The structural and functional basis of catalysis mediated by NAD(P)H:acceptor Oxidoreductase (FerB) of Paracoccus denitrificans
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24817153
PubMed Central
PMC4015959
DOI
10.1371/journal.pone.0096262
PII: PONE-D-13-50398
Knihovny.cz E-zdroje
- MeSH
- aminokyseliny chemie genetika metabolismus MeSH
- bakteriální proteiny chemie genetika metabolismus MeSH
- biokatalýza MeSH
- difrakce rentgenového záření MeSH
- flavinmononukleotid chemie metabolismus MeSH
- flaviny chemie metabolismus MeSH
- flavoproteiny chemie genetika metabolismus MeSH
- katalytická doména genetika MeSH
- kinetika MeSH
- krystalografie rentgenová MeSH
- maloúhlový rozptyl MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- multimerizace proteinu MeSH
- mutageneze cílená MeSH
- NADH, NADPH oxidoreduktasy chemie klasifikace metabolismus MeSH
- NADP chemie metabolismus MeSH
- oxidace-redukce MeSH
- Paracoccus denitrificans enzymologie genetika MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- terciární struktura proteinů * MeSH
- vazba proteinů MeSH
- vazebná místa genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- bakteriální proteiny MeSH
- flavinmononukleotid MeSH
- flaviny MeSH
- flavoproteiny MeSH
- NADH, NADPH oxidoreduktasy MeSH
- NADP MeSH
FerB from Paracoccus denitrificans is a soluble cytoplasmic flavoprotein that accepts redox equivalents from NADH or NADPH and transfers them to various acceptors such as quinones, ferric complexes and chromate. The crystal structure and small-angle X-ray scattering measurements in solution reported here reveal a head-to-tail dimer with two flavin mononucleotide groups bound at the opposite sides of the subunit interface. The dimers tend to self-associate to a tetrameric form at higher protein concentrations. Amino acid residues important for the binding of FMN and NADH and for the catalytic activity are identified and verified by site-directed mutagenesis. In particular, we show that Glu77 anchors a conserved water molecule in close proximity to the O2 of FMN, with the probable role of facilitating flavin reduction. Hydride transfer is shown to occur from the 4-pro-S position of NADH to the solvent-accessible si side of the flavin ring. When using deuterated NADH, this process exhibits a kinetic isotope effect of about 6 just as does the NADH-dependent quinone reductase activity of FerB; the first, reductive half-reaction of flavin cofactor is thus rate-limiting. Replacing the bulky Arg95 in the vicinity of the active site with alanine substantially enhances the activity towards external flavins that obeys the standard bi-bi ping-pong reaction mechanism. The new evidence for a cryptic flavin reductase activity of FerB justifies the previous inclusion of this enzyme in the protein family of NADPH-dependent FMN reductases.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Ramirez-Diaz MI, Diaz-Perez C, Vargas E, Riveros-Rosas H, Campos-Garcia J, et al. (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21: 321–332. PubMed
Symons ZC, Bruce NC (2006) Bacterial pathways for degradation of nitroaromatics. Nat Prod Rep 23: 845–850. PubMed
Ryan A, Laurieri N, Westwood I, Wang CJ, Lowe E, et al. (2010) A novel mechanism for azoreduction. J Mol Biol 400: 24–37. PubMed
Deller S, Macheroux P, Sollner S (2008) Flavin-dependent quinone reductases. Cell Mol Life Sci 65: 141–160. PubMed PMC
