Visualisation of Leishmania donovani fluorescent hybrids during early stage development in the sand fly vector
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
21637755
PubMed Central
PMC3103508
DOI
10.1371/journal.pone.0019851
PII: PONE-D-10-05381
Knihovny.cz E-zdroje
- MeSH
- červený fluorescenční protein MeSH
- fluorescence MeSH
- fluorescenční mikroskopie MeSH
- hmyz - vektory parazitologie MeSH
- hybridizace genetická * MeSH
- křížení genetické MeSH
- Leishmania donovani cytologie genetika růst a vývoj patogenita MeSH
- leishmanióza viscerální parazitologie MeSH
- lidé MeSH
- luminescentní proteiny genetika metabolismus MeSH
- průtoková cytometrie MeSH
- Psychodidae parazitologie MeSH
- stadia vývoje fyziologie MeSH
- transfekce MeSH
- trávicí systém cytologie parazitologie MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- luminescentní proteiny MeSH
- zelené fluorescenční proteiny MeSH
BACKGROUND: The Leishmania protozoan parasites cause devastating human diseases. Leishmania have been considered to replicate clonally, without genetic exchange. However, an accumulation of evidence indicates that there are inter-specific and intra-specific hybrids among natural populations. The first and so far only experimental proof of genetic exchange was obtained in 2009 when double drug resistant Leishmania major hybrids were produced by co-infecting sand flies with two strains carrying different drug resistance markers. However, the location and timing of hybridisation events in sand flies has not been described. METHODOLOGY/PRINCIPAL FINDINGS: Here we have co-infected Phlebotomus perniciosus and Lutzomyia longipalpis with transgenic promastigotes of Leishmania donovani strains carrying hygromycin or neomycin resistance genes and red or green fluorescent markers. Fed females were dissected at different times post bloodmeal (PBM) and examined by fluorescent microscopy or fluorescent activated cell sorting (FACS) followed by confocal microscopy. In mixed infections strains LEM3804 and Gebre-1 reached the cardia and stomodeal valves more rapidly than strains LEM4265 and LV9. Hybrids unequivocally expressing both red and green fluorescence were seen in single flies of both vectors tested, co-infected with LEM4265 and Gebre-1. The hybrids were present as short (procyclic) promastigotes 2 days PBM in the semi-digested blood in the endoperitrophic space. Recovery of a clearly co-expressing hybrid was also achieved by FACS. However, hybrids could not sustain growth in vitro. CONCLUSIONS/SIGNIFICANCE: For the first time, we observed L. donovani hybrids in the sand fly vector, 2 days PBM and described the morphological stages involved. Fluorescence microscopy in combination with FACS allows visualisation and recovery of the progeny of experimental crosses but on this occasion the hybrids were not viable in vitro. Nevertheless, genetic exchange in L. donovani has profound epidemiological significance, because it facilitates the emergence and spread of new phenotypic traits.
Zobrazit více v PubMed
Bates PA, Rogers ME. New insights into the developmental biology and transmission mechanisms of Leishmania. Curr Mol Med. 2004;4:601–609. PubMed
Cihakova J, Volf P. Development of different Leishmania major strains in the vector sandflies Phlebotomus papatasi and P. duboscqi. Ann Trop Med Parasitol. 1997;91:267–279. PubMed
Kamhawi S. Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends Parasitol. 2006;22:439–445. PubMed
Rogers ME, Chance ML, Bates PA. The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitology. 2002;124:495–507. PubMed
Walters LL. Leishmania differentiation in natural and unnatural sand fly hosts. J Eukaryot Microbiol. 1993;40:196–206. PubMed
Sadlova J, Volf P. Peritrophic matrix of Phlebotomus duboscqi and its kinetics during Leishmania major development. Cell Tissue Res. 2009;337:313–325. PubMed PMC
Tibayrenc M, Ayala FJ. The clonal theory of parasitic protozoa: 12 years on. Trends Parasitol. 2002;18:405–410. PubMed
Tibayrenc M, Kjellberg F, Ayala FJ. A clonal theory of parasitic protozoa: the population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. Proc Natl Acad Sci U S A. 1990;87:2414–2418. PubMed PMC
Tibayrenc M, Kjellberg F, Ayala FJ. The clonal theory of parasitic protozoa - a taxonomic proposal applicable to other clonal organisms. Bioscience. 1991;41:767–774.
