Flavin-dependent enzymatic and photochemical interconversions between phenylarsonic and phenylarsonous acids

. 2025 Jun ; 38 (3) : 903-915. [epub] 20250416

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40240666
Odkazy

PubMed 40240666
DOI 10.1007/s10534-025-00685-7
PII: 10.1007/s10534-025-00685-7
Knihovny.cz E-zdroje

Phenylarsonic acid is the parent compound of a group of derivatives that occur as anthropogenic environmental contaminants in both less toxic As(V) and much more toxic As(III) redox states. To elucidate the mechanisms underlying their enzymatic redox conversions, the activities of two flavin reductases, ArsH and FerA, from the soil bacterium Paracoccus denitrificans were compared. The stopped-flow data demonstrated that PhAs(V) oxidized dihydroflavin mononucleotide bound to ArsH, but not to FerA. This result proves that ArsH has some substrate specificity for organoarsenic compounds. Under aerobic conditions, both enzymes accelerated the oxidation of PhAs(III) in a catalase-sensitive manner, indicating that hydrogen peroxide acts as an intermediate. H2O2 was shown to react with PhAs(III) in a bimolecular (1:1) irreversible reaction. When exposed to blue light, flavin alone mediated rapid oxidation of PhAs(III) by O2. Photooxidation by flavin acted in concert with chemical oxidation by transiently accumulating H2O2. The described processes may be relevant in the context of arsenic ecotoxicology and remediation.

Zobrazit více v PubMed

Aposhian HV, Zakharyan RA, Avram MD, Kopplin MJ, Wollenberg ML (2003) Oxidation and detoxification of trivalent arsenic species. Toxicol Appl Pharmacol 193:1–8. https://doi.org/10.1016/s0041-008x(03)00324-7 PubMed DOI

Baird RB, Eaton AD, Rice EW (2023) Standard methods for the examination of water and wastewater, 23rd edn. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, p 2017

Baker SC, Ferguson SJ, Ludwig B, Page MD, Richter OM, van Spanning RJ (1998) Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility. Microbiol Mol Biol Rev 62:1046–1078. https://doi.org/10.1128/MMBR.62.4.1046-1078.1998 PubMed DOI PMC

Bernhardt FH, Kuthan H (1981) Dioxygen activation by putidamonooxin. The oxygen species formed and released under uncoupling conditions. Eur J Biochem 120:547–555. https://doi.org/10.1111/j.1432-1033.1981.tb05735.x PubMed DOI

Binda C, Robinson RM, Martin Del Campo JS, Keul ND, Rodriguez PJ, Robinson HH, Mattevi A, Sobrado P (2015) An unprecedented NADPH domain conformation in lysine monooxygenase NbtG provides insights into uncoupling of oxygen consumption from substrate hydroxylation. J Biol Chem 290:12676–12688. https://doi.org/10.1074/jbc.M114.629485 PubMed DOI PMC

Boyce R (1907) The treatment of sleeping sickness and other trypanosomiases by the atoxyl and mercury method. Br Med J 2:624–625. https://doi.org/10.1136/bmj.2.2437.624 PubMed DOI PMC

Brutinel ED, Gralnick JA (2012) Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl Microbiol Biotechnol 93:41–48. https://doi.org/10.1007/s00253-011-3653-0 PubMed DOI

Burton K, Wilson TH (1953) The free-energy changes for the reduction of diphosphopyridine nucleotide and the dehydrogenation of L-malate and L-glycerol 1-phosphate. Biochem J 54:86–94. https://doi.org/10.1042/bj0540086 PubMed DOI PMC

Chen B, Liu Q, Popowich A, Shen S, Yan X, Zhang Q, Li XF, Weinfeld M, Cullen WR, Le XC (2015a) Therapeutic and analytical applications of arsenic binding to proteins. Metallomics 7:39–55. https://doi.org/10.1039/c4mt00222a PubMed DOI

