The ArsH Protein Product of the Paracoccus denitrificans ars Operon Has an Activity of Organoarsenic Reductase and Is Regulated by a Redox-Responsive Repressor
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA 16-18476S
Czech Science Foundation
PubMed
35624766
PubMed Central
PMC9137774
DOI
10.3390/antiox11050902
PII: antiox11050902
Knihovny.cz E-zdroje
- Klíčová slova
- FMN, NADPH, Paracoccus denitrificans, organoarsenicals, redox-responsive repressor,
- Publikační typ
- časopisecké články MeSH
Paracoccus denitrificans ArsH is encoded by two identical genes located in two distinct putative arsenic resistance (ars) operons. Escherichia coli-produced recombinant N-His6-ArsH was characterized both structurally and kinetically. The X-ray structure of ArsH revealed a flavodoxin-like domain and motifs for the binding of flavin mononucleotide (FMN) and reduced nicotinamide adenine dinucleotide phosphate (NADPH). The protein catalyzed FMN reduction by NADPH via ternary complex mechanism. At a fixed saturating FMN concentration, it acted as an NADPH-dependent organoarsenic reductase displaying ping-pong kinetics. A 1:1 enzymatic reaction of phenylarsonic acid with the reduced form of FMN (FMNH2) and formation of phenylarsonous acid were observed. Growth experiments with P. denitrificans and E. coli revealed increased toxicity of phenylarsonic acid to cells expressing arsH, which may be related to in vivo conversion of pentavalent As to more toxic trivalent form. ArsH expression was upregulated not only by arsenite, but also by redox-active agents paraquat, tert-butyl hydroperoxide and diamide. A crucial role is played by the homodimeric transcriptional repressor ArsR, which was shown in in vitro experiments to monomerize and release from the DNA-target site. Collectively, our results establish ArsH as responsible for enhancement of organo-As(V) toxicity and demonstrate redox control of ars operon.
Zobrazit více v PubMed
Baker S.C., Ferguson S.J., Ludwig B., Page M.D., Richter O.M., van Spanning R.J. Molecular genetics of the genus Paracoccus: Metabolically versatile bacteria with bioenergetic flexibility. Microbiol. Mol. Biol. Rev. 1998;62:1046–1078. doi: 10.1128/MMBR.62.4.1046-1078.1998. PubMed DOI PMC
Sedlacek V., Klumpler T., Marek J., Kucera I. The structural and functional basis of catalysis mediated by NAD(P)H:acceptor oxidoreductase (FerB) of Paracoccus denitrificans. PLoS ONE. 2014;9:e96262. doi: 10.1371/journal.pone.0096262. PubMed DOI PMC
Mazoch J., Tesarik R., Sedlacek V., Kucera I., Turanek J. Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans. Eur. J. Biochem. 2004;271:553–562. doi: 10.1046/j.1432-1033.2003.03957.x. PubMed DOI
Sedlacek V., van Spanning R.J.M., Kucera I. Characterization of the quinone reductase activity of the ferric reductase B protein from Paracoccus denitrificans. Arch. Biochem. Biophys. 2009;483:29–36. doi: 10.1016/j.abb.2008.12.016. PubMed DOI
Sedlacek V., Ptackova N., Rejmontova P., Kucera I. The flavoprotein FerB of Paracoccus denitrificans binds to membranes, reduces ubiquinone and superoxide, and acts as an in vivo antioxidant. FEBS J. 2015;282:283–296. doi: 10.1111/febs.13126. PubMed DOI
