• This record comes from PubMed

Comprehensive insight into anti-staphylococcal and anti-enterococcal action of brominated and chlorinated pyrazine-based chalcones

. 2022 ; 13 () : 912467. [epub] 20220817

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

The greatest threat and medicinal impact within gram-positive pathogens are posed by two bacterial genera, Staphylococcus and Enterococcus. Chalcones have a wide range of biological activities and are recognized as effective templates in medicinal chemistry. This study provides comprehensive insight into the anti-staphylococcal and anti-enterococcal activities of two recently published brominated and chlorinated pyrazine-based chalcones, CH-0y and CH-0w. Their effects against 4 reference and 12 staphylococcal and enterococcal clinical isolates were evaluated. Bactericidal action, the activity in combination with selected conventional antibiotics, the study of post-antimicrobial effect (PAE, PAE/SME), and in vitro and in vivo toxicity, were included. In CH-0y, anti-staphylococcal activity ranging from MIC = 15.625 to 62.5 μM, and activity against E. faecium from 31.25 to 62.5 μM was determined. In CH-0w, anti-staphylococcal activity ranging from 31.25 to 125 μM, and activity against E. faecium and E. faecalis (62.5 μM) was revealed. Both CH-0y and CH-0w showed bactericidal action, beneficial impact on bacterial growth delay within PAE and PAE/SME studies, and non/low toxicity in vivo. Compared to CH-0w, CH-0y seems to have higher anti-staphylococcal and less toxic potential. In conclusion, chalcones CH-0y and CH-0w could be considered as structural pattern for future adjuvants to selected antibiotic drugs.

See more in PubMed

Abouelhassan Y., Garrison A. T., Yang H., Chávez-Riveros A., Burch G. M., Huigens R. W., III (2019). Recent progress in natural-product-inspired programs aimed to address antibiotic resistance and tolerance. J. Med. Chem. 62 7618–7642. 10.1021/acs.jmedchem.9b00370 PubMed DOI PMC

Ahmed M. O., Baptiste K. E. (2018). Vancomycin-resistant enterococci: A review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb. Drug Resist. 24 590–606. 10.1089/mdr.2017.0147 PubMed DOI

Ahmed N., Konduru N. K., Owais M. (2019). Design, synthesis and antimicrobial activities of novel ferrocenyl and organic chalcone based sulfones and bis-sulfones. Arab. J. Chem. 12 1879–1894. 10.1016/j.arabjc.2014.12.008 DOI

Allegra E., Titball R. W., Carter J., Champion O. L. (2018). Galleria mellonella larvae allow the discrimination of toxic and non-toxic chemicals. Chemosphere 198 469–472. 10.1016/j.chemosphere.2018.01.175 PubMed DOI

Barsoumian A. E., Mende K., Sanchez C. J., Jr., Beckius M. L., Wenke J. C., Murray C. K., et al. (2015). Clinical infectious outcomes associated with biofilm-related bacterial infections: A retrospective chart review. BMC Infect. Dis. 15:223. PubMed PMC

Battenberg O. A., Yang Y., Verhelst S. H., Sieber S. A. (2013). Target profiling of 4-hydroxyderricin in S. aureus reveals seryl-tRNA synthetase binding and inhibition by covalent modification. Mol. Biosyst. 9 343–351. 10.1039/c2mb25446h PubMed DOI

Becker K., Heilmann C., Peters G. (2014). Coagulase-negative staphylococci. Clin. Microbiol. Rev. 27 870–926. 10.1128/cmr.00109-13 PubMed DOI PMC

Bender J. K., Cattoir V., Hegstad K., Sadowy E., Coque T. M., Westh H., et al. (2018). Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist. Updat. 40 25–39. 10.1016/j.drup.2018.10.002 PubMed DOI

Bocquet L., Sahpaz S., Bonneau N., Beaufay C., Mahieux S., Samaillie J., et al. (2019). Phenolic compounds from Humulus lupulus as natural antimicrobial products: New weapons in the fight against methicillin resistant Staphylococcus aureus, Leishmania mexicana and Trypanosoma brucei strains. Molecules 24:1024. 10.3390/molecules24061024 PubMed DOI PMC