Mazoch J, Tesarik R, Sedlacek V, Kucera I, Turanek J (2004) Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans. Eur J Biochem 271: 553–562. PubMed
Sedlacek V, Kucera I (2010) Chromate reductase activity of the Paracoccus denitrificans ferric reductase B (FerB) protein and its physiological relevance. Arch Microbiol 192: 919–926. PubMed
Sedlacek V, van Spanning RJ, Kucera I (2009) Characterization of the quinone reductase activity of the ferric reductase B protein from Paracoccus denitrificans. Arch Biochem Biophys 483: 29–36. PubMed
Gonzalez CF, Ackerley DF, Lynch SV, Matin A (2005) ChrR, a soluble quinone reductase of Pseudomonas putida that defends against H2O2. J Biol Chem 280: 22590–22595. PubMed
Sollner S, Macheroux P (2009) New roles of flavoproteins in molecular cell biology: an unexpected role for quinone reductases as regulators of proteasomal degradation. FEBS J 276: 4313–4324. PubMed
Barak Y, Ackerley DF, Dodge CJ, Banwari L, Alex C, et al. (2006) Analysis of novel soluble chromate and uranyl reductases and generation of an improved enzyme by directed evolution. Appl Environ Microbiol 72: 7074–7082. PubMed PMC
Thorne SH, Barak Y, Liang W, Bachmann MH, Rao J, et al. (2009) CNOB/ChrR6, a new prodrug enzyme cancer chemotherapy. Mol Cancer Ther 8: 333–341. PubMed PMC
Klumpler T, Sedlacek V, Marek J, Wimmerova M, Kucera I (2010) Crystallization and initial X-ray diffraction studies of the flavoenzyme NAD(P)H:(acceptor) oxidoreductase (FerB) from the soil bacterium Paracoccus denitrificans. Acta Crystallogr Sect F Struct Biol Cryst Commun 66: 431–434. PubMed PMC
Tesarik R, Sedlacek V, Plockova J, Wimmerova M, Turanek J, et al. (2009) Heterologous expression and molecular characterization of the NAD(P)H:acceptor oxidoreductase (FerB) of Paracoccus denitrificans. Protein Expr Purif 68: 233–238. PubMed
Panjikar S, Parthasarathy V, Lamzin VS, Weiss MS, Tucker PA (2005) Auto-rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. Acta Crystallogr D Biol Crystallogr 61: 449–457. PubMed
Klumpler T, Marek J, Sedlacek V, Kucera I (2010) Solving phase problem using a Se-Met derivative of the flavoenzyme NAD(P)H:acceptor oxidoreductase (FerB). Materials Structure in Chemistry, Biology, Physics and Technology 17: b21–b23.
Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132. PubMed
Joosten RP, Joosten K, Murshudov GN, Perrakis A (2012) PDB_REDO: constructive validation, more than just looking for errors. Acta Crystallogr D Biol Crystallogr 68: 484–496. PubMed PMC
Holm L, Rosenstrom P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38: W545–549. PubMed PMC
Svergun D, Barberato C, Koch MHJ (1995) CRYSOL - A program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28: 768–773.
Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr 36: 1277–1282.
Petoukhov MV, Franke D, Shkumatov AV, Tria G, Kikhney AG, et al. (2012) New developments in the ATSAS program package for small-angle scattering data analysis. J Appl Crystallogr 45: 342–350. PubMed PMC
Lostao A, El Harrous M, Daoudi F, Romero A, Parody-Morreale A, et al. (2000) Dissecting the energetics of the apoflavodoxin-FMN complex. J Biol Chem 275: 9518–9526. PubMed
Massey V (1990) A simple method for the determination of redox potentials. In: Curti B, Ronchi S, Zanetti G, editors. Flavins and Flavoproteins. Berlin: de Gruyter W. pp. 59–66.
Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372: 774–797. PubMed
Eswaramoorthy S, Poulain S, Hienerwadel R, Bremond N, Sylvester MD, et al. (2012) Crystal structure of ChrR—a quinone reductase with the capacity to reduce chromate. PloS one 7: e36017. PubMed PMC
Jin H, Zhang Y, Buchko GW, Varnum SM, Robinson H, et al. (2012) Structure determination and functional analysis of a chromate reductase from Gluconacetobacter hansenii. PloS one 7: e42432. PubMed PMC
Agarwal R, Bonanno JB, Burley SK, Swaminathan S (2006) Structure determination of an FMN reductase from Pseudomonas aeruginosa PA01 using sulfur anomalous signal. Acta Crystallogr D Biol Crystallogr 62: 383–391. PubMed PMC
Rohr AK, Hersleth HP, Andersson KK (2010) Tracking flavin conformations in protein crystal structures with Raman spectroscopy and QM/MM calculations. Angew Chem Int Ed Engl 49: 2324–2327. PubMed
Hefti MH, Milder FJ, Boeren S, Vervoort J, van Berkel WJ (2003) A His-tag based immobilization method for the preparation and reconstitution of apoflavoproteins. Biochim Biophys Acta 1619: 139–143. PubMed
Tedeschi G, Chen S, Massey V (1995) DT-diaphorase. Redox potential, steady-state, and rapid reaction studies. J Biol Chem 270: 1198–1204. PubMed
Tedeschi G, Zetta L, Negri A, Mortarino M, Ceciliani F, et al. (1997) Redox potentials and quinone reductase activity of L-aspartate oxidase from Escherichia coli. Biochemistry 36: 16221–16230. PubMed
Mayhew SG (1999) Potentiometric measurement of oxidation-reduction potentials. Methods Mol Biol 131: 49–59. PubMed
Bollen YJ, Westphal AH, Lindhoud S, van Berkel WJ, van Mierlo CP (2012) Distant residues mediate picomolar binding affinity of a protein cofactor. Nat Commun 3: 1010. PubMed PMC
Grandori R, Khalifah P, Boice JA, Fairman R, Giovanielli K, et al. (1998) Biochemical characterization of WrbA, founding member of a new family of multimeric flavodoxin-like proteins. J Biol Chem 273: 20960–20966. PubMed
Ji HF, Shen L, Carey J, Grandori R, Zhang HY (2006) Why WrbA is weaker than flavodoxin in binding FMN. A molecular modeling study. Theochem-J Mol Struct 764: 155–160.
Sancho J (2006) Flavodoxins: sequence, folding, binding, function and beyond. Cell Mol Life Sci 63: 855–864. PubMed PMC
Nissen MS, Youn B, Knowles BD, Ballinger JW, Jun SY, et al. (2008) Crystal structures of NADH:FMN oxidoreductase (EmoB) at different stages of catalysis. J Biol Chem 283: 28710–28720. PubMed PMC
Bellamacina CR (1996) The nicotinamide dinucleotide binding motif: A comparison of nucleotide binding proteins. Faseb J 10: 1257–1269. PubMed
Fraaije MW, Mattevi A (2000) Flavoenzymes: diverse catalysts with recurrent features. Trends Biochem Sci 25: 126–132. PubMed
Li R, Bianchet MA, Talalay P, Amzel LM (1995) The three-dimensional structure of NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction. Proc Natl Acad Sci U S A 92: 8846–8850. PubMed PMC
Hubbard PA, Shen AL, Paschke R, Kasper CB, Kim JJ (2001) NADPH-cytochrome P450 oxidoreductase. Structural basis for hydride and electron transfer. J Biol Chem 276: 29163–29170. PubMed
Hubbard PA, Liang X, Schulz H, Kim JJ (2003) The crystal structure and reaction mechanism of Escherichia coli 2,4-dienoyl-CoA reductase. J Biol Chem 278: 37553–37560. PubMed
Liu ZJ, Chen HZ, Shaw N, Hopper SL, Chen LR, et al. (2007) Crystal structure of an aerobic FMN-dependent azoreductase (AzoA) from Enterococcus faecalis. Arch Biochem Biophys 463: 68–77. PubMed
Blaesse M, Kupke T, Huber R, Steinbacher S (2000) Crystal structure of the peptidyl-cysteine decarboxylase EpiD complexed with a pentapeptide substrate. Embo J 19: 6299–6310. PubMed PMC
Deller S, Sollner S, Trenker-El-Toukhy R, Jelesarov I, Gubitz GM, et al. (2006) Characterization of a thermostable NADPH:FMN oxidoreductase from the mesophilic bacterium Bacillus subtilis. Biochemistry 45: 7083–7091. PubMed
Bastian M, Sigel H (1997) The self-association of flavin mononucleotide (FMN(2-)) as determined by (1)H NMR shift measurements. Biophys Chem 67: 27–34. PubMed