Chen J, Bhattacharjee H, Rosen BP (2015b) ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone. Mol Microbiol 96:1042–1052. https://doi.org/10.1111/mmi.12988 PubMed DOI PMC

Clark WM, Lowe HJ (1956) Studies on oxidation-reduction. XXIV. Oxidation-reduction potentials of flavin adenine dinucleotide. J Biol Chem 221:983–992. https://doi.org/10.1016/S0021-9258(18)65211-1 PubMed DOI

DeMel S, Shi J, Martin P, Rosen BP, Edwards BF (2004) Arginine 60 in the ArsC arsenate reductase of E. coli plasmid R773 determines the chemical nature of the bound As(III) product. Protein Sci 13:2330–2340. https://doi.org/10.1110/ps.04787204 PubMed DOI PMC

Ding W, Tong H, Zhao D, Zheng HL, Liu CS, Li JJ, Wu F (2020) A novel removal strategy for copper and arsenic by photooxidation coupled with coprecipitation: performance and mechanism. Chem Eng J. https://doi.org/10.1016/J.Cej.2020.126102 PubMed DOI PMC

Duntley SQ (1963) Light in sea. J Opt Soc Am 53:214–233. https://doi.org/10.1364/Josa.53.000214 DOI

Ellis PJ, Conrads T, Hille R, Kuhn P (2001) Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 Å and 2.03 Å. Structure 9:125–132. https://doi.org/10.1016/s0969-2126(01)00566-4 PubMed DOI

Ferguson MA, Hoffmann MR, Hering JG (2005) TiO PubMed DOI

Fuse H, Takimura O, Murakami K, Yamaoka Y, Omori T (2000) Utilization of dimethyl sulfide as a sulfur source with the aid of light by Marinobacterium sp. strain DMS-S1. Appl Environ Microbiol 66:5527–5532. https://doi.org/10.1128/AEM.66.12.5527-5532.2000 PubMed DOI PMC

Gran-Scheuch A, Parra L, Fraaije MW (2023) Systematic assessment of uncoupling in flavoprotein oxidases and monooxygenases. ACS Sustain Chem Eng 11:4948–4959. https://doi.org/10.1021/acssuschemeng.1c02012 DOI

Hirano H, Yoshida T, Fuse H, Endo T, Habe H, Nojiri H, Omori T (2003) Marinobacterium sp. strain DMS-S1 uses dimethyl sulphide as a sulphur source after light-dependent transformation by excreted flavins. Environ Microbiol 5:503–509. https://doi.org/10.1046/j.1462-2920.2003.00444.x PubMed DOI

Holzer W, Shirdel J, Zirak P, Penzkofer A, Hegemann P, Deutzmann R, Hochmuth E (2005) Photo-induced degradation of some flavins in aqueous solution. Chem Phys 308:69–78. https://doi.org/10.1016/j.chemphys.2004.08.006 DOI

Hu Y, Cheng H, Tao S, Schnoor JL (2019) China’s ban on phenylarsonic feed additives, a major step toward reducing the human and ecosystem health risk from arsenic. Environ Sci Technol 53:12177–12187. https://doi.org/10.1021/acs.est.9b04296 PubMed DOI PMC

König B, Kümmel S, Svobodová E, Cibulka R (2018) Flavin photocatalysis. Phys Sci Rev. https://doi.org/10.1515/Psr-2017-0168 DOI

Lescano MR, Zalazar CS, Cassano AE, Brandi RJ (2011) Arsenic (III) oxidation of water applying a combination of hydrogen peroxide and UVC radiation. Photochem Photobiol Sci 10:1797–1803. https://doi.org/10.1039/c1pp05122a PubMed DOI

Li S, Li W, Yue L, Zuo B (2005) Determination of phenylarsenic compounds in environmental samples by high performance liquid chromatography. Se Pu 23:545–547 PubMed

Liu YC, Wen MT, Wu L, Cao SW, Li YS (2022) Environmental behavior and remediation methods of roxarsone. Appl Sci-Basel 12(15):7591. https://doi.org/10.3390/App12157591 DOI