Bowman M. D., O’Neill J. C., Stringer J. R., Blackwell H. E. (2007). Rapid identification of antibacterial agents effective against Staphylococcus aureus using small-molecule macroarrays. Chem. Biol. 14 351–357. PubMed

Božić D. D., Milenković M., Ivković B., Ćirković I. (2014). Antibacterial activity of three newly-synthesized chalcones & synergism with antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus. Indian J. Med. Res. 140 130–137. PubMed PMC

Burmaoglu S., Algul O., Gobek A., Aktas Anil D., Ulger M., Erturk B. G., et al. (2017). Design of potent fluoro-substituted chalcones as antimicrobial agents. J. Enzyme Inhib. Med. Chem. 32 490–495. 10.1080/14756366.2016.1265517 PubMed DOI PMC

Chambers H. F., Deleo F. R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 7 629–641. PubMed PMC

Chen H., Li L., Liu Y., Wu M., Xu S., Zhang G., et al. (2018). In vitro activity and post-antibiotic effects of linezolid in combination with fosfomycin against clinical isolates of Staphylococcus aureus. Infect. Drug Resist. 11 2107–2115. 10.2147/idr.s175978 PubMed DOI PMC

Chen Z. H., Zheng C. J., Sun L. P., Piao H. R. (2010). Synthesis of new chalcone derivatives containing a rhodanine-3-acetic acid moiety with potential antibacterial activity. Eur. J. Med. Chem. 45 5739–5743. 10.1016/j.ejmech.2010.09.031 PubMed DOI

Chlupacova M., Opletalova V., Kunes J., Silva L., Buchta V., Duskova L., et al. (2005). Synthesis and biological evaluation of some ring-substituted (E)-3-aryl-1-pyrazin-2-ylprop-2-en-1-ones. Folia Pharm. Univ. Carol. 33, 31–43.

Coskun D., Dalkilic S., Dalkilic L. K., Coskun M. F. (2021). Synthesis, characterization, and antimicrobial potential of some chlorinated benzofuran chalcones. Prog. Nutr. 23:e2021256. 10.23751/pn.v23iS2.11963 DOI

Dan W., Dai J. (2020). Recent development of chalcones as potential antibacterial agents in medicinal chemistry. Eur. J. Med. Chem. 187:111980. 10.1016/j.ejmech.2019.111980 PubMed DOI

Elkhalifa D., Al-Hashimi I., Al Moustafa A. E., Khalil A. (2021). A comprehensive review on the antiviral activities of chalcones. J. Drug Target. 29 403–419. 10.1080/1061186x.2020.1853759 PubMed DOI

European Committee for Antimicrobial Susceptibility Testing [EUCAST] of the European Society for Clinical Microbiology Infectious Diseases [ESCMID]. (2003). Eucast discussion document E. Dis 5.1: Determination of Minimum Inhibitory Concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 9 9–15. 10.1046/j.1469-0691.2003.00790.x DOI

Feng L., Maddox M. M., Alam M. Z., Tsutsumi L. S., Narula G., Bruhn D. F., et al. (2014). Synthesis, structure–activity relationship studies, and antibacterial evaluation of 4-chromanones and chalcones, as well as olympicin a and derivatives. J. Med. Chem. 57 8398–8420. 10.1021/jm500853v PubMed DOI PMC

Friedman N. D., Temkin E., Carmeli Y. (2016). The negative impact of antibiotic resistance. Clin. Microbiol. Infect. 22 416–422. 10.1016/j.cmi.2015.12.002 PubMed DOI

Fukai T., Marumo A., Kaitou K., Kanda T., Terada S., Nomura T. (2002). Antimicrobial activity of licorice flavonoids against methicillin-resistant Staphylococcus aureus. Fitoterapia 73 536–539. 10.1016/s0367-326x00168-5 PubMed DOI

Gupta V. K., Gaur R., Sharma A., Akther J., Saini M., Bhakuni R. S., et al. (2019). A novel bi-functional chalcone inhibits multidrug resistant Staphylococcus aureus and potentiates the activity of fluoroquinolones. Bioorg. Chem. 83 214–225. 10.1016/j.bioorg.2018.10.024 PubMed DOI

Hamada N. M., Abdo N. Y. (2015). Synthesis, characterization, antimicrobial screening and free-radical scavenging activity of some novel substituted pyrazoles. Molecules 20 10468–10486. 10.3390/molecules200610468 PubMed DOI PMC

