• Je něco špatně v tomto záznamu ?

Cytokompatibilita anodizovaných povrchů implantačních materiálů
[Cytocompatibility of anodized surfaces for implant materials]

J. Krčil, V. Březina, J. Vaněk

Jazyk čeština Země Česko

Perzistentní odkaz   https://www.medvik.cz/link/bmc19031591

Úvod a cíl: Oxidické vrstvy na povrchu titanové slitiny mají vliv na odolnost proti korozi a biokompatibilitu. Vynikající kompatibilita mezi tkání, kostí a slitinou titanu je převážně řízena vlastnostmi jeho stabilní povrchové vrstvy složené z oxidu titaničitého. Oxidové vrstvy mohou být připraveny mnoha různými metodami; oxidační proces a jeho podmínky vedou k různým vrstvám: rozdíly jsou v chemickém složení, mechanických vlastnostech, struktuře atd. Odchylka ve struktuře vrstvy může ovlivnit stabilitu, přilnavost nebo biokompatibilitu vrstvy. Anodická oxidace titanových slitin ve vhodném médiu (a za určitého napětí a proudové hustoty) může vytvořit nejen oxidickou vrstvu, ale také strukturu na povrchu oxidické vrstvy. Tato struktura je obvykle charakterizována póry o velikosti od desítek do stovek nanometrů. Strukturovaný povrch radikálně mění interakci mezi povrchem titanu a buňkami, a tím i chování tohoto materiálu uvnitř těla. Chování buněk na strukturovaném povrchu různých slitin titanu není dosud řádně popsáno. Tato experimentální práce povede k lepšímu pochopení těchto strukturovaných oxidových vrstev. Metody: Anodická oxidace byla provedena na vyleštěných vzorcích z Ti6Al4V ELI. Oxidační proces probíhal v elektrolytu 1M H2SO4 s napětím kolem 100 V a proudovou hustotou 50 mA/cm2. Výsledná oxidická vrstva byla hodnocena a dokumentována pomocí řádkovací elektronové mikroskopie (SEM), kterou byla kontrolována tloušťka oxidické vrstvy a povrchová morfologie. Pozorována byla také změna zbarvení a drsnosti povrchové vrstvy po oxidaci související s růstem oxidů. Cytokompatibilita povrchu materiálu je vyjádřena stanovením plochy povrchu, kterou obsadí buňky po třídenní kultivaci. Jedná se o metodu, která je běžně užívána a akreditována Českým institutem pro akreditaci. K pokusu byly užity buňky MG63 a bylo stanoveno procento buňkami kolonizované plochy povrchu. Hodnocení bylo provedeno na leštěných a anodizovaných površích vzorků z Ti6Al4V ELI. Výsledky byly navzájem porovnány. Výsledky: Byly připraveny vzorky s povrchem nanostrukturovaným pomocí anodické oxidace, přičemž struktura povrchu byla tvořena póry o velikostech v řádech desítek až stovek nanometrů. Výsledky pokusů ukázaly větší vůli buněk kolonizovat anodizovaný povrch. Neanodizovaný povrch byl kolonizován v 56,9 %, kdežto anodizovaný byl při stejných podmínkách kolonizován v 63,5 %. Všechny výběrové soubory byly gaussovsky distribuovány. Závěr: Anodickou oxidací byla připravena nanostrukturovaná oxidická vrstva na vzorcích z Ti6Al4V ELI. Cytokompatibilita vytvořené vrstvy byla porovnávána vůči neoxidovaným vzorkům. Bylo ukázáno, že buňky kolonizují větší plochu povrchu vzorku v případě oxidovaných vzorků.

