Effect of Phlebotomus papatasi on the fitness, infectivity and antimony-resistance phenotype of antimony-resistant Leishmania major Mon-25
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38941845
PubMed Central
PMC11261056
DOI
10.1016/j.ijpddr.2024.100554
PII: S2211-3207(24)00035-6
Knihovny.cz E-zdroje
- Klíčová slova
- Antimony resistance, Fitness, Leishmania major, Phlebotomus papatasi, experimental infection, Virulence,
- MeSH
- amplifikace genu MeSH
- antimon * farmakologie MeSH
- genetická zdatnost MeSH
- Leishmania major * účinky léků genetika patogenita MeSH
- léková rezistence * genetika MeSH
- Phlebotomus * parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antimon * MeSH
Leishmania major is responsible for zoonotic cutaneous leishmaniasis. Therapy is mainly based on the use of antimony-based drugs; however, treatment failures and illness relapses were reported. Although studies were developed to understand mechanisms of drug resistance, the interactions of resistant parasites with their reservoir hosts and vectors remain poorly understood. Here we compared the development of two L. major MON-25 trivalent antimony-resistant lines, selected by a stepwise in vitro Sb(III)-drug pressure, to their wild-type parent line in the natural vector Phlebotomus papatasi. The intensity of infection, parasite location and morphological forms were compared by microscopy. Parasite growth curves and IC50 values have been determined before and after the passage in Ph. papatasi. qPCR was used to assess the amplification rates of some antimony-resistance gene markers. In the digestive tract of sand flies, Sb(III)-resistant lines developed similar infection rates as the wild-type lines during the early-stage infections, but significant differences were observed during the late-stage of the infections. Thus, on day 7 p. i., resistant lines showed lower representation of heavy infections with colonization of the stomodeal valve and lower percentage of metacyclic promastigote forms in comparison to wild-type strains. Observed differences between both resistant lines suggest that the level of Sb(III)-resistance negatively correlates with the quality of the development in the vector. Nevertheless, both resistant lines developed mature infections with the presence of infective metacyclic forms in almost half of infected sandflies. The passage of parasites through the sand fly guts does not significantly influence their capacity to multiply in vitro. The IC50 values and molecular analysis of antimony-resistance genes showed that the resistant phenotype of Sb(III)-resistant parasites is maintained after passage through the sand fly. Sb(III)-resistant lines of L. major MON-25 were able to produce mature infections in Ph. papatasi suggesting a possible circulation in the field using this vector.
Department of Parasitology Faculty of Sciences Charles University Vinicna 7 Prague Czech Republic
UMR 8076 BioCIS CNRS Université Paris Saclay 91400 Orsay France
Zobrazit více v PubMed
Ait-Oudhia K., Gazanion E., Oury B., Vergnes B., Sereno D. The fitness of antimony-resistant Leishmania parasites: lessons from the field. Trends Parasitol. 2011;27(4):141–142. doi: 10.1007/s00436-011-2555-5. Elsevier Ltd. PubMed DOI
Akopyants N., Kimblin N., Secundino N., Patrick R., Peters N., Lawyer P., Dobson D.E., Beverley S.M., Sacks D.L. Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science. 2009;324:265–268. doi: 10.1126/science.1169464. PubMed DOI PMC
Belazzoug S. Isolation of Leishmania major Yakimoff & schokhor, 1914 from Psammomys obesus gretzschmar, 1828 (rodentia: gerbillidae) in Algeria. Trans. R. Soc. Trop. Med. Hyg. 1983;77:876. doi: 10.1016/0035-9203(83)90314-0. PubMed DOI
Belazzoug S. Découverte d’un Meriones shawi (rongeur, gerbilidé) naturellement infesté par Leishmania dans le nouveau foyer de leishmaniose cutanée de Ksar Chellala (Algérie) Bull. Soc. Pathol. Exot. 1986;79:630–633.