Hamilton V., Harris C., Hall C. L., Potticary J., Cremeens M. E., D’Ambruoso G. D., et al. (2021). Structural effects of halogen bonding in iodochalcones. Acta Crystallogr. B Struct. Sci. 77 347–356. 10.1107/s2052520621002961 PubMed DOI

Haraguchi H., Ishikawa H., Mizutani K., Tamura Y., Kinoshita T. (1998). Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflata. Bioorg. Med. Chem. 6 339–347. 10034-7 10.1016/s0968-0896 PubMed DOI

Hatano T., Shintani Y., Aga Y., Shiota S., Tsuchiya T., Yoshida T. (2000). Phenolic constituents of licorice. VIII. Structures of glicophenone and glicoisoflavanone, and effects of licorice phenolics on methicillin-resistant Staphylococcus aureus. Chem. Pharm. Bull. 48 1286–1292. PubMed

Haydakm M. H. (1936). Is wax a necessary constituent of the diet of wax moth larvae? Ann. Entomol. Soc. Am. 29 581–588. 10.1093/aesa/29.4.581 PubMed DOI

Heilmann C., Ziebuhr W., Becker K. (2019). Are coagulase-negative staphylococci virulent? Clin. Microbiol. Infect. 25 1071–1080. 10.1016/j.cmi.2018.11.012 PubMed DOI

Ignasiak K., Maxwell A. (2017). Galleria mellonella (greater wax moth) larvae as a model for antibiotic susceptibility testing and acute toxicity trials. BMC Res. Notes 10:428. 10.1186/s13104-017-2757-8 PubMed DOI PMC

Jin X., Zheng C. J., Song M. X., Wu Y., Sun L. P., Li Y. J., et al. (2012). Synthesis and antimicrobial evaluation of L-phenylalanine-derived C5-substituted rhodanine and chalcone derivatives containing thiobarbituric acid or 2-thioxo-4-thiazolidinone. Eur. J. Med. Chem. 56 203–209. PubMed

Junqueira J. C. (2012). Galleria mellonella as a model host for human pathogens. Virulence 3 474–476. 10.4161/viru.22493 PubMed DOI PMC

Kant R., Kumar D., Agarwal D., Gupta R. D., Tilak R., Awasthi S. K., et al. (2016). Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. Eur. J. Med. Chem. 113 34–49. 10.1016/j.ejmech.2016.02.041 PubMed DOI

Kaur D. C., Chate S. S. (2015). Study of antibiotic resistance pattern in methicillin resistant Staphylococcus aureus with special reference to newer antibiotic. J. Glob. Infect. Dis. 7 78–84. 10.4103/0974-777x.157245 PubMed DOI PMC

Khan S. N., Khan A. U. (2016). Breaking the spell: Combating multidrug resistant ‘superbugs’. Front. Microbiol. 7:174. 10.3389/fmicb.2016.00174 PubMed DOI PMC

Konieczny M. T., Konieczny W., Sabisz M., Skladanowski A., Wakiec R., Augustynowicz-Kopec E., et al. (2007). Acid-catalyzed synthesis of oxathiolone fused chalcones. Comparison of their activity toward various microorganisms and human cancer cells line. Eur. J. Med. Chem. 42 729–733. 10.1016/j.ejmech.2006.12.014 PubMed DOI

Koudokpon H., Armstrong N., Dougnon T. V., Fah L., Hounsa E., Bankolé H. S., et al. (2018). Antibacterial activity of chalcone and dihydrochalcone compounds from Uvaria chamae roots against multidrug-resistant bacteria. Biomed Res. Int. 2018:1453173. 10.1155/2018/1453173 PubMed DOI PMC

Krawczyk B., Wysocka M., Kotłowski R., Bronk M., Michalik M., Samet A. (2020). Linezolid-resistant Enterococcus faecium strains isolated from one hospital in Poland -commensals or hospital-adapted pathogens? PLoS One 15:e0233504. 10.1371/journal.pone.0233504 PubMed DOI PMC

Kucerova-Chlupacova M., Kunes J., Buchta V., Vejsova M., Opletalova V. (2015). Novel pyrazine analogs of chalcones: Synthesis and evaluation of their antifungal and antimycobacterial activity. Molecules 20 1104–1117. 10.3390/molecules20011104 PubMed DOI PMC