Victoir K, Dujardin JC. How to succeed in parasitic life without sex? Asking Leishmania. Trends Parasitol. 2002;18:81–85. PubMed
Gaunt MW, Yeo M, Frame IA, Stothard JR, Carrasco HJ, et al. Mechanism of genetic exchange in American trypanosomes. Nature. 2003;421:936–939. PubMed
Gibson W, Bailey M. Genetic exchange in Trypanosoma brucei: evidence for meiosis from analysis of a cross between drug-resistant transformants. Mol Biochem Parasitol. 1994;64:241–252. PubMed
Miles MA, Yeo M, Mauricio IL. Leishmania exploit sex. Science. 2009;324:187–189. PubMed
Banuls AL, Jonquieres R, Guerrini F, Le Pont F, Barrera C, et al. Genetic analysis of Leishmania parasites in Ecuador: are Leishmania (Viannia) panamensis and Leishmania (V.) guyanensis distinct taxa? Am J Trop Med Hyg. 1999;61:838–845. PubMed
Belli AA, Miles MA, Kelly JM. A putative Leishmania panamensis/Leishmania braziliensis hybrid is a causative agent of human cutaneous leishmaniasis in Nicaragua. Parasitology. 1994;109(Pt 4):435–442. PubMed
Delgado O, Cupolillo E, Bonfante-Garrido R, Silva S, Belfort E, et al. Cutaneous leishmaniasis in Venezuela caused by infection with a new hybrid between Leishmania (Viannia) braziliensis and L. (V.) guyanensis. Mem Inst Oswaldo Cruz. 1997;92:581–582. PubMed
Dujardin JC, Banuls AL, Llanos-Cuentas A, Alvarez E, DeDoncker S, et al. Putative Leishmania hybrids in the Eastern Andean valley of Huanuco, Peru. Acta Trop. 1995;59:293–307. PubMed
Kelly JM, Law JM, Chapman CJ, Van Eys GJ, Evans DA. Evidence of genetic recombination in Leishmania. Mol Biochem Parasitol. 1991;46:253–263. PubMed
Ravel C, Cortes S, Pratlong F, Morio F, Dedet JP, et al. First report of genetic hybrids between two very divergent Leishmania species: Leishmania infantum and Leishmania major. Int J Parasitol. 2006;36:1383–1388. PubMed
Chargui N, Amro A, Haouas N, Schonian G, Babba H, et al. Population structure of Tunisian Leishmania infantum and evidence for the existence of hybrids and gene flow between genetically different populations. Int J Parasitol. 2009;39:801–811. PubMed
Rougeron V, De Meeus T, Hide M, Waleckx E, Bermudez H, et al. Extreme inbreeding in Leishmania braziliensis. Proc Natl Acad Sci U S A. 2009;106:10224–10229. PubMed PMC
Akopyants NS, Kimblin N, Secundino N, Patrick R, Peters N, et al. Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science. 2009;324:265–268. PubMed PMC
Nolder D, Roncal N, Davies CR, Llanos-Cuentas A, Miles MA. Multiple hybrid genotypes of Leishmania (Viannia) in a focus of mucocutaneous Leishmaniasis. Am J Trop Med Hyg. 2007;76:573–578. PubMed
Schwenkenbecher JM, Wirth T, Schnur LF, Jaffe CL, Schallig H, et al. Microsatellite analysis reveals genetic structure of Leishmania tropica. Int J Parasitol. 2006;36:237–246. PubMed
Volf P, Benkova I, Myskova J, Sadlova J, Campino L, et al. Increased transmission potential of Leishmania major/Leishmania infantum hybrids. Int J Parasitol. 2007;37:589–593. PubMed PMC
Volf P, Myskova J. Sand flies and Leishmania: specific versus permissive vectors. Trends Parasitol. 2007;23:91–92. PubMed PMC
Volf P, Sadlova J. Sex in Leishmania. Science. 2009;324:1644. PubMed
Gibson W, Peacock L, Ferris V, Williams K, Bailey M. The use of yellow fluorescent hybrids to indicate mating in Trypanosoma brucei. Parasit Vectors. 2008;1:4. PubMed PMC
Robinson KA, Beverley SM. Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan parasite Leishmania. Mol Biochem Parasitol. 2003;128:217–228. PubMed
Benkova I, Volf P. Effect of temperature on metabolism of Phlebotomus papatasi (Diptera: Psychodidae). J Med Entomol. 2007;44:150–154. PubMed
Myskova J, Votypka J, Volf P. Leishmania in sand flies: comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J Med Entomol. 2008;45:133–138. PubMed
Yeo M, Lewis MD, Carrasco HJ, Acosta N, Llewellyn M, et al. Resolution of multiclonal infections of Trypanosoma cruzi from naturally infected triatomine bugs and from experimentally infected mice by direct plating on a sensitive solid medium. Int J Parasitol. 2007;37:111–120. PubMed
A novel strain of Leishmania braziliensis harbors not a toti- but a bunyavirus
Whole cell reconstructions of Leishmania mexicana through the cell cycle
Evolution of RNA viruses in trypanosomatids: new insights from the analysis of Sauroleishmania
Formation and three-dimensional architecture of Leishmania adhesion in the sand fly vector
Central Asian Rodents as Model Animals for Leishmania major and Leishmania donovani Research
Genomic analysis of natural intra-specific hybrids among Ethiopian isolates of Leishmania donovani
Transmission potential of antimony-resistant leishmania field isolates
The development of Leishmania turanica in sand flies and competition with L. major