3135–3140. 10.1016/j.bmc.2011.04.007 PubMed DOI
Lipinski C. A., Lombardo F., Dominy B. W., Feeney P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23 3–25. 00423-1 10.1016/S0169-409X PubMed DOI
Liu X. F., Zheng C. J., Sun L. P., Liu X. K., Piao H. R. (2011). Synthesis of new chalcone derivatives bearing 2,4-thiazolidinedione and benzoic acid moieties as potential antibacterial agents. Eur. J. Med. Chem. 46 3469–3473. 10.1016/j.ejmech.2011.05.012 PubMed DOI
Löwdin E., Odenholt-Tornqvist I., Bengtsson S., Cars O. (1993). A new method to determine postantibiotic effect and effects of subinhibitory antibiotic concentrations. Antimicrob. Agents Chemother. 37 2200–2205. 10.1128/aac.37.10.2200 PubMed DOI PMC
Mahapatra D. K., Bharti S. K., Asati V. (2017). Chalcone derivatives: Anti-inflammatory potential and molecular targets perspectives. Curr. Top. Med. Chem. 17 3146–3169. 10.2174/1568026617666170914160446 PubMed DOI
Matos M. J., Vazquez-Rodriguez S., Uriarte E., Santana L. (2015). Potential pharmacological uses of chalcones: A patent review (from June 2011-2014). Expert Opin. Ther. Pat. 25 351–366. 10.1517/13543776.2014.995627 PubMed DOI
Matuschek E., Brown D. F., Kahlmeter G. (2014). Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin. Microbiol. Infect. 20 O255–O266. 10.1111/1469-0691.12373 PubMed DOI
Mbaveng A. T., Ngameni B., Kuete V., Simo I. K., Ambassa P., Roy R., et al. (2008). Antimicrobial activity of the crude extracts and five flavonoids from the twigs of Dorstenia barteri (Moraceae). J. Ethnopharmacol. 116 483–489. 10.1016/j.jep.2007.12.017 PubMed DOI
McGuinness W. A., Malachova N., DeLeo F. R. (2017). Vancomycin resistance in Staphylococcus aureus. Yale J. Biol. Med. 90 269–281. PubMed PMC
Meier D., Hernández M. V., van Geelen L., Muharini R., Proksch P., Bandow J. E., et al. (2019). The plant-derived chalcone Xanthoangelol targets the membrane of Gram-positive bacteria. Bioorg. Med. Chem. 27:115151. 10.1016/j.bmc.2019.115151 PubMed DOI
Miller W. R., Munita J. M., Arias C. A. (2014). Mechanisms of antibiotic resistance in enterococci. Expert Rev. Anti Infect. Ther. 12 1221–1236. 10.1586/14787210.2014.956092 PubMed DOI PMC
Moawad A. A., Hotzel H., Awad O., Roesler U., Hafez H. M., Tomaso H., et al. (2019). Evolution of antibiotic resistance of coagulase-negative staphylococci isolated from healthy turkeys in Egypt: First report of linezolid resistance. Microorganisms 7:476. 10.3390/microorganisms7100476 PubMed DOI PMC
Nielsen S. F., Boesen T., Larsen M., Schonning K., Kromann H. (2004). Antibacterial chalcones-bioisosteric replacement of the 4’-hydroxy group. Bioorg. Med. Chem. 12 3047–3054. 10.1016/j.bmc.2004.03.071 PubMed DOI
Nielsen S. F., Larsen M., Boesen T., Schonning K., Kromann H. (2005). Cationic chalcone antibiotics. Design, synthesis, and mechanism of action. J. Med. Chem. 48 2667–2677. 10.1021/jm049424k PubMed DOI
Opletalova V., Hartl J., Patel A., Palat K., Buchta V. (2002). Ring substituted 3-phenyl-1-(2-pyrazinyl)-2-propen-1-ones as potential photosynthesis-inhibiting, antifungal and antimycobacterial agents. Farmaco 57 135–144. 01187-9 10.1016/s0014-827x PubMed DOI
Opletalova V., Pour M., Kunes J., Buchta V., Silva L., Kralova K., et al. (2006). Synthesis and biological evaluation of (E)-3-(nitrophenyl)-1-(pyrazin-2-yl)prop-2-en-1-ones. Collect. Czechoslov. Chem. Commun. 71 44–58.
Ouyang Y., Li J., Chen X., Fu X., Sun S., Wu Q. (2021). Chalcone derivatives: Role in anticancer therapy. Biomolecules 11:894. 10.3390/biom11060894 PubMed DOI PMC
Quiloan M. L. G., Vu J., Carvalho J. (2012). Enterococcus faecalis can be distinguished from Enterococcus faecium via differential susceptibility to antibiotics and growth and fermentation characteristics on mannitol salt agar. Front. Biol. 7 167–177. 10.1007/s11515-012-1183-5 DOI
Rukayadi Y., Lee K., Han S., Yong D., Hwang J. K. (2009). In vitro activities of panduratin a against clinical Staphylococcus strains. Antimicrob. Agents Chemother. 53 4529–4532. 10.1128/aac.00624-09 PubMed DOI PMC
Spangler S. K., Lin G., Jacobs M. R., Appelbaum P. C. (1998). Postantibiotic effect and postantibiotic sub-MIC effect of levofloxacin compared to those of ofloxacin, ciprofloxacin, erythromycin, azithromycin, and clarithromycin against 20 pneumococci. Antimicrob. Agents Chemother. 42 1253–1255. 10.1128/aac.42.5.1253 PubMed DOI PMC
Stubbings W. J., Bostock J. M., Ingham E., Chopra I. J. (2004). Assessment of a microplate method for determining the post-antibiotic effect in Staphylococcus aureus and Escherichia coli. Antimicrob. Chemother. 54 139–143. 10.1093/jac/dkh275 PubMed DOI
Tsukiyama R. I., Katsura H., Tokuriki N., Kobayashi M. (2002). Antibacterial activity of licochalcone A against spore-forming bacteria. Antimicrob. Agents Chemother. 46 1226–1230. 10.1128/aac.46.5.1226-1230.2002 PubMed DOI PMC
Ventola C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. P T 40 277–283. PubMed PMC
World Health Organization [WHO] (2021). Antimicrobial resistance. Available Online at: https://www.who.int/health-topics/antimicrobial-resistance [accessed April 2, 2022].
World Health Organization [WHO] (2017). Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. Available Online at: https://apps.who.int/iris/handle/10665/311820 [accessed April 2, 2022].
Xu M., Wu P., Shen F., Ji J., Rakesh K. P. (2019). Chalcone derivatives and their antibacterial activities: Current development. Bioorg. Chem. 91:103133. 10.1016/j.bioorg.2019.103133 PubMed DOI
Zhang M. M., Prior A. M., Maddox M. M., Shen W. J., Hevener K. E., Bruhn D. F., et al. (2018). Pharmacophore modeling, synthesis, and antibacterial evaluation of chalcones and derivatives. ACS Omega 3 18343–18360. 10.1021/acsomega.8b03174 PubMed DOI PMC
Zhuang C., Zhang W., Sheng C., Zhang W., Xing C., Miao Z. (2017). Chalcone: A privileged structure in medicinal chemistry. Chem. Rev. 117 7762–7810. 10.1021/acs.chemrev.7b00020 PubMed DOI PMC