Sedlacek V., Kucera I. Chromate reductase activity of the Paracoccus denitrificans ferric reductase B (FerB) protein and its physiological relevance. Arch. Microbiol. 2010;192:919–926. doi: 10.1007/s00203-010-0622-4. PubMed DOI
Sedlacek V., Kucera I. Arginine-95 is important for recruiting superoxide to the active site of the FerB flavoenzyme of Paracoccus denitrificans. FEBS Lett. 2019;593:697–702. doi: 10.1002/1873-3468.13359. PubMed DOI
Pernikarova V., Sedlacek V., Potesil D., Prochazkova I., Zdrahal Z., Bouchal P., Kucera I. Proteomic responses to a methyl viologen-induced oxidative stress in the wild type and FerB mutant strains of Paracoccus denitrificans. J. Proteom. 2015;125:68–75. doi: 10.1016/j.jprot.2015.05.002. PubMed DOI
Sedlacek V., Kucera I. Functional and mechanistic characterization of an atypical flavin reductase encoded by the pden_5119 gene in Paracoccus denitrificans. Mol. Microbiol. 2019;112:166–183. doi: 10.1111/mmi.14260. PubMed DOI
Paez-Espino D., Tamames J., de Lorenzo V., Canovas D. Microbial responses to environmental arsenic. Biometals. 2009;22:117–130. doi: 10.1007/s10534-008-9195-y. PubMed DOI
Mo H., Chen Q., Du J., Tang L., Qin F., Miao B., Wu X., Zeng J. Ferric reductase activity of the ArsH protein from Acidithiobacillus ferrooxidans. J. Microbiol. Biotechnol. 2011;21:464–469. doi: 10.4014/jmb.1101.01020. PubMed DOI
Xue X.M., Yan Y., Xu H.J., Wang N., Zhang X., Ye J. ArsH from Synechocystis sp. PCC 6803 reduces chromate and ferric iron. FEMS Microbiol. Lett. 2014;356:105–112. doi: 10.1111/1574-6968.12481. PubMed DOI
Hervas M., Lopez-Maury L., Leon P., Sanchez-Riego A.M., Florencio F.J., Navarro J.A. ArsH from the cyanobacterium Synechocystis sp. PCC 6803 is an efficient NADPH-dependent quinone reductase. Biochemistry. 2012;51:1178–1187. doi: 10.1021/bi201904p. PubMed DOI
Vorontsov I.I., Minasov G., Brunzelle J.S., Shuvalova L., Kiryukhina O., Collart F.R., Anderson W.F. Crystal structure of an apo form of Shigella flexneri ArsH protein with an NADPH-dependent FMN reductase activity. Protein Sci. 2007;16:2483–2490. doi: 10.1110/ps.073029607. PubMed DOI PMC
Ye J., Yang H.C., Rosen B.P., Bhattacharjee H. Crystal structure of the flavoprotein ArsH from Sinorhizobium meliloti. FEBS Lett. 2007;581:3996–4000. doi: 10.1016/j.febslet.2007.07.039. PubMed DOI PMC
Crescente V., Holland S.M., Kashyap S., Polycarpou E., Sim E., Ryan A. Identification of novel members of the bacterial azoreductase family in Pseudomonas aeruginosa. Biochem. J. 2016;473:549–558. doi: 10.1042/BJ20150856. PubMed DOI
Chen J., Bhattacharjee H., Rosen B.P. ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone. Mol. Microbiol. 2015;96:1042–1052. doi: 10.1111/mmi.12988. PubMed DOI PMC
Paez-Espino A.D., Nikel P.I., Chavarria M., de Lorenzo V. ArsH protects Pseudomonas putida from oxidative damage caused by exposure to arsenic. Environ. Microbiol. 2020;22:2230–2242. doi: 10.1111/1462-2920.14991. PubMed DOI
Wijtzes T., de Wit J.C., In H., Van’t R., Zwietering M.H. Modelling bacterial growth of Lactobacillus curvatus as a function of acidity and temperature. Appl. Environ. Microbiol. 1995;61:2533–2539. doi: 10.1128/aem.61.7.2533-2539.1995. PubMed DOI PMC