Introduction, aim: The oxide layers on surface of titanium alloy are infl uencing corrosion resistance and biocompatibility. The compatibility between the bony tissue and titanium alloy is prevalently dependent on properties of a stable titanium dioxide layer. These layers can be prepared by various methods. The oxidation process (and its conditions) is resulting in diff erent types of oxide layer: diff erence in chemical composition, mechanical properties, inner structure etc. The deviation inside of the layers structure may infl uence the stability of the layer, its adhesion or biocompatibility. The anodic oxidation of titanium alloys in appropriate electrolyte (under certain conditions) can lead not only to creation of the oxide layer, but to creation of an oxide layer with structured surface. This kind of structure is usually characterized by pores in nanometer scale. The structured surface radically changes the interaction between the titanium alloys surface and cells; and thus influencing its behavior inside a body. The cell interaction with the structured surfaces is not properly described yet. This work aims for better understanding of such structured layers. Methods: The anodic oxidation was carried out on Ti6Al4V ELI polished samples. The oxidation process was realized in 1M H2SO4 electrolyte with the voltage 100 V and current density 50 mA/cm2. The thickness and surface morphology of the resulting oxide layer were evaluated and documented using a scanning electron microscope (SEM). The changes of color and roughness of the surface after the oxidation were observed as well. The cytocompatibility of the materials surface is expressed by a surface area colonized by cells after the three days of cultivation. This method is standardly used and accredited by ČIA. The MG63 cells were used for the experiment and the percentage of colonized surface area was evaluated. The evaluation was done on polished and oxidized Ti6Al4V ELI samples and the results were compared. Result: The structure of samples prepared using the anodic oxidation consisted of pores with size ranging from tens to hundreds of nanometers. The cytocompatibility testings showed that the cells colonized larger area on the oxidized samples. The cells covered 56.9% of the surface area of the polished samples, while 63.5% of the surface area of the anodized samples. Results of all samples exhibited Gaussian distribution. Conclusion: The anodic oxidation lead to a creation of nanostructured oxide layer on Ti6Al4V ELI samples. The cytocompatibility of this layer was compared to polished samples. It was shown that cells are colonizing the larger surface area on the oxidized samples.

