Genomic analysis of natural intra-specific hybrids among Ethiopian isolates of Leishmania donovani
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
206194
Wellcome Trust - United Kingdom
PubMed
32310945
PubMed Central
PMC7237039
DOI
10.1371/journal.pntd.0007143
PII: PNTD-D-18-01968
Knihovny.cz E-zdroje
- MeSH
- chiméra * MeSH
- genotyp MeSH
- Leishmania donovani genetika MeSH
- leishmanióza viscerální parazitologie MeSH
- lidé MeSH
- rekombinace genetická MeSH
- sekvenování celého genomu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Etiopie MeSH
Parasites of the genus Leishmania (Kinetoplastida: Trypanosomatidae) cause widespread and devastating human diseases. Visceral leishmaniasis due to Leishmania donovani is endemic in Ethiopia where it has also been responsible for major epidemics. The presence of hybrid genotypes has been widely reported in surveys of natural populations, genetic variation reported in a number of Leishmania species, and the extant capacity for genetic exchange demonstrated in laboratory experiments. However, patterns of recombination and the evolutionary history of admixture that produced these hybrid populations remain unclear. Here, we use whole-genome sequence data to investigate Ethiopian L. donovani isolates previously characterized as hybrids by microsatellite and multi-locus sequencing. To date there is only one previous study on a natural population of Leishmania hybrids based on whole-genome sequences. We propose that these hybrids originate from recombination between two different lineages of Ethiopian L. donovani occurring in the same region. Patterns of inheritance are more complex than previously reported with multiple, apparently independent, origins from similar parents that include backcrossing with parental types. Analysis indicates that hybrids are representative of at least three different histories. Furthermore, isolates were highly polysomic at the level of chromosomes with differences between parasites recovered from a recrudescent infection from a previously treated individual. The results demonstrate that recombination is a significant feature of natural populations and contributes to the growing body of data that shows how recombination, and gene flow, shape natural populations of Leishmania.
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Faculty of Medicine Addis Ababa University Addis Ababa Ethiopia
Zobrazit více v PubMed
Herricks JR, Hotez PJ, Wanga V, Coffeng LE, Haagsma JA, Basáñez M-G, et al. The global burden of disease study 2013: What does it mean for the NTDs? PLoS Negl Trop Dis. 2017;11: e0005424 10.1371/journal.pntd.0005424 PubMed DOI PMC
Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7: e35671 10.1371/journal.pone.0035671 PubMed DOI PMC
Herwaldt BL. Leishmaniasis. Lancet. 1999;354: 1191–1199. 10.1016/S0140-6736(98)10178-2 PubMed DOI
Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, et al. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLoS Negl Trop Dis. 2016;10: e0004349 10.1371/journal.pntd.0004349 PubMed DOI PMC
Seblova V, Sadlova J, Vojtkova B, Votypka J, Carpenter S, Bates PA, et al. The Biting Midge Culicoides sonorensis (Diptera: Ceratopogonidae) Is Capable of Developing Late Stage Infections of Leishmania enriettii. PLoS Negl Trop Dis. 2015;9: e0004060 10.1371/journal.pntd.0004060 PubMed DOI PMC
Tibayrenc M, Kjellberg F, Ayala FJ. A clonal theory of parasitic protozoa: the population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. Proc Natl Acad Sci U S A. 1990;87: 2414–2418. 10.1073/pnas.87.7.2414 PubMed DOI PMC
Ramírez JD, Llewellyn MS. Reproductive clonality in protozoan pathogens-truth or artefact? Mol Ecol. 2014;23: 4195–4202. 10.1111/mec.12872 PubMed DOI
Akhoundi M, Downing T, Votýpka J, Kuhls K, Lukeš J, Cannet A, et al. Leishmania infections: Molecular targets and diagnosis. Mol Aspects Med. 2017;57: 1–29. 10.1016/j.mam.2016.11.012 PubMed DOI
Schönian G, Kuhls K, Mauricio IL. Molecular approaches for a better understanding of the epidemiology and population genetics of Leishmania. Parasitology. 2011;138: 405–425. 10.1017/S0031182010001538 PubMed DOI
Schönian G, Cupolillo E, Mauricio I. Molecular Evolution and Phylogeny of Leishmania. Drug Resistance in Leishmania Parasites. 2012. pp. 15–44.
Rougeron V, De Meeûs T, Hide M, Waleckx E, Bermudez H, Arevalo J, et al. Extreme inbreeding in Leishmania braziliensis. Proc Natl Acad Sci U S A. 2009;106: 10224–10229. 10.1073/pnas.0904420106 PubMed DOI PMC
Rougeron V, De Meeûs T, Kako Ouraga S, Hide M, Bañuls A-L. “Everything you always wanted to know about sex (but were afraid to ask)” in Leishmania after two decades of laboratory and field analyses. PLoS Pathog. 2010;6: e1001004 10.1371/journal.ppat.1001004 PubMed DOI PMC
Kuhls K, Keilonat L, Ochsenreither S, Schaar M, Schweynoch C, Presber W, et al. Multilocus microsatellite typing (MLMT) reveals genetically isolated populations between and within the main endemic regions of visceral leishmaniasis. Microbes Infect. 2007;9: 334–343. 10.1016/j.micinf.2006.12.009 PubMed DOI
Sterkers Y, Crobu L, Lachaud L, Pagès M, Bastien P. Parasexuality and mosaic aneuploidy in Leishmania: alternative genetics. Trends Parasitol. 2014;30: 429–435. 10.1016/j.pt.2014.07.002 PubMed DOI
Schwenkenbecher JM, Wirth T, Schnur LF, Jaffe CL, Schallig H, Al-Jawabreh A, et al. Microsatellite analysis reveals genetic structure of Leishmania tropica. Int J Parasitol. 2006;36: 237–246. 10.1016/j.ijpara.2005.09.010 PubMed DOI
Kuhls K, Cupolillo E, Silva SO, Schweynoch C, Boité MC, Mello MN, et al. Population structure and evidence for both clonality and recombination among Brazilian strains of the subgenus Leishmania (Viannia). PLoS Negl Trop Dis. 2013;7: e2490 10.1371/journal.pntd.0002490 PubMed DOI PMC
Gelanew T, Hailu A, Schőnian G, Lewis MD, Miles MA, Yeo M. Multilocus sequence and microsatellite identification of intra-specific hybrids and ancestor-like donors among natural Ethiopian isolates of Leishmania donovani. Int J Parasitol. 2014;44: 751–757. 10.1016/j.ijpara.2014.05.008 PubMed DOI PMC
Ravel C, Cortes S, Pratlong F, Morio F, Dedet J-P, Campino L. First report of genetic hybrids between two very divergent Leishmania species: Leishmania infantum and Leishmania major. Int J Parasitol. 2006;36: 1383–1388. 10.1016/j.ijpara.2006.06.019 PubMed DOI
Hamad SH, Musa AM, Khalil EAG, Abebe T, Younis BM, Elthair MEE, et al. Leishmania: Probable genetic hybrids between species in Sudanese isolates. J Microbiol Antimicrob. 2011;3: 142–145.
Akopyants NS, Kimblin N, Secundino N, Patrick R, Peters N, Lawyer P, et al. Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science. 2009;324: 265–268. 10.1126/science.1169464 PubMed DOI PMC
Sadlova J, Yeo M, Seblova V, Lewis MD, Mauricio I, Volf P, et al. Visualisation of Leishmania donovani fluorescent hybrids during early stage development in the sand fly vector. PLoS One. 2011;6: e19851 10.1371/journal.pone.0019851 PubMed DOI PMC
Inbar E, Akopyants NS, Charmoy M, Romano A, Lawyer P, Elnaiem D-EA, et al. The mating competence of geographically diverse Leishmania major strains in their natural and unnatural sand fly vectors. PLoS Genet. 2013;9: e1003672 10.1371/journal.pgen.1003672 PubMed DOI PMC
Romano A, Inbar E, Debrabant A, Charmoy M, Lawyer P, Ribeiro-Gomes F, et al. Cross-species genetic exchange between visceral and cutaneous strains of Leishmania in the sand fly vector. Proc Natl Acad Sci U S A. 2014;111: 16808–16813. 10.1073/pnas.1415109111 PubMed DOI PMC
Peacock L, Bailey M, Carrington M, Gibson W. Meiosis and haploid gametes in the pathogen Trypanosoma brucei. Curr Biol. 2014;24: 181–186. 10.1016/j.cub.2013.11.044 PubMed DOI PMC
Volf P, Benkova I, Myskova J, Sadlova J, Campino L, Ravel C. Increased transmission potential of Leishmania major/Leishmania infantum hybrids. Int J Parasitol. 2007;37: 589–593. 10.1016/j.ijpara.2007.02.002 PubMed DOI PMC
Nolder D, Roncal N, Davies CR, Llanos-Cuentas A, Miles MA. Multiple hybrid genotypes of Leishmania (viannia) in a focus of mucocutaneous Leishmaniasis. Am J Trop Med Hyg. 2007;76: 573–578. PubMed
Twyford AD, Ennos RA. Next-generation hybridization and introgression. Heredity. 2011;108: 179–189. 10.1038/hdy.2011.68 PubMed DOI PMC
Ropars J, Maufrais C, Diogo D, Marcet-Houben M, Perin A, Sertour N, et al. Gene flow contributes to diversification of the major fungal pathogen Candida albicans. Nat Commun. 2018;9: 2253 PubMed PMC
McMullan M, Gardiner A, Bailey K, Kemen E, Ward BJ, Cevik V, et al. Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite. Elife. 2015;4 10.7554/eLife.04550 PubMed DOI PMC
Desjardins CA, Giamberardino C, Sykes SM, Yu C-H, Tenor JL, Chen Y, et al. Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans. Genome Res. 2017;27: 1207–1219. 10.1101/gr.218727.116 PubMed DOI PMC
Ene IV, Bennett RJ. The cryptic sexual strategies of human fungal pathogens. Nat Rev Microbiol. 2014;12: 239–251. 10.1038/nrmicro3236 PubMed DOI PMC
Rogers MB, Downing T, Smith BA, Imamura H, Sanders M, Svobodova M, et al. Genomic confirmation of hybridisation and recent inbreeding in a vector-isolated Leishmania population. PLoS Genet. 2014;10: e1004092 10.1371/journal.pgen.1004092 PubMed DOI PMC
Zackay A, Cotton JA, Sanders M, Hailu A, Nasereddin A, Warburg A, et al. Genome wide comparison of Ethiopian Leishmania donovani strains reveals differences potentially related to parasite survival. PLoS Genet. 2018;14: e1007133 10.1371/journal.pgen.1007133 PubMed DOI PMC
Seblova V, Volfova V, Dvorak V, Pruzinova K, Votypka J, Kassahun A, et al. Phlebotomus orientalis sand flies from two geographically distant Ethiopian localities: biology, genetic analyses and susceptibility to Leishmania donovani. PLoS Negl Trop Dis. 2013;7: e2187 10.1371/journal.pntd.0002187 PubMed DOI PMC
Gelanew T, Kuhls K, Hurissa Z, Weldegebreal T, Hailu W, Kassahun A, et al. Inference of population structure of Leishmania donovani strains isolated from different Ethiopian visceral leishmaniasis endemic areas. PLoS Negl Trop Dis. 2010;4: e889 10.1371/journal.pntd.0000889 PubMed DOI PMC
Novembre J. Pritchard, Stephens, and Donnelly on Population Structure. Genetics. 2016;204: 391–393. 10.1534/genetics.116.195164 PubMed DOI PMC