Kucerova-Chlupacova M., Vyskovska-Tyllova V., Richterova-Finkova L., Kunes J., Buchta V., Vejsova M., et al. (2016). Novel halogenated pyrazine-based chalcones as potential antimicrobial drugs. Molecules 21:1421. 10.3390/molecules21111421 PubMed DOI PMC

Kumar S., Siji J. V., Nambisan B., Mohandas C. (2012). Activity and synergistic interactions of stilbenes and antibiotic combinations against bacteria in vitro. World J. Microbiol. Biotechnol. 28 3143–3150. PubMed

Lee G. S., Kim E. S., Cho S. I., Kim J. H., Choi G., Ju Y. S., et al. (2010). Antibacterial and synergistic activity of prenylated chalcone isolated from the roots of Sophora flavescens. J. Korean Soc. Appl. Biol. Chem. 53 290–296. 10.3839/jksabc.2010.045 DOI

Liaras K., Geronikaki A., Glamoèlija J., Cirić A., Soković M. (2011). Thiazole-based chalcones as potent antimicrobial agents. Synthesis and biological evaluation. Bioorg. Med. Chem. 19 3135–3140. 10.1016/j.bmc.2011.04.007 PubMed DOI

Lipinski C. A., Lombardo F., Dominy B. W., Feeney P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23 3–25. 00423-1 10.1016/S0169-409X PubMed DOI

Liu X. F., Zheng C. J., Sun L. P., Liu X. K., Piao H. R. (2011). Synthesis of new chalcone derivatives bearing 2,4-thiazolidinedione and benzoic acid moieties as potential antibacterial agents. Eur. J. Med. Chem. 46 3469–3473. 10.1016/j.ejmech.2011.05.012 PubMed DOI

Löwdin E., Odenholt-Tornqvist I., Bengtsson S., Cars O. (1993). A new method to determine postantibiotic effect and effects of subinhibitory antibiotic concentrations. Antimicrob. Agents Chemother. 37 2200–2205. 10.1128/aac.37.10.2200 PubMed DOI PMC

Mahapatra D. K., Bharti S. K., Asati V. (2017). Chalcone derivatives: Anti-inflammatory potential and molecular targets perspectives. Curr. Top. Med. Chem. 17 3146–3169. 10.2174/1568026617666170914160446 PubMed DOI

Matos M. J., Vazquez-Rodriguez S., Uriarte E., Santana L. (2015). Potential pharmacological uses of chalcones: A patent review (from June 2011-2014). Expert Opin. Ther. Pat. 25 351–366. 10.1517/13543776.2014.995627 PubMed DOI

Matuschek E., Brown D. F., Kahlmeter G. (2014). Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin. Microbiol. Infect. 20 O255–O266. 10.1111/1469-0691.12373 PubMed DOI

Mbaveng A. T., Ngameni B., Kuete V., Simo I. K., Ambassa P., Roy R., et al. (2008). Antimicrobial activity of the crude extracts and five flavonoids from the twigs of Dorstenia barteri (Moraceae). J. Ethnopharmacol. 116 483–489. 10.1016/j.jep.2007.12.017 PubMed DOI

McGuinness W. A., Malachova N., DeLeo F. R. (2017). Vancomycin resistance in Staphylococcus aureus. Yale J. Biol. Med. 90 269–281. PubMed PMC

Meier D., Hernández M. V., van Geelen L., Muharini R., Proksch P., Bandow J. E., et al. (2019). The plant-derived chalcone Xanthoangelol targets the membrane of Gram-positive bacteria. Bioorg. Med. Chem. 27:115151. 10.1016/j.bmc.2019.115151 PubMed DOI

Miller W. R., Munita J. M., Arias C. A. (2014). Mechanisms of antibiotic resistance in enterococci. Expert Rev. Anti Infect. Ther. 12 1221–1236. 10.1586/14787210.2014.956092 PubMed DOI PMC

Moawad A. A., Hotzel H., Awad O., Roesler U., Hafez H. M., Tomaso H., et al. (2019). Evolution of antibiotic resistance of coagulase-negative staphylococci isolated from healthy turkeys in Egypt: First report of linezolid resistance. Microorganisms 7:476. 10.3390/microorganisms7100476 PubMed DOI PMC

