Leishmania allelic selection during experimental sand fly infection correlates with mutational signatures of oxidative DNA damage

. 2023 Mar 07 ; 120 (10) : e2220828120. [epub] 20230227

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36848551

Grantová podpora
REP-778298-1 EC | H2020 | PRIORITY 'Excellent science' | H2020 Marie Skłodowska-Curie Actions (MSCA)
CZ.02.1.01/0.0/0.0/16_019/0000759 EC | European Regional Development Fund (ERDF)
S-FB14002-74A Institut Pasteur

Trypanosomatid pathogens are transmitted by blood-feeding insects, causing devastating human infections. These parasites show important phenotypic shifts that often impact parasite pathogenicity, tissue tropism, or drug susceptibility. The evolutionary mechanisms that allow for the selection of such adaptive phenotypes remain only poorly investigated. Here, we use Leishmania donovani as a trypanosomatid model pathogen to assess parasite evolutionary adaptation during experimental sand fly infection. Comparing the genome of the parasites before and after sand fly infection revealed a strong population bottleneck effect as judged by allele frequency analysis. Apart from random genetic drift caused by the bottleneck effect, our analyses revealed haplotype and allelic changes during sand fly infection that seem under natural selection given their convergence between independent biological replicates. Our analyses further uncovered signature mutations of oxidative DNA damage in the parasite genomes after sand fly infection, suggesting that Leishmania suffers from oxidative stress inside the insect digestive tract. Our results propose a model of Leishmania genomic adaptation during sand fly infection, with oxidative DNA damage and DNA repair processes likely driving haplotype and allelic selection. The experimental and computational framework presented here provides a useful blueprint to assess evolutionary adaptation of other eukaryotic pathogens inside their insect vectors, such as Plasmodium spp, Trypanosoma brucei, and Trypanosoma cruzi.

Zobrazit více v PubMed

WHO, Leishmaniasis in high-burden countries: An epidemiological update based on data reported in 2014. Wkly. Epidemiol. Rec. 91, 287–296 (2016). PubMed

Darwin C., Kebler L., On the Origin of Species by Means of Natural Selection, or, The Preservation of Favoured Races in the Struggle for Life (J. Murray, London, 1859). PubMed PMC

Graham J. K., Smith M. L., Simons A. M., Experimental evolution of bet hedging under manipulated environmental uncertainty in Neurospora crassa. Proc. Biol. Sci. 281, 20140706 (2014). PubMed PMC

Stewart M. K., Cookson B. T., Non-genetic diversity shapes infectious capacity and host resistance. Trends Microbiol. 20, 461–466 (2012). PubMed PMC

Downing T., et al. , Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res. 21, 2143–2156 (2011). PubMed PMC

Rogers M. B., et al. , Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 21, 2129–2142 (2011). PubMed PMC

Sterkers Y., et al. , Novel insights into genome plasticity in Eukaryotes: Mosaic aneuploidy in Leishmania. Mol. Microbiol. 86, 15–23 (2012). PubMed

Ubeda J. M., et al. , Genome-wide stochastic adaptive DNA amplification at direct and inverted DNA repeats in the parasite Leishmania. PLoS Biol. 12, e1001868 (2014). PubMed PMC

Brotherton M. C., et al. , Proteomic and genomic analyses of antimony resistant Leishmania infantum mutant. PLoS One 8, e81899 (2013). PubMed PMC

Bussotti G., et al. , Genome instability drives epistatic adaptation in the human pathogen Leishmania. Proc. Natl. Acad. Sci. U.S.A. 118, e2113744118 (2021). PubMed PMC

Dumetz F., et al. , Modulation of aneuploidy in leishmania donovani during adaptation to different in vitro and in vivo environments and its impact on gene expression. MBio. 8, e00599–17 (2017). PubMed PMC

Iantorno S. A., et al. , Gene expression in leishmania is regulated predominantly by gene dosage. MBio 8, e01393–17 (2017). PubMed PMC

Leprohon P., et al. , Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic Acids Res. 37, 1387–1399 (2009). PubMed PMC

Prieto Barja P., et al. , Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani. Nat. Ecol. Evol. 1, 1961–1969 (2017). PubMed

Zhang W. W., et al. , Genetic analysis of Leishmania donovani tropism using a naturally attenuated cutaneous strain. PLoS Pathog. 10, e1004244 (2014). PubMed PMC

Akopyants N. S., et al. , Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science 324, 265–268 (2009). PubMed PMC

Inbar E., et al. , The mating competence of geographically diverse Leishmania major strains in their natural and unnatural sand fly vectors. PLoS Genet. 9, e1003672 (2013). PubMed PMC

Inbar E., et al. , Whole genome sequencing of experimental hybrids supports meiosis-like sexual recombination in Leishmania. PLoS Genet. 15, e1008042. (2019). PubMed PMC