Tesarik R., Sedlacek V., Plockova J., Wimmerova M., Turanek J., Kucera I. Heterologous expression and molecular characterization of the NAD(P)H:acceptor oxidoreductase (FerB) of Paracoccus denitrificans. Protein Expres. Purif. 2009;68:233–238. doi: 10.1016/j.pep.2009.07.014. PubMed DOI
Battye T.G., Kontogiannis L., Johnson O., Powell H.R., Leslie A.G. iMOSFLM: A new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 2011;67:271–281. doi: 10.1107/S0907444910048675. PubMed DOI PMC
Krissinel E. Ccp4 software suite: History, evolution, content, challenges and future developments. Arbor. 2015;191:a220. doi: 10.3989/arbor.2015.772n2006. DOI
Long F., Vagin A.A., Young P., Murshudov G.N. BALBES: A molecular-replacement pipeline. Acta Crystallogr. D Biol. Crystallogr. 2008;64:125–132. doi: 10.1107/S0907444907050172. PubMed DOI PMC
Adams P.D., Afonine P.V., Bunkoczi G., Chen V.B., Davis I.W., Echols N., Headd J.J., Hung L.W., Kapral G.J., Grosse-Kunstleve R.W., et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010;66:213–221. doi: 10.1107/S0907444909052925. PubMed DOI PMC
Vagin A.A., Steiner R.A., Lebedev A.A., Potterton L., McNicholas S., Long F., Murshudov G.N. REFMAC5 dictionary: Organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 2004;60:2184–2195. doi: 10.1107/S0907444904023510. PubMed DOI
Emsley P., Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Horecker B.L., Kornberg A. The extinction coefficients of the reduced band of pyridine nucleotides. J. Biol. Chem. 1948;175:385–390. doi: 10.1016/S0021-9258(18)57268-9. PubMed DOI
Cleland W.W. Kinetics of enzyme-catalyzed reactions with 2 or more substrates or products. I. Nomenclature and rate equations. Biochim. Biophys. Acta. 1963;67:104–137. doi: 10.1016/0926-6569(63)90211-6. PubMed DOI
Whitby L.G. A new nethod for preparing flavin-adenine dinucleotide. Biochem. J. 1953;54:437–442. doi: 10.1042/bj0540437. PubMed DOI PMC
Heyduk T., Lee J.C. Application of fluorescence energy-transfer and polarization to monitor Escherichia coli cAMP receptor protein and lac promoter interaction. Proc. Natl. Acad. Sci. USA. 1990;87:1744–1748. doi: 10.1073/pnas.87.5.1744. PubMed DOI PMC
Krissinel E., Henrick K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 2007;372:774–797. doi: 10.1016/j.jmb.2007.05.022. PubMed DOI
Agarwal R., Bonanno J.B., Burley S.K., Swaminathan S. Structure determination of an FMN reductase from Pseudomonas aeruginosa PA01 using sulfur anomalous signal. Acta Crystallogr. D. 2006;62:383–391. doi: 10.1107/S0907444906001600. PubMed DOI PMC
Hua Y.H., Wu C.Y., Sargsyan K., Lim C. Sequence-motif detection of NAD(P)-binding proteins: Discovery of a unique antibacterial drug target. Sci. Rep. 2014;4:6471. doi: 10.1038/srep06471. PubMed DOI PMC
Wu J.H., Rosen B.P. Metalloregulated expression of the ars operon. J. Biol. Chem. 1993;268:52–58. doi: 10.1016/S0021-9258(18)54113-2. PubMed DOI
Prabaharan C., Kandavelu P., Packianathan C., Rosen B.P., Thiyagarajana S. Structures of two ArsR As(III)-responsive transcriptional repressors: Implications for the mechanism of derepression. J. Struct. Biol. 2019;207:209–217. doi: 10.1016/j.jsb.2019.05.009. PubMed DOI PMC
Wang L.P., Jeon B.W., Sahin O., Zhang Q.J. Identification of an arsenic resistance and arsenic-sensing system in Campylobacter jejuni. Appl. Environ. Microb. 2009;75:5064–5073. doi: 10.1128/AEM.00149-09. PubMed DOI PMC
Xu C., Rosen B.P. Dimerization is essential for DNA binding and repression by the ArsR metalloregulatory protein of Escherichia coli. J. Biol. Chem. 1997;272:15734–15738. doi: 10.1074/jbc.272.25.15734. PubMed DOI
Kretzschmar J., Brendler E., Wagler J., Schmidt A.C. Kinetics and activation parameters of the reaction of organoarsenic(V) compounds with glutathione. J. Hazard. Mater. 2014;280:734–740. doi: 10.1016/j.jhazmat.2014.08.036. PubMed DOI
Nuallain C.O., Cinneide S.O. Thermodynamic ionization constants of aromatic arsonic acids. J. Inorg. Nucl. Chem. 1973;35:2871–2881. doi: 10.1016/0022-1902(73)80519-6. DOI
Millis K.K., Weaver K.H., Rabenstein D.L. Oxidation/reduction potential of glutathione. J. Org. Chem. 1993;58:4144–4146. doi: 10.1021/jo00067a060. DOI
Knowles F.C. Reactions of lipoamide dehydrogenase and glutathione reductase with arsonic acids and arsonous acids. Arch. Biochem. Biophys. 1985;242:1–10. doi: 10.1016/0003-9861(85)90472-2. PubMed DOI
Walsh C.T., Wencewicz T.A. Flavoenzymes: Versatile catalysts in biosynthetic pathways. Nat. Prod. Rep. 2013;30:175–200. doi: 10.1039/C2NP20069D. PubMed DOI PMC
Mayhew S.G. The effects of pH and semiquinone formation on the oxidation-reduction potentials of flavin mononucleotide. A reappraisal. Eur. J. Biochem. 1999;265:698–702. doi: 10.1046/j.1432-1327.1999.00767.x. PubMed DOI
Pi K.F., Markelova E., Zhang P., van Cappellen P. Arsenic oxidation by flavin-derived reactive species under oxic and anoxic conditions: Oxidant Formation and pH Dependence. Environ. Sci. Technol. 2019;53:10897–10905. doi: 10.1021/acs.est.9b03188. PubMed DOI
Hirose K., Ezaki B., Liu T., Nakashima S. Diamide stress induces a metallothionein BmtA through a repressor BxmR and is modulated by Zn-inducible BmtA in the cyanobacterium Oscillatoria brevis. Toxicol. Lett. 2006;163:250–256. doi: 10.1016/j.toxlet.2005.11.008. PubMed DOI
Ehira S., Ohmori M. The redox-sensing transcriptional regulator RexT controls expression of thioredoxin A2 in the Cyanobacterium anabaena sp. strain PCC 7120. J. Biol. Chem. 2012;287:40433–40440. doi: 10.1074/jbc.M112.384206. PubMed DOI PMC
Palm G.J., Chi B.K., Waack P., Gronau K., Becher D., Albrecht D., Hinrichs W., Read R.J., Antelmann H. Structural insights into the redox-switch mechanism of the MarR/DUF24-type regulator HypR. Nucleic Acids Res. 2012;40:4178–4192. doi: 10.1093/nar/gkr1316. PubMed DOI PMC
Guimaraes B.G., Barbosa R.L., Soprano A.S., Campos B.M., de Souza T.A., Tonoli C.C.C., Leme A.F.P., Murakami M.T., Benedetti C.E. Plant pathogenic bacteria utilize biofilm growth-associated repressor (BigR), a novel winged-helix redox switch, to control hydrogen sulfide detoxification under hypoxia. J. Biol. Chem. 2011;286:26148–26157. doi: 10.1074/jbc.M111.234039. PubMed DOI PMC
Madeira F., Park Y.M., Lee J., Buso N., Gur T., Madhusoodanan N., Basutkar P., Tivey A.R.N., Potter S.C., Finn R.D., et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47:W636–W641. doi: 10.1093/nar/gkz268. PubMed DOI PMC
Kelley L.A., Mezulis S., Yates C.M., Wass M.N., Sternberg M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015;10:845–858. doi: 10.1038/nprot.2015.053. PubMed DOI PMC