Nielsen S. F., Boesen T., Larsen M., Schonning K., Kromann H. (2004). Antibacterial chalcones-bioisosteric replacement of the 4’-hydroxy group. Bioorg. Med. Chem. 12 3047–3054. 10.1016/j.bmc.2004.03.071 PubMed DOI

Nielsen S. F., Larsen M., Boesen T., Schonning K., Kromann H. (2005). Cationic chalcone antibiotics. Design, synthesis, and mechanism of action. J. Med. Chem. 48 2667–2677. 10.1021/jm049424k PubMed DOI

Opletalova V., Hartl J., Patel A., Palat K., Buchta V. (2002). Ring substituted 3-phenyl-1-(2-pyrazinyl)-2-propen-1-ones as potential photosynthesis-inhibiting, antifungal and antimycobacterial agents. Farmaco 57 135–144. 01187-9 10.1016/s0014-827x PubMed DOI

Opletalova V., Pour M., Kunes J., Buchta V., Silva L., Kralova K., et al. (2006). Synthesis and biological evaluation of (E)-3-(nitrophenyl)-1-(pyrazin-2-yl)prop-2-en-1-ones. Collect. Czechoslov. Chem. Commun. 71 44–58.

Ouyang Y., Li J., Chen X., Fu X., Sun S., Wu Q. (2021). Chalcone derivatives: Role in anticancer therapy. Biomolecules 11:894. 10.3390/biom11060894 PubMed DOI PMC

Quiloan M. L. G., Vu J., Carvalho J. (2012). Enterococcus faecalis can be distinguished from Enterococcus faecium via differential susceptibility to antibiotics and growth and fermentation characteristics on mannitol salt agar. Front. Biol. 7 167–177. 10.1007/s11515-012-1183-5 DOI

Rukayadi Y., Lee K., Han S., Yong D., Hwang J. K. (2009). In vitro activities of panduratin a against clinical Staphylococcus strains. Antimicrob. Agents Chemother. 53 4529–4532. 10.1128/aac.00624-09 PubMed DOI PMC

Spangler S. K., Lin G., Jacobs M. R., Appelbaum P. C. (1998). Postantibiotic effect and postantibiotic sub-MIC effect of levofloxacin compared to those of ofloxacin, ciprofloxacin, erythromycin, azithromycin, and clarithromycin against 20 pneumococci. Antimicrob. Agents Chemother. 42 1253–1255. 10.1128/aac.42.5.1253 PubMed DOI PMC

Stubbings W. J., Bostock J. M., Ingham E., Chopra I. J. (2004). Assessment of a microplate method for determining the post-antibiotic effect in Staphylococcus aureus and Escherichia coli. Antimicrob. Chemother. 54 139–143. 10.1093/jac/dkh275 PubMed DOI

Tsukiyama R. I., Katsura H., Tokuriki N., Kobayashi M. (2002). Antibacterial activity of licochalcone A against spore-forming bacteria. Antimicrob. Agents Chemother. 46 1226–1230. 10.1128/aac.46.5.1226-1230.2002 PubMed DOI PMC

Ventola C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. P T 40 277–283. PubMed PMC

World Health Organization [WHO] (2021). Antimicrobial resistance. Available Online at: https://www.who.int/health-topics/antimicrobial-resistance [accessed April 2, 2022].

World Health Organization [WHO] (2017). Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. Available Online at: https://apps.who.int/iris/handle/10665/311820 [accessed April 2, 2022].

Xu M., Wu P., Shen F., Ji J., Rakesh K. P. (2019). Chalcone derivatives and their antibacterial activities: Current development. Bioorg. Chem. 91:103133. 10.1016/j.bioorg.2019.103133 PubMed DOI

Zhang M. M., Prior A. M., Maddox M. M., Shen W. J., Hevener K. E., Bruhn D. F., et al. (2018). Pharmacophore modeling, synthesis, and antibacterial evaluation of chalcones and derivatives. ACS Omega 3 18343–18360. 10.1021/acsomega.8b03174 PubMed DOI PMC

Zhuang C., Zhang W., Sheng C., Zhang W., Xing C., Miao Z. (2017). Chalcone: A privileged structure in medicinal chemistry. Chem. Rev. 117 7762–7810. 10.1021/acs.chemrev.7b00020 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...