Romano A., et al. , Cross-species genetic exchange between visceral and cutaneous strains of Leishmania in the sand fly vector. Proc. Natl. Acad. Sci. U.S.A. 111, 16808–16813 (2014). PubMed PMC

Spath G. F., Bussotti G., GIP: An open-source computational pipeline for mapping genomic instability from protists to cancer cells. Nucleic Acids Res. 50, e36 (2022). PubMed PMC

Pescher P., et al. , Quantitative proteome profiling informs on phenotypic traits that adapt Leishmania donovani for axenic and intracellular proliferation. Cell Microbiol. 13, 978–991 (2011). PubMed

Volf P., Volfova V., Establishment and maintenance of sand fly colonies. J. Vector Ecol. 36, S1–S9 (2011). PubMed

Leinonen R., et al. , The sequence read archive. Nucleic Acids Res. 39, D19–D21 (2011). PubMed PMC

McKinney W., “Data structures for statistical computing in Python” in Proc. of the 9th Python in Science Conf (Austin Texas: SciPy, 2008), (2010).

Bonfield J. K., et al. , HTSlib: C library for reading/writing high-throughput sequencing data. Gigascience 10, giab007 (2021). PubMed PMC

Harris C. R., et al. , Array programming with NumPy. Nature 585, 357–362 (2020). PubMed PMC

Hunter J. D., Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

Waskom M. L., Seaborn: Statistical data visualization. J. Open Source Software 6, 3021 (2021).

Kunzmann P., Hamacher K., Biotite: A unifying open source computational biology framework in Python. BMC Bioinform. 19, 346 (2018). PubMed PMC

Lex A., et al. , UpSet: Visualization of intersecting sets. IEEE Trans. Vis. Comput. Graph. 20, 1983–1992 (2014). PubMed PMC

Bussotti G., et al. , Leishmania genome dynamics during environmental adaptation reveal strain-specific differences in gene copy number variation, karyotype instability, and telomeric amplification. MBio 9, e01399–18 (2018). PubMed PMC

Dostalova A., Volf P., Leishmania development in sand flies: Parasite-vector interactions overview. Parasit Vectors 5, 276 (2012). PubMed PMC

Gossage S. M., Rogers M. E., Bates P. A., Two separate growth phases during the development of Leishmania in sand flies: Implications for understanding the life cycle. Int. J. Parasitol. 33, 1027–1034 (2003). PubMed PMC

Inbar E., et al. , The transcriptome of Leishmania major developmental stages in their natural sand fly vector. MBio. 8, e00029–17 (2017). PubMed PMC

Piel L., et al. , Experimental evolution links post-transcriptional regulation to Leishmania fitness gain. PLoS Pathog. 18, e1010375 (2022). PubMed PMC

Sadlova J., et al. , Virulent and attenuated lines of Leishmania major: DNA karyotypes and differences in metalloproteinase GP63. Folia Parasitol. 53, 81–90 (2006). PubMed

Serafim T. D., et al. , Leishmaniasis: The act of transmission. Trends Parasitol. 37, 976–987 (2021). PubMed

Serafim T. D., et al. , Sequential blood meals promote Leishmania replication and reverse metacyclogenesis augmenting vector infectivity. Nat. Microbiol. 3, 548–555 (2018). PubMed PMC

Aly R., et al. , A regulatory role for the 5’ and 3’ untranslated regions in differential expression of hsp83 in Leishmania. Nucleic Acids Res. 22, 2922–2929 (1994). PubMed PMC

Clayton C. E., Gene expression in Kinetoplastids. Curr. Opin. Microbiol. 32, 46–51 (2016). PubMed

Telleria E. L., et al. , Leishmania, microbiota and sand fly immunity. Parasitology 145, 1336–1353 (2018). PubMed PMC

Finkel T., Holbrook N. J., Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000). PubMed

Poetsch A. R., The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput. Struct. Biotechnol. J. 18, 207–219 (2020). PubMed PMC

Cooke M. S., et al. , Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J. 17, 1195–214 (2003). PubMed

Forrester N. L., et al. , Vector-borne transmission imposes a severe bottleneck on an RNA virus population. PLoS Pathog. 8, e1002897 (2012). PubMed PMC

Weaver S. C., et al. , Population bottlenecks and founder effects: Implications for mosquito-borne arboviral emergence. Nat. Rev. Microbiol. 19, 184–195 (2021). PubMed PMC

Reece J. B., et al. , Genetic Drift (Campbell Biology, ed. 10, 2011), pp. 488–490.