Mangkalee M, Oonanant W, Aonbangkhen C, Pimviriyakul P, Tinikul R, Chaiyen P, Insin N, Sucharitakul J (2023) Reaction mechanism and kinetics of the two-component flavoprotein dimethyl sulfone monooxygenase system: using hydrogen peroxide for monooxygenation and substrate cleavage. FEBS J 290:5171–5195. https://doi.org/10.1111/febs.16916 PubMed DOI

Martin P, DeMel S, Shi J, Gladysheva T, Gatti DL, Rosen BP, Edwards BF (2001) Insights into the structure, solvation, and mechanism of ArsC arsenate reductase, a novel arsenic detoxification enzyme. Structure 9:1071–1081. https://doi.org/10.1016/s0969-2126(01)00672-4 PubMed DOI

Messens J, Martins JC, Van Belle K, Brosens E, Desmyter A, De Gieter M, Wieruszeski JM, Willem R, Wyns L, Zegers I (2002) All intermediates of the arsenate reductase mechanism, including an intramolecular dynamic disulfide cascade. Proc Natl Acad Sci USA 99:8506–8511. https://doi.org/10.1073/pnas.132142799 PubMed DOI PMC

Navarrete-Magana M, Estrella-Gonzalez A, May-Ix L, Cipagauta-Diaz S, Gomez R (2021) Improved photocatalytic oxidation of arsenic (III) with WO DOI

Noble RW, Gibson QH (1970) The reaction of ferrous horseradish peroxidase with hydrogen peroxide. J Biol Chem 245:2409–2413. https://doi.org/10.1016/S0021-9258(18)63167-9 PubMed DOI

Paez-Espino AD, Nikel PI, Chavarria M, de Lorenzo V (2020) ArsH protects Pseudomonas putida from oxidative damage caused by exposure to arsenic. Environ Microbiol 22:2230–2242. https://doi.org/10.1111/1462-2920.14991 PubMed DOI

Pettine M, Campanella L, Millero FJ (1999) Arsenite oxidation by H DOI

Pettine M, Millero FJ (2000) Effect of metals on the oxidation of As(III) with H DOI

Pi K, Markelova E, Zhang P, Van Cappellen P (2019) Arsenic oxidation by flavin-derived reactive species under oxic and anoxic conditions: oxidant formation and pH dependence. Environ Sci Technol 53:10897–10905. https://doi.org/10.1021/acs.est.9b03188 PubMed DOI

Rellan-Alvarez R, Andaluz S, Rodriguez-Celma J, Wohlgemuth G, Zocchi G, Alvarez-Fernandez A, Fiehn O, Lopez-Millan AF, Abadia J (2010) Changes in the proteomic and metabolic profiles of Beta vulgaris root tips in response to iron deficiency and resupply. BMC Plant Biol 10:120. https://doi.org/10.1186/1471-2229-10-120 PubMed DOI PMC

Rodriguez-Celma J, Lattanzio G, Grusak MA, Abadia A, Abadia J, Lopez-Millan AF (2011) Root responses of Medicago truncatula plants grown in two different iron deficiency conditions: changes in root protein profile and riboflavin biosynthesis. J Proteome Res 10:2590–2601. https://doi.org/10.1021/pr2000623 PubMed DOI

Romero E, Gomez Castellanos JR, Gadda G, Fraaije MW, Mattevi A (2018) Same substrate, many reactions: oxygen activation in flavoenzymes. Chem Rev 118:1742–1769. https://doi.org/10.1021/acs.chemrev.7b00650 PubMed DOI

Rosen MR, Leuthaeuser JB, Parish CA, Fetrow JS (2020) Isofunctional clustering and conformational analysis of the arsenate reductase superfamily reveals nine distinct clusters. Biochemistry 59:4262–4284. https://doi.org/10.1021/acs.biochem.0c00651 PubMed DOI

