Increased transmission potential of Leishmania major/Leishmania infantum hybrids
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
078937
Wellcome Trust - United Kingdom
PubMed
17376453
PubMed Central
PMC2839924
DOI
10.1016/j.ijpara.2007.02.002
PII: S0020-7519(07)00045-8
Knihovny.cz E-zdroje
- MeSH
- křížení genetické * MeSH
- Leishmania infantum genetika MeSH
- Leishmania major genetika MeSH
- Phlebotomus parazitologie MeSH
- Psychodidae parazitologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Development of Leishmania infantum/Leishmania major hybrids was studied in two sand fly species. In Phlebotomus papatasi, which supported development of L. major but not L. infantum, the hybrids produced heavy late-stage infections with high numbers of metacyclic promastigotes. In the permissive vector Lutzomyia longipalpis, all Leishmania strains included in this study developed well. Hybrids were found to express L. major lipophosphoglycan, apparently enabling them to survive in P. papatasi midgut. The genetic exchange of the hybrids thus appeared to have enhanced their transmission potential and fitness. A potentially serious consequence is the future spread of the hybrids using this peridomestic and antropophilic vector.
Zobrazit více v PubMed
Ayala F. Is sex better? Parasites say “no”. Proc. Natl. Acad. Sci. USA. 1998;95:3346–3348. PubMed PMC
Cihakova J, Volf P. Development of different Leishmania major strains in vector sandflies Phlebotomus papatasi and P. duboscqi. Ann. Trop. Med. Parasitol. 1997;91:267–279. PubMed
Gramiccia M, Gradoni L. The current status of zoonotic leishmaniases and approaches to disease control. Int. J. Parasitol. 2005;35:1169–1180. PubMed
Ilg T, Stierhof YD, Craik D, Simpson R, Handman E, Bacic A. Purification and structural characterization of a filamentous mucin-like proteophosphoglycan secreted by Leishmania parasites. J. Biol. Chem. 1996;271:21583–21596. PubMed
Kamhawi S, Ramalho-Ortigao M, Pham VM, Kumar S, Lawyer PG, Turco SJ, Barillas-Mury C, Sacks DL, Valenzuela JG. A role for insect galectins in parasite survival. Cell. 2004;119:329–341. PubMed
Kamhawi S. Phlebotominae sand flies and Leishmania parasites: friends or foes? Trends Parasitol. 2006;22:439–445. PubMed
Kelleher M, Curtis JM, Sacks DL, Handman E, Bacic A. Epitope mapping of monoclonal antibodies directed against lipophosphoglycan of Leishmania major promastigotes. Mol. Biochem. Parasitol. 1994;66:187–200. PubMed
Killick-Kendrick R, Killick-Kendrick M, Tang Y. Anthroponotic cutaneous leishmaniasis in Kabul, Afghanistan: the low susceptibility of Phlebotomus papatasi to Leishmania tropica. Trans. R. Soc. Trop. Med. Hyg. 1994;88:252–253. PubMed
Killick-Kendrick R. The biology and control of phlebotomine sand flies. Clin. Dermatol. 1999;17:279–289. PubMed
R.P. Lane. Sandflies (Phlebotominae) In: Lane RP, Crosskey RW, editors. Medical Insects and Arachnids. Chapman and Hall; London: 1993. pp. 78–119.
Lewis DJ, Ward RD. Transmission and vectors. In: Peters W, Killick-Kendrick R, editors. The Leishmaniases in Biology and Medicine. Vol. 1. Academic Press; London: 1987. pp. 235–262.
Myskova J, Svobodova M, Beverley SM, Volf P. A lipophosphoglycan - independent development of Leishmania in permissive sand flies. Microb. Infect. 2007;9 doi: 10.1016/j.micinf.2006.12.010. PubMed PMC
Pimenta PF, Saraiva EMB, Rowton E, Modi GB, Garraway LA, Beverley SM, Turco SJ, Sacks DL. Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc. Natl. Acad. Sci. USA. 1994;91:9155–9159. PubMed PMC
Pimenta PF, Turco SJ, Mcconville MJ, Lawyer PG, Perkins PV, Sacks DL. Stage-specific adhesion of Leishmania promastigotes to the sandfly midgut. Science. 1992;256:1812–1815. PubMed
Ravel C, Cortes S, Pratlong F, Morio F, Dedet JP, Campino L. First report of genetic hybrids between two very divergent Leishmania species: Leishmania infantum and Leishmania major. Int. J. Parasitol. 2006;36:1383–1388. PubMed
Tibayrenc M, Ayala FJ. Evolutionary genetics of Trypanosoma and Leishmania. Microb Infect. 1999;1:465–472. PubMed
Victoir K, Dujardin JC. How to succeed in parasitic life without sex. Asking Leishmania. Trends Parasitol. 2002;18:81–85. PubMed
Volf P, Myskova J. Sand flies and Leishmania: specific versus permissive vectors. Trends Parasitol. 2007;23 doi:10.1016/j.pt.2006.12.010. PubMed PMC
Walters LI. Leishmania differentiation in natural and unnatural sand fly hosts. J. Eukaryot. Microbiol. 1993;40:196–206. PubMed
Walters LI, Irons KP, Chaplin G, Tesh RB. Life cycle of Leishmania major (Kinetoplastida: Trypanosomatidae) in the neotropical sand fly Lutzomyia longipalpis (Diptera: Psychodidae) J. Med. Entomol. 1993;30:699–718. PubMed
A novel strain of Leishmania braziliensis harbors not a toti- but a bunyavirus
Colonization and genetic diversification processes of Leishmania infantum in the Americas
Genomic analysis of natural intra-specific hybrids among Ethiopian isolates of Leishmania donovani
The development of Leishmania turanica in sand flies and competition with L. major