Doehl J. S. P., et al. , Skin parasite landscape determines host infectiousness in visceral leishmaniasis. Nat. Commun. 8, 57 (2017). PubMed PMC

Myskova J., et al. , Characterization of a midgut mucin-like glycoconjugate of Lutzomyia longipalpis with a potential role in Leishmania attachment. Parasit Vectors 9, 413 (2016). PubMed PMC

Pruzinova K., et al. , Leishmania mortality in sand fly blood meal is not species-specific and does not result from direct effect of proteinases. Parasit Vectors 11, 37 (2018). PubMed PMC

Seblova V., et al. , Phlebotomus orientalis sand flies from two geographically distant Ethiopian localities: Biology, genetic analyses and susceptibility to Leishmania donovani. PLoS Negl. Trop. Dis. 7, e2187 (2013). PubMed PMC

Bar-Sagi D., Hall A., Ras and Rho GTPases: A family reunion. Cell 103, 227–238 (2000). PubMed

dos Santos G. R., et al. , The GTPase TcRjl of the human pathogen Trypanosoma cruzi is involved in the cell growth and differentiation. Biochem. Biophys. Res. Commun. 419, 38–42 (2012). PubMed

Price H. P., et al. , The small GTPase ARL2 is required for cytokinesis in Trypanosoma brucei. Mol. Biochem. Parasitol. 173, 123–131 (2010). PubMed PMC

Natesan S. K., et al. , The trypanosome Rab-related proteins RabX1 and RabX2 play no role in intracellular trafficking but may be involved in fly infectivity. PLoS One 4, e7217 (2009). PubMed PMC

Wein T., Dagan T., The effect of population bottleneck size and selective regime on genetic diversity and evolvability in bacteria. Genome Biol. Evol. 11, 3283–3290 (2019). PubMed PMC

Sallmyr A., Fan J., Rassool F. V., Genomic instability in myeloid malignancies: Increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. Cancer Lett. 270, 1–9 (2008). PubMed

Rosenzweig D., et al. , Retooling Leishmania metabolism: From sand fly gut to human macrophage. FASEB J. 22, 590–602 (2008). PubMed

Barrera P., et al. , Natural sesquiterpene lactones induce oxidative stress in Leishmania mexicana. Evid. Based Complement. Alternat. Med. 2013, 163404 (2013). PubMed PMC

Bai S., et al. , Regulatory mechanisms of microbial homeostasis in insect gut. Insect Sci. 28, 286–301 (2021). PubMed

Ha E. M., et al. , A direct role for dual oxidase in Drosophila gut immunity. Science 310, 847–850 (2005). PubMed

Ha E. M., et al. , An antioxidant system required for host protection against gut infection in Drosophila. Dev. Cell 8, 125–132 (2005). PubMed

Molina-Cruz A., et al. , Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium. J. Biol. Chem. 283, 3217–3223 (2008). PubMed

Bahia A. C., et al. , The role of reactive oxygen species in Anopheles aquasalis response to Plasmodium vivax infection. PLoS One 8, e57014 (2013). PubMed PMC

Diaz-Albiter H., et al. , Reactive oxygen species-mediated immunity against Leishmania mexicana and Serratia marcescens in the sand phlebotomine fly Lutzomyia longipalpis. J. Biol. Chem. 287, 23995–24003 (2012). PubMed PMC

Das A., Kamran M., Ali N., HO-3867 induces ROS-dependent stress response and apoptotic cell death in Leishmania donovani. Front. Cell Infect. Microbiol. 11, 774899 (2021). PubMed PMC

Mandal A., et al. , Deprivation of L-Arginine induces oxidative stress mediated apoptosis in Leishmania donovani promastigotes: Contribution of the polyamine pathway. PLoS Negl. Trop. Dis. 10, e0004373 (2016). PubMed PMC

Maynard-Smith J., The Evolution of Sex (Cambridge University Press, Cambridge [England], New York, 1978).

Muller H. J., The relation of recombination to mutational advance. Mutat. Res. 106, 2–9 (1964). PubMed

Louradour I., et al. , CRISPR/Cas9 Mutagenesis in phlebotomus papatasi: The immune deficiency pathway impacts vector competence for Leishmania major. MBio 10, e01941-19 (2019). PubMed PMC

Louradour I., et al. , Stress conditions promote Leishmania hybridization in vitro marked by expression of the ancestral gamete fusogen HAP2 as revealed by single-cell RNA-seq. Elife 11, e73488 (2022). PubMed PMC

Bussotti G., Späth G. F., Transcriptomic compensation as sources for Leishmania genetic adaptation. NCBI SRA database, https://www.ncbi.nlm.nih.gov/sra/PRJNA605972

Bussotti G., Späth G. F., Evolutionary genomic adaptation of Leishmania donovani parasites in sandflies. NCBI SRA database, https://www.ncbi.nlm.nih.gov/sra/PRJNA748346

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace