Structural Insight into Catalysis by the Flavin-Dependent NADH Oxidase (Pden_5119) of Paracoccus denitrificans
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA 16-18476S
Czech Science Foundation
MUNI/A/1604/2020
Grant Agency of Masaryk University
LM2018127
CIISB, Instruct-CZ Centre of Instruct-ERIC EU Consortium
CZ.02.1.01/0.0/0.0/18_046/0015974
European Regional Development Fund-Project "UP CIISB"
PubMed
36835143
PubMed Central
PMC9963409
DOI
10.3390/ijms24043732
PII: ijms24043732
Knihovny.cz E-zdroje
- Klíčová slova
- FMN, NADH, Paracoccus denitrificans, dioxygen reduction,
- MeSH
- flavinmononukleotid chemie MeSH
- flaviny chemie MeSH
- katalýza MeSH
- kinetika MeSH
- NAD metabolismus MeSH
- oxidace-redukce MeSH
- Paracoccus denitrificans * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- flavinmononukleotid MeSH
- flaviny MeSH
- NAD MeSH
- NADH oxidase MeSH Prohlížeč
The Pden_5119 protein oxidizes NADH with oxygen under mediation by the bound flavin mononucleotide (FMN) and may be involved in the maintenance of the cellular redox pool. In biochemical characterization, the curve of the pH-rate dependence was bell-shaped with pKa1 = 6.6 and pKa2 = 9.2 at 2 μM FMN while it contained only a descending limb pKa of 9.7 at 50 μM FMN. The enzyme was found to undergo inactivation by reagents reactive with histidine, lysine, tyrosine, and arginine. In the first three cases, FMN exerted a protective effect against the inactivation. X-ray structural analysis coupled with site-directed mutagenesis identified three amino acid residues important to the catalysis. Structural and kinetic data suggest that His-117 plays a role in the binding and positioning of the isoalloxazine ring of FMN, Lys-82 fixes the nicotinamide ring of NADH to support the proS-hydride transfer, and Arg-116 with its positive charge promotes the reaction between dioxygen and reduced flavin.
Zobrazit více v PubMed
Ross D., Siegel D. The diverse functionality of NQO1 and its roles in redox control. Redox Biol. 2021;41:101950. doi: 10.1016/j.redox.2021.101950. PubMed DOI PMC
Mazoch J., Tesarik R., Sedlacek V., Kucera I., Turanek J. Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans. Eur. J. Biochem. 2004;271:553–562. doi: 10.1046/j.1432-1033.2003.03957.x. PubMed DOI
Sedlacek V., van Spanning R.J.M., Kucera I. Characterization of the quinone reductase activity of the ferric reductase B protein from Paracoccus denitrificans. Arch. Biochem. Biophys. 2009;483:29–36. doi: 10.1016/j.abb.2008.12.016. PubMed DOI
Sedlacek V., Ptackova N., Rejmontova P., Kucera I. The flavoprotein FerB of Paracoccus denitrificans binds to membranes, reduces ubiquinone and superoxide, and acts as an in vivo antioxidant. FEBS J. 2015;282:283–296. doi: 10.1111/febs.13126. PubMed DOI
Sedlacek V., Kucera I. Arginine-95 is important for recruiting superoxide to the active site of the FerB flavoenzyme of Paracoccus denitrificans. FEBS Lett. 2019;593:697–702. doi: 10.1002/1873-3468.13359. PubMed DOI
Sedlacek V., Klumpler T., Marek J., Kucera I. The structural and functional basis of catalysis mediated by NAD(P)H:acceptor oxidoreductase (FerB) of Paracoccus denitrificans. PLoS ONE. 2014;9:e96262. doi: 10.1371/journal.pone.0096262. PubMed DOI PMC
Pernikarova V., Sedlacek V., Potesil D., Prochazkova I., Zdrahal Z., Bouchal P., Kucera I. Proteomic responses to a methyl viologen-induced oxidative stress in the wild type and FerB mutant strains of Paracoccus denitrificans. J. Proteom. 2015;125:68–75. doi: 10.1016/j.jprot.2015.05.002. PubMed DOI
Sedlacek V., Kucera I. Functional and mechanistic characterization of an atypical flavin reductase encoded by the pden_5119 gene in Paracoccus denitrificans. Mol. Microbiol. 2019;112:166–183. doi: 10.1111/mmi.14260. PubMed DOI
Sedlacek V., Kryl M., Kucera I. The ArsH protein product of the Paracoccus denitrificans ars operon has an activity of organoarsenic reductase and is regulated by a redox-responsive repressor. Antioxidants. 2022;11:902. doi: 10.3390/antiox11050902. PubMed DOI PMC
Edgcomb S.P., Murphy K.P. Variability in the pKa of histidine side-chains correlates with burial within proteins. Proteins. 2002;49:1–6. doi: 10.1002/prot.10177. PubMed DOI
Miles E.W. Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol. 1977;47:431–442. PubMed
Chen S.S., Engel P.C. Equilibrium position of reaction of bovine liver glutamate dehydrogenase with pyridoxal 5′-phosphate. Demonstration that covalent modification with this reagent completely abolishes catalytic activity. Biochem. J. 1975;147:351–358. doi: 10.1042/bj1470351. PubMed DOI PMC
Simpson R.T., Riordan J.F., Vallee B.L. Functional tyrosyl residues in active center of bovine pancreatic carboxypeptidase A. Biochemistry. 1963;2:616–622. doi: 10.1021/bi00903a039. PubMed DOI
Takahashi K. Reaction of phenylglyoxal with arginine residues in proteins. J. Biol. Chem. 1968;243:6171–6179. doi: 10.1016/S0021-9258(18)94475-3. PubMed DOI
Nissen M.S., Youn B.Y., Knowles B.D., Ballinger J.W., Jun S.Y., Belchik S.M., Xun L.Y., Kang C.H. Crystal structures of NADH:FMN oxidoreductase (EmoB) at different stages of catalysis. J. Biol. Chem. 2008;283:28710–28720. doi: 10.1074/jbc.M804535200. PubMed DOI PMC
Driggers C.M., Dayal P.V., Ellis H.R., Karplus P.A. Crystal structure of Escherichia coli SsuE: Defining a general catalytic cycle for FMN reductases of the flavodoxin-like superfamily. Biochemistry. 2014;53:3509–3519. doi: 10.1021/bi500314f. PubMed DOI
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF chimera–A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Ellis H.R. The FMN-dependent two-component monooxygenase systems. Arch. Biochem. Biophys. 2010;497:1–12. doi: 10.1016/j.abb.2010.02.007. PubMed DOI
Robbins J.M., Ellis H.R. Investigations of two-component flavin-dependent monooxygenase systems. Methods Enzymol. 2019;620:399–422. PubMed
Li G.F., Glusac K.D. Light-triggered proton and electron transfer in flavin cofactors. J. Phys. Chem. A. 2008;112:4573–4583. doi: 10.1021/jp7117218. PubMed DOI
Rippa M., Spanio L., Pontremo S. A specific interaction of pyridoxal 5′-phosphate and 6-phosphogluconic dehydrogenase. Arch. Biochem. Biophys. 1967;118:48–57. doi: 10.1016/0003-9861(67)90276-7. DOI
Gould K.G., Engel P.C. Modification of mouse testicular lactate dehydrogenase by pyridoxal 5′-phosphate. Biochem. J. 1980;191:365–371. doi: 10.1042/bj1910365. PubMed DOI PMC
Lilley K.S., Engel P.C. The essential active-site lysines of clostridial glutamate dehydrogenase. A study with pyridoxal-5′-phosphate. Eur. J. Biochem. 1992;207:533–540. doi: 10.1111/j.1432-1033.1992.tb17079.x. PubMed DOI
Olano J., Soler J., Busto F., de Arriaga D. Chemical modification of NADP-isocitrate dehydrogenase from Cephalosporium acremonium. Evidence of essential histidine and lysine groups at the active site. Eur. J. Biochem. 1999;261:640–649. doi: 10.1046/j.1432-1327.1999.00297.x. PubMed DOI
Vazquez M.A., Munoz F., Donoso J., Garcia Blanco F. Stability of Schiff bases of amino acids and pyridoxal-5′-phosphate. Amino Acids. 1992;3:81–94. doi: 10.1007/BF00806010. PubMed DOI
Gillet N., Levy B., Moliner V., Demachy I., de la Lande A. Electron and hydrogen atom transfers in the hydride carrier protein EmoB. J. Chem. Theory Comput. 2014;10:5036–5046. doi: 10.1021/ct500173y. PubMed DOI
Romero E., Gomez Castellanos J.R., Gadda G., Fraaije M.W., Mattevi A. Same substrate, many reactions: Oxygen activation in flavoenzymes. Chem. Rev. 2018;118:1742–1769. doi: 10.1021/acs.chemrev.7b00650. PubMed DOI
Pandeswari P.B., Sabareesh V., Vijayalakshmi M.A. Insights into stoichiometry of arginine modification by phenylglyoxal and 1,2-cyclohexanedione probed by LC-ESI-MS. J. Prot. Proteom. 2016;7:323–347.
Cornish-Bowden A. Fundamentals of Enzyme Kinetics. 4th ed. Wiley-Blackwell; Hoboken, NJ, USA: 2012. p. 263.
Hu W., Xie J., Chau H.W. Evaluation of parameter uncertainties in nonlinear regression using Microsoft Excel Spreadsheet. Environ. Syst. Res. 2015;4:4. doi: 10.1186/s40068-015-0031-4. DOI
Melchior W.B., Fahrney D. Ethoxyformylation of proteins. Reaction of ethoxyformic anhydride with alpha-chymotrypsin, pepsin, and pancreatic ribonuclease at pH 4. Biochemistry. 1970;9:251–258. doi: 10.1021/bi00804a010. PubMed DOI
Kitz R., Wilson I.B. Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. J. Biol. Chem. 1962;237:3245–3249. doi: 10.1016/S0021-9258(18)50153-8. PubMed DOI
Gomi T., Fujioka M. Evidence for an essential histidine residue in S-adenosylhomocysteinase from rat liver. Biochemistry. 1983;22:137–143. doi: 10.1021/bi00270a020. PubMed DOI
Lostao A., El Harrous M., Daoudi F., Romero A., Parody-Morreale A., Sancho J. Dissecting the energetics of the apoflavodoxin-FMN complex. J. Biol. Chem. 2000;275:9518–9526. doi: 10.1074/jbc.275.13.9518. PubMed DOI
Kabsch W. XDS. Acta Crystallogr. D Biol. Crystallogr. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC
Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., Keegan R.M., Krissinel E.B., Leslie A.G., McCoy A., et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 2011;67:235–242. doi: 10.1107/S0907444910045749. PubMed DOI PMC
Murshudov G.N., Skubak P., Lebedev A.A., Pannu N.S., Steiner R.A., Nicholls R.A., Winn M.D., Long F., Vagin A.A. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 2011;67:355–367. doi: 10.1107/S0907444911001314. PubMed DOI PMC
Kovalevskiy O., Nicholls R.A., Murshudov G.N. Automated refinement of macromolecular structures at low resolution using prior information. Acta Crystallogr. D Struct. Biol. 2016;72:1149–1161. doi: 10.1107/S2059798316014534. PubMed DOI PMC
Joosten R.P., Salzemann J., Bloch V., Stockinger H., Berglund A.C., Blanchet C., Bongcam-Rudloff E., Combet C., Da Costa A.L., Deleage G., et al. PDB_REDO: Automated re-refinement of X-ray structure models in the PDB. J. Appl. Crystallogr. 2009;42:376–384. doi: 10.1107/S0021889809008784. PubMed DOI PMC
Afonine P.V., Poon B.K., Read R.J., Sobolev O.V., Terwilliger T.C., Urzhumtsev A., Adams P.D. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 2018;74:531–544. doi: 10.1107/S2059798318006551. PubMed DOI PMC
Konarev P.V., Volkov V.V., Sokolova A.V., Koch M.H.J., Svergun D.I. PRIMUS: A Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 2003;36:1277–1282. doi: 10.1107/S0021889803012779. DOI
Svergun D., Barberato C., Koch M.H.J. CRYSOL–a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 1995;28:768–773. doi: 10.1107/S0021889895007047. DOI
Biasini M., Bienert S., Waterhouse A., Arnold K., Studer G., Schmidt T., Kiefer F., Gallo Cassarino T., Bertoni M., Bordoli L., et al. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42:W252–W258. doi: 10.1093/nar/gku340. PubMed DOI PMC
Svergun D.I. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 1999;76:2879–2886. doi: 10.1016/S0006-3495(99)77443-6. PubMed DOI PMC
Emsley P., Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI
Liu N., Xu Z. Using LeDock as a docking tool for computational drug design. IOP Conf. Ser. Earth Environ. Sci. 2018;218:012143. doi: 10.1088/1755-1315/218/1/012143. DOI