Jensen RE, Englund PT. Network news: the replication of kinetoplast DNA. Annu Rev Microbiol. 2012;66: 473–491. 10.1146/annurev-micro-092611-150057 PubMed DOI
Turner CMR, Hide G, Buchanan N, Tait A. Trypanosoma brucei: Inheritance of Kinetoplast DNA Maxicircles in a Genetic Cross and Their Segregation during Vegetative Growth. Exp Parasitol. 1995;80: 234–241. 10.1006/expr.1995.1029 PubMed DOI
Laffitte M-CN, Leprohon P, Papadopoulou B, Ouellette M. Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Res. 2016;5: 2350 10.12688/f1000research.9218.1 PubMed DOI PMC
Rogers MB, Hilley JD, Dickens NJ, Wilkes J, Bates PA, Depledge DP, et al. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 2011;21: 2129–2142. 10.1101/gr.122945.111 PubMed DOI PMC
Sinha R, C MM, Raghwan, Das S, Das S, Shadab M, et al. Genome Plasticity in Cultured: Comparison of Early and Late Passages. Front Microbiol. 2018;9: 1279 10.3389/fmicb.2018.01279 PubMed DOI PMC
Pugach I, Matveyev R, Wollstein A, Kayser M, Stoneking M. Dating the age of admixture via wavelet transform analysis of genome-wide data. Genome Biol. 2011;12: R19 10.1186/gb-2011-12-2-r19 PubMed DOI PMC
Peacock L, Bailey M, Gibson W. Dynamics of gamete production and mating in the parasitic protist Trypanosoma brucei. Parasit Vectors. 2016;9 10.1186/s13071-016-1689-9 PubMed DOI PMC
Sterkers Y, Lachaud L, Crobu L, Bastien P, Pagès M. FISH analysis reveals aneuploidy and continual generation of chromosomal mosaicism in Leishmania major. Cell Microbiol. 2011;13: 274–283. 10.1111/j.1462-5822.2010.01534.x PubMed DOI
Selmecki AM, Maruvka YE, Richmond PA, Guillet M, Shoresh N, Sorenson AL, et al. Polyploidy can drive rapid adaptation in yeast. Nature. 2015;519: 349–352. 10.1038/nature14187 PubMed DOI PMC
Mannaert A, Downing T, Imamura H, Dujardin J-C. Adaptive mechanisms in pathogens: universal aneuploidy in Leishmania. Trends Parasitol. 2012;28: 370–376. 10.1016/j.pt.2012.06.003 PubMed DOI
Prieto Barja P, Barja PP, Pescher P, Bussotti G, Dumetz F, Imamura H, et al. Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani. Nature Ecology & Evolution. 2017;1: 1961–1969. PubMed
Dumetz F, Imamura H, Sanders M, Seblova V, Myskova J, Pescher P, et al. Modulation of Aneuploidy in Leishmania donovani during Adaptation to Different In Vitro and In Vivo Environments and Its Impact on Gene Expression. MBio. 2017;8 10.1128/mBio.00599-17 PubMed DOI PMC
Iantorno SA, Durrant C, Khan A, Sanders MJ, Beverley SM, Warren WC, et al. Gene Expression in Leishmania Is Regulated Predominantly by Gene Dosage. MBio. 2017;8 10.1128/mBio.01393-17 PubMed DOI PMC
Kumar P, Lodge R, Raymond F, Ritt J-F, Jalaguier P, Corbeil J, et al. Gene expression modulation and the molecular mechanisms involved in Nelfinavir resistance in Leishmania donovani axenic amastigotes. Mol Microbiol. 2013;89: 565–582. 10.1111/mmi.12298 PubMed DOI
Lachaud L, Bourgeois N, Kuk N, Morelle C, Crobu L, Merlin G, et al. Constitutive mosaic aneuploidy is a unique genetic feature widespread in the Leishmania genus. Microbes Infect. 2014;16: 61–66. 10.1016/j.micinf.2013.09.005 PubMed DOI
Lewis MD, Llewellyn MS, Gaunt MW, Yeo M, Carrasco HJ, Miles MA. Flow cytometric analysis and microsatellite genotyping reveal extensive DNA content variation in Trypanosoma cruzi populations and expose contrasts between natural and experimental hybrids. Int J Parasitol. 2009;39: 1305–1317. 10.1016/j.ijpara.2009.04.001 PubMed DOI PMC
Dujardin J-C, Mannaert A, Durrant C, Cotton JA. Mosaic aneuploidy in Leishmania: the perspective of whole genome sequencing. Trends Parasitol. 2014;30: 554–555. 10.1016/j.pt.2014.09.004 PubMed DOI
Downing T, Imamura H, Decuypere S, Clark TG, Coombs GH, Cotton JA, et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res. 2011;21: 2143–2156. 10.1101/gr.123430.111 PubMed DOI PMC
Kwon-Chung KJ, Chang YC. Aneuploidy and drug resistance in pathogenic fungi. PLoS Pathog. 2012;8: e1003022 PubMed PMC
Selmecki A, Forche A, Berman J. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science. 2006;313: 367–370. 10.1126/science.1128242 PubMed DOI PMC
Messenger LA, Llewellyn MS, Bhattacharyya T, Franzén O, Lewis MD, Ramírez JD, et al. Multiple Mitochondrial Introgression Events and Heteroplasmy in Trypanosoma cruzi Revealed by Maxicircle MLST and Next Generation Sequencing. PLoS Negl Trop Dis. 2012;6: e1584 10.1371/journal.pntd.0001584 PubMed DOI PMC
Satoskar A, Snider H. Faculty of 1000 evaluation for Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. F1000—Post-publication peer review of the biomedical literature. 2009. 10.3410/f.1159113.621459 PubMed DOI PMC
Harrison RG, Larson EL. Hybridization, introgression, and the nature of species boundaries. J Hered. 2014;105 Suppl 1: 795–809. PubMed
Arbeithuber B, Betancourt AJ, Ebner T, Tiemann-Boege I. Crossovers are associated with mutation and biased gene conversion at recombination hotspots. Proc Natl Acad Sci U S A. 2015;112: 2109–2114. 10.1073/pnas.1416622112 PubMed DOI PMC
Beichman AC, Huerta-Sanchez E, Lohmueller KE. Using Genomic Data to Infer Historic Population Dynamics of Nonmodel Organisms. Annual Review of Ecology, Evolution, and Systematics. 2018. pp. 433–456. 10.1146/annurev-ecolsys-110617-062431 DOI
Schraiber JG, Akey JM. Methods and models for unravelling human evolutionary history. Nat Rev Genet. 2015;16: 727–740. 10.1038/nrg4005 PubMed DOI
Bradley DJ, Kirkley J. Regulation of Leishmania populations within the host. I. the variable course of Leishmania donovani infections in mice. Clin Exp Immunol. 1977;30: 119–129. PubMed PMC
Ponstigl H. Smalt. 2010. Available: https://sourceforge.net/projects/smalt/
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43: 491–498. 10.1038/ng.806 PubMed DOI PMC
Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, et al. From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Current Protocols in Bioinformatics. 2013. pp. 11.10.1–11.10.33. PubMed PMC
Marco-Sola S, Sammeth M, Guigó R, Ribeca P. The GEM mapper: fast, accurate and versatile alignment by filtration. Nat Methods. 2012;9: 1185–1188. 10.1038/nmeth.2221 PubMed DOI
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27: 2156–2158. 10.1093/bioinformatics/btr330 PubMed DOI PMC
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am J Hum Genet. 2007;81: 559–575. 10.1086/519795 PubMed DOI PMC
Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. 2005.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25: 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30: 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19: 1655–1664. 10.1101/gr.094052.109 PubMed DOI PMC
Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4: 7 10.1186/s13742-015-0047-8 PubMed DOI PMC
R core team. R: A language and environment for statistical computing. 2016. Available: https://www.R-project.org/
Simpson L, Neckelmann N, de la Cruz VF, Simpson AM, Feagin JE, Jasmer DP, et al. Comparison of the maxicircle (mitochondrial) genomes of Leishmania tarentolae and Trypanosoma brucei at the level of nucleotide sequence. J Biol Chem. 1987;262: 6182–6196. PubMed
Hahn C, Bachmann L, Chevreux B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res. 2013;41: e129 10.1093/nar/gkt371 PubMed DOI PMC
Fernandes F, Pereira L, Freitas AT. CSA: an efficient algorithm to improve circular DNA multiple alignment. BMC Bioinformatics. 2009;10: 230 10.1186/1471-2105-10-230 PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30: 772–780. 10.1093/molbev/mst010 PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25: 1972–1973. 10.1093/bioinformatics/btp348 PubMed DOI PMC