Sedlacek V, Klumpler T, Marek J, Kucera I (2016) Biochemical properties and crystal structure of the flavin reductase FerA from Paracoccus denitrificans. Microbiol Res 188–189:9–22. https://doi.org/10.1016/j.micres.2016.04.006 PubMed DOI

Sedlacek V, Kryl M, Kucera I (2022) The ArsH protein product of the Paracoccus denitrificans ars operon has an activity of organoarsenic reductase and is regulated by a redox-responsive repressor. Antioxidants (Basel) 11(5):902. https://doi.org/10.3390/antiox11050902 PubMed DOI

Shi K, Radhakrishnan M, Dai X, Rosen BP, Wang G (2021) NemA catalyzes trivalent organoarsenical oxidation and is regulated by the trivalent organoarsenical-selective transcriptional repressor NemR. Environ Sci Technol 55:6485–6494. https://doi.org/10.1021/acs.est.1c00574 PubMed DOI PMC

Siddens LK, Krueger SK, Henderson MC, Williams DE (2014) Mammalian flavin-containing monooxygenase (FMO) as a source of hydrogen peroxide. Biochem Pharmacol 89:141–147. https://doi.org/10.1016/j.bcp.2014.02.006 PubMed DOI PMC

Srivastava V, Singh PK, Srivastava A, Singh PP (2021) Synthetic applications of flavin photocatalysis: a review. RSC Adv 11:14251–14259. https://doi.org/10.1039/d1ra00925g DOI

Stenchuk NN, Kutsiaba VI, Kshanovskaia BV, Fedorovich DV (2001) Effect of rib83 mutation on riboflavin biosynthesis and iron assimilation in Pichia guilliermondii. Mikrobiologiia 70:753–758 PubMed

Sucharitakul J, Tinikul R, Chaiyen P (2014) Mechanisms of reduced flavin transfer in the two-component flavin-dependent monooxygenases. Arch Biochem Biophys 555–556:33–46. https://doi.org/10.1016/j.abb.2014.05.009 PubMed DOI

Tang R, Wang Y, Yuan S, Wang W, Yue Z, Zhan X, Hu ZH (2021) Organoarsenic feed additives in biological wastewater treatment processes: removal, biotransformation, and associated impacts. J Hazard Mater 406:124789. https://doi.org/10.1016/j.jhazmat.2020.124789 PubMed DOI

van Lis R, Nitschke W, Duval S, Schoepp-Cothenet B (2013) Arsenics as bioenergetic substrates. Biochim Biophys Acta 1827:176–188. https://doi.org/10.1016/j.bbabio.2012.08.007 PubMed DOI

Wood PM (1988) The potential diagram for oxygen at pH 7. Biochem J 253:287–289. https://doi.org/10.1042/bj2530287 PubMed DOI PMC

Xu J, Li J, Wu F, Zhang Y (2014) Rapid photooxidation of As(III) through surface complexation with nascent colloidal ferric hydroxide. Environ Sci Technol 48:272–278. https://doi.org/10.1021/es403667b PubMed DOI

You T, Wang S, Xi Y, Yao S, Yan Z, Ding Y, Li Y, Zeng X, Jia Y (2024) Photo-enhanced oxidation of arsenite by biochar: the effect of pH, kinetics and mechanisms. J Hazard Mater 461:132652. https://doi.org/10.1016/j.jhazmat.2023.132652 PubMed DOI

Zhang J, Chen J, Wu YF, Wang ZP, Qiu JG, Li XL, Cai F, Xiao KQ, Sun XX, Rosen BP, Zhao FJ (2022) Oxidation of organoarsenicals and antimonite by a novel flavin monooxygenase widely present in soil bacteria. Environ Microbiol 24:752–761. https://doi.org/10.1111/1462-2920.15488 PubMed DOI

Zhou BY, Wang JH, Guo ZF, Tan HQ, Zhu XC (2006) A simple colorimetric method for determination of hydrogen peroxide in plant tissues. Plant Growth Regul 49:113–118. https://doi.org/10.1007/s10725-006-9000-2 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...