Benikhlef R., Harrat Z., Toudjine M., Djerbouh A., Bendali-Braham S., Belkaid M. Detection of Leishmania infantum Mon-24 in the dog. Med. Trop. 2004;64(4):381–383. PMID: 15615393. PubMed
Boubidi S.C., Benallal K., Boudrissa A., Bouiba L., Bouchareb B., Garni R., Bouratbine A., Ravel C., Dvorak V., Votypka J., Volf P., Harrat Z. Phlebotomus sergenti (Parrot, 1917) identified as Leishmania killicki host in Ghardaïa, south Algeria. Microb. Infect. 2011;13(7):691–696. doi: 10.1016/j.micinf.2011.02.008. PMID: 21382502. PubMed DOI
Bussotti G., Li B., Pescher P., Vojtkova B., Louradour I., Pruzinova K., Sadlova J., Volf P., Späth G.F. Leishmania allelic selection during experimental sand fly infection correlates with mutational signatures of oxidative DNA damage. Proc. Natl. Acad. Sci. U.S.A. 2023;7;120(10) doi: 10.1073/pnas.2220828120. PMID: 36848551; PMCID: PMC10013807. PubMed DOI PMC
Denton H., McGregor J.C., Coombs G.H. Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thioldependent reductase. TDR1. Biochemical Journal. 2004;381:405–412. doi: 10.1042/BJ20040283. PMID: 15056070; PMCID: PMC1133846. PubMed DOI PMC
Diamond L.S., Herman C.M. Incidence of trypanosomes in the Canada goose as revealed by bone marrow culture. J. Parasitol. 1954;40(2):195–202. doi: 10.2307/3274299. DOI
Dostálová A., Volf P. Leishmania development in sandflies: parasite-vector interactions overview. Parasites Vectors. 2012;5:276. doi: 10.1186/1756-3305-5-276. PubMed DOI PMC
Douanne N., Wagne V., Roy G., Leprohon P., Ouellette M., Fernandez-Prada C. MRPA-independent mechanisms of antimony resistance in Leishmania infantum. Int. J. Parasitol. Drugs Drug Resist. 2020;13:28–37. doi: 10.1016/j.ijpddr.2020.03.003. PubMed DOI PMC
Dujardin J., Decuypere S. In: Drug Resistance in Leishmania Parasites. Ponte-Sucre A., Diaz E., Padrón-Nieves M., editors. Springer; Vienna: 2013. Epidemiology of leishmaniasis in the time of drug resistance. DOI
Eddaikra N., Ait-Oudhia K., Kherrachi I., Oury B., Moulti-Mati F., Benikhlef R., Harrat Z., Sereno D. Antimony susceptibility of Leishmania isolates collected over a 30-year period in Algeria. PLoS Neglected Trop. Dis. 2018;12(3) doi: 10.1371/journal.pntd.0006310. PubMed DOI PMC
Hendrickx S., Inocêncio da Luz R.A., Bhandari V., Kuypers K., Shaw C.D., Lonchamp J., Salotra P., Carter K., Sundar S., Rijal S., Dujardin J.-C., Cos P., Maes L. Experimental induction of paromomycin resistance in antimony-resistant strains of L. donovani: outcome dependent on in vitro selection protocol. PLoS Neglected Trop. Dis. 2012;6(5) doi: 10.1371/journal.pntd.0001664. PubMed DOI PMC
Hendrickx S., Van Bockstal L., Aslan H., Sadlova J., Maes L., Volf P., Caljon G. Transmission potential of paromomycin-resistant Leishmania infantum and Leishmania donovani. J. Antimicrob. Chemother. 2020;75(4):951–957. doi: 10.1093/jac/dkz517. PubMed DOI
Hendrickx S., Van Bockstal L., Bulté D., Mondelaers A., Aslan H., Rivas L., Maes L., Caljon G. Phenotypic adaptations of Leishmania donovani to recurrent miltefosine exposure and impact on sandfly infection. Parasites Vectors. 2020;13(1):96. doi: 10.1186/s13071-020-3972-z. PubMed DOI PMC
Izri A., Belazzoug S., Pratlong J.-A. Isolement de Leishmania major chez Phlebotomus papatasi à Biskra (Algérie) : Fin d’une épopée écoépidémiologique. Ann. Parasitol. Hum. Comp. 1992;67(1):31–32. doi: 10.1051/parasite/199267131. PubMed DOI
Izri A., Belazzoug S. Phlebotomus (Larroussius) perfiliewi naturally infected with dermotropic Leishmania infantum at Tenes, Algeria. Trans. R. Soc. Trop. Med. Hyg. 1993;87:399. doi: 10.1016/0035-9203(93)90011-E. PubMed DOI
Jaouadi K., Haouas N., Chaara D., Gorcii M., Chargui N., Augot D., Pratlong F., Dedet J.-P., Ettlijani S., Mezhoud H., Babba H. First detection of Leishmania killicki (Kinetoplastida, Trypanosomatidae) in Ctenodactylus gundi (Rodentia, Ctenodactylidae), a possible reservoir of human cutaneous leishmaniasis in Tunisia. Parasites Vectors. 2011;4:159. doi: 10.1186/1756-3305-4-159. PubMed DOI PMC
Kamhawi S. Phlebotomine sandflies and Leishmania parasites: friends or foes. Trends Parasitol. 2006;22(9):439–445. doi: 10.1016/j.pt.2006.06.012. PubMed DOI
Leprohon P., Légaré D., Raymond F., Madore E., Hardiman G., Corbeil J., Ouellette M. Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic Acids Res. 2009;37(5):1387–1399. doi: 10.1093/nar/gkn1069. PubMed DOI PMC
Myskova J., Votypka J., Volf P. Leishmania in sandflies: comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J. Med. Entomol. 2008;45(1):133–138. doi: 10.1093/jmedent/45.1.133. PubMed DOI
Nateghi-Rostami M., Tasbihi M., Darzi F. Involvement of tryparedoxin peroxidase (TryP) and trypanothione reductase (TryR) in antimony unresponsive of Leishmania tropica clinical isolates of Iran. Acta Trop. 2022;230 doi: 10.1016/j.actatropica.2022.106392. PubMed DOI
Pedrajas J.R., Kosmidou E., Miranda-Vizuete A., Gustafsson J.A., Wright A.P., Spyrou G. Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae. J. Biol. Chem. 1999;274(10):6366–6373. doi: 10.1074/jbc.274.10.6366. PubMed DOI
Ponte-Sucre A., Díaz E., Padrón-Nieves M. In: Drug Resistance in Leishmania Parasites : Consequences, Molecular Mechanisms and Possible Treatments. Ponte-Sucre A., Diaz E., Padrón-Nieves M., editors. Springer-Verlag Wien; 2013. Drug resistance in Leishmania parasites: consequences, molecular mechanisms and possible treatments; pp. 1–459.
Ponte-Sucre A., Gamarro F., Dujardin J.-C., Barrett M.P., López-Vélez R., García-Hernández R., Pountain A.W., Mwenechanya R., Papadopoulou B. Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Neglected Trop. Dis. 2017;11(12):1–24. doi: 10.1371/journal.pntd.0006052. PubMed DOI PMC
Pruzinova K., Pruzinova K., Sadlova J., Myskova J., Lestinova T., Janda J., Volf P. Leishmania mortality in sandfly blood meal is not species-specific and does not result from direct effect of proteinases. Parasites Vectors. 2018;11:37. doi: 10.1186/s13071-018-2613-2. PubMed DOI PMC
Reckenfelderbäumer N., Lüdemann H., Schmidt H., Steverding D., Krauth-Siegel R.L. Identification and functional characterization of thioredoxin from Trypanosoma brucei brucei. J. Biol. Chem. 2000;275(11):7547–7552. doi: 10.1074/jbc.275.11.7547. PubMed DOI
Rogers M.E., Chance M.L., Bates P.A. The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitology. 2002;124(Pt 5):495–507. doi: 10.1017/S0031182002001439. PubMed DOI
Sádlová J., Price H.P., Smith B.A., Votỳpka J., Volf P., Smith D.F. The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sandfly vector, Phlebotomus papatasi. Cell Microbiol. 2010;12(12):1765–1779. doi: 10.1111/j.1462-5822.2010.01507.x. PubMed DOI PMC
Sádlová J., Myskova J., Lestinova T., Votypka J., Yeo M., Volf P. Leishmania donovani development in Phlebotomus argentipes: comparison of promastigote- and amastigote-initiated infections. Parasitology. 2017;144(4):403–410. doi: 10.1017/S0031182016002067. PubMed DOI PMC
Seblova V., Oury B., Eddaikra N., Pratlong F., Gazanion E., Maia C., Volf P., Sereno D. Transmission potential of antimony-resistant Leishmania field isolates. Antimicrob. Agents Chemother. 2014;58(10):6273–6276. doi: 10.1128/aac.02406-13. PubMed DOI PMC
Sereno D., Maia C., Aït Oudhia K. Antimony resistance and environment: elusive links to explore during Leishmania life cycle. Int. J. Parasitol. Drugs Drug Resist. 2012;2:200–203. doi: 10.1016/j.ijpddr.2012.07.003. PubMed DOI PMC
Van Bockstal L., Sádlová J., Suau H.A., Hendrickx S., Meneses C., Kamhawi S., Volf P., Maes L., Caljon G. Impaired development of a miltefosine-resistant Leishmania infantum strain in the sandfly vectors Phlebotomus perniciosus and Lutzomyia longipalpis. Int. J. Parasitol. Drugs Drug Resist. 2019;11:1–7. doi: 10.1016/j.ijpddr.2019.09.003. PubMed DOI PMC
Van Bockstal L., Bulté D., Hendrickx S., Sadlova J., Volf P., Maes L., Caljon Guy. Impact of clinically acquired miltefosine resistance by Leishmania infantum on mouse and sandfly infection. Int. J. Parasitol. Drugs Drug Resist. 2020;13:16–21. doi: 10.1016/j.ijpddr.2020.04.004. PubMed DOI PMC
Volf P., Volfova V. Establishment and maintenance of sandfly colonies. J. Vector Ecol. Suppl. 2011;1:S1–S9. doi: 10.1111/j.1948-7134.2011.00106.x. PubMed DOI
Volf P., Benkova I., Myskova J., Sadlova J., Campino L., Ravel C. Increased transmission potential of Leishmania major/Leishmania infantum hybrids. Int. J. Parasitol. 2007;37:589–593. doi: 10.1016/j.ijpara.2007.02.002. PubMed DOI PMC
World Health Organization Global leishmaniasis surveillance, 2017–2018, and first report on 5 additional indicators. Wkly. Epidemiol. Rec. 2020;95(25):265–280. https://www.who.int/publications/i/item/who-wer9525 accessed on October 15th, 2020)
World Health Organization Global leishmaniasis surveillance, 2021, assessing the impact of the COVID-19 pandemic. Wkly. Epidemiol. Rec. 2022;45(11):575–590. https://www.who.int/publications/i/item/who-wer9745-575-590 (accessed on March 25th, 2024)
World Health Organization Health topics: leishmaniasis. 2023. https://www.who.int/health-topics/leishmaniasis (accessed on September 28th, 2023)