Cytocompatibility of anodized surfaces for implant materials

000      
00000naa a2200000 a 4500
001      
bmc19031591
003      
CZ-PrNML
005      
20190930104530.0
007      
ta
008      
190912s2019 xr ad f 000 0|cze||
009      
AR
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a cze $b eng
044    __
$a xr
100    1_
$a Krčil, Jan $u Ústav materiálového inženýrství, Fakulta strojní Českého vysokého učení technického, Praha $7 xx0241015
245    10
$a Cytokompatibilita anodizovaných povrchů implantačních materiálů / $c J. Krčil, V. Březina, J. Vaněk
246    31
$a Cytocompatibility of anodized surfaces for implant materials
520    3_
$a Úvod a cíl: Oxidické vrstvy na povrchu titanové slitiny mají vliv na odolnost proti korozi a biokompatibilitu. Vynikající kompatibilita mezi tkání, kostí a slitinou titanu je převážně řízena vlastnostmi jeho stabilní povrchové vrstvy složené z oxidu titaničitého. Oxidové vrstvy mohou být připraveny mnoha různými metodami; oxidační proces a jeho podmínky vedou k různým vrstvám: rozdíly jsou v chemickém složení, mechanických vlastnostech, struktuře atd. Odchylka ve struktuře vrstvy může ovlivnit stabilitu, přilnavost nebo biokompatibilitu vrstvy. Anodická oxidace titanových slitin ve vhodném médiu (a za určitého napětí a proudové hustoty) může vytvořit nejen oxidickou vrstvu, ale také strukturu na povrchu oxidické vrstvy. Tato struktura je obvykle charakterizována póry o velikosti od desítek do stovek nanometrů. Strukturovaný povrch radikálně mění interakci mezi povrchem titanu a buňkami, a tím i chování tohoto materiálu uvnitř těla. Chování buněk na strukturovaném povrchu různých slitin titanu není dosud řádně popsáno. Tato experimentální práce povede k lepšímu pochopení těchto strukturovaných oxidových vrstev. Metody: Anodická oxidace byla provedena na vyleštěných vzorcích z Ti6Al4V ELI. Oxidační proces probíhal v elektrolytu 1M H2SO4 s napětím kolem 100 V a proudovou hustotou 50 mA/cm2. Výsledná oxidická vrstva byla hodnocena a dokumentována pomocí řádkovací elektronové mikroskopie (SEM), kterou byla kontrolována tloušťka oxidické vrstvy a povrchová morfologie. Pozorována byla také změna zbarvení a drsnosti povrchové vrstvy po oxidaci související s růstem oxidů. Cytokompatibilita povrchu materiálu je vyjádřena stanovením plochy povrchu, kterou obsadí buňky po třídenní kultivaci. Jedná se o metodu, která je běžně užívána a akreditována Českým institutem pro akreditaci. K pokusu byly užity buňky MG63 a bylo stanoveno procento buňkami kolonizované plochy povrchu. Hodnocení bylo provedeno na leštěných a anodizovaných površích vzorků z Ti6Al4V ELI. Výsledky byly navzájem porovnány. Výsledky: Byly připraveny vzorky s povrchem nanostrukturovaným pomocí anodické oxidace, přičemž struktura povrchu byla tvořena póry o velikostech v řádech desítek až stovek nanometrů. Výsledky pokusů ukázaly větší vůli buněk kolonizovat anodizovaný povrch. Neanodizovaný povrch byl kolonizován v 56,9 %, kdežto anodizovaný byl při stejných podmínkách kolonizován v 63,5 %. Všechny výběrové soubory byly gaussovsky distribuovány. Závěr: Anodickou oxidací byla připravena nanostrukturovaná oxidická vrstva na vzorcích z Ti6Al4V ELI. Cytokompatibilita vytvořené vrstvy byla porovnávána vůči neoxidovaným vzorkům. Bylo ukázáno, že buňky kolonizují větší plochu povrchu vzorku v případě oxidovaných vzorků.
520    9_
$a Introduction, aim: The oxide layers on surface of titanium alloy are infl uencing corrosion resistance and biocompatibility. The compatibility between the bony tissue and titanium alloy is prevalently dependent on properties of a stable titanium dioxide layer. These layers can be prepared by various methods. The oxidation process (and its conditions) is resulting in diff erent types of oxide layer: diff erence in chemical composition, mechanical properties, inner structure etc. The deviation inside of the layers structure may infl uence the stability of the layer, its adhesion or biocompatibility. The anodic oxidation of titanium alloys in appropriate electrolyte (under certain conditions) can lead not only to creation of the oxide layer, but to creation of an oxide layer with structured surface. This kind of structure is usually characterized by pores in nanometer scale. The structured surface radically changes the interaction between the titanium alloys surface and cells; and thus influencing its behavior inside a body. The cell interaction with the structured surfaces is not properly described yet. This work aims for better understanding of such structured layers. Methods: The anodic oxidation was carried out on Ti6Al4V ELI polished samples. The oxidation process was realized in 1M H2SO4 electrolyte with the voltage 100 V and current density 50 mA/cm2. The thickness and surface morphology of the resulting oxide layer were evaluated and documented using a scanning electron microscope (SEM). The changes of color and roughness of the surface after the oxidation were observed as well. The cytocompatibility of the materials surface is expressed by a surface area colonized by cells after the three days of cultivation. This method is standardly used and accredited by ČIA. The MG63 cells were used for the experiment and the percentage of colonized surface area was evaluated. The evaluation was done on polished and oxidized Ti6Al4V ELI samples and the results were compared. Result: The structure of samples prepared using the anodic oxidation consisted of pores with size ranging from tens to hundreds of nanometers. The cytocompatibility testings showed that the cells colonized larger area on the oxidized samples. The cells covered 56.9% of the surface area of the polished samples, while 63.5% of the surface area of the anodized samples. Results of all samples exhibited Gaussian distribution. Conclusion: The anodic oxidation lead to a creation of nanostructured oxide layer on Ti6Al4V ELI samples. The cytocompatibility of this layer was compared to polished samples. It was shown that cells are colonizing the larger surface area on the oxidized samples.
650    _2
$a lidé $7 D006801
650    16
$a biokompatibilní materiály $7 D001672
650    _2
$a titan $7 D014025
650    _2
$a buňky $7 D002477
650    _2
$a výzkum $7 D012106
653    00
$a oxidická vrstva
653    10
$a cytokompatibilita
653    00
$a MG63
653    00
$a anodická oxidace
700    1_
$a Březina, V. $u Laboratoř tkáňových kultur, Fakulta rybářství a ochrany vod Jihočeské univerzity, Nové Hrady $7 _AN102794
700    1_
$a Vaněk, Jiří, $u Stomatologická klinika, Lékařská fakulta Masarykovy univerzity a Fakultní nemocnice u sv. Anny, Brno $d 1939 březen 4.- $7 jn20000402488
773    0_
$w MED00010986 $t Česká stomatologie a Praktické zubní lékařství $x 1213-0613 $g Roč. 119, č. 3 (2019), s. 81-87
856    41
$u https://www.prolekare.cz/casopisy/ceska-stomatologie/2019-3-9/cytokompatibilita-anodizovanych-povrchu-implantacnich-materialu-113547 $y plný text volně dostupný
910    __
$a ABA008 $b A 1 $c 834 $y 4 $z 0
990    __
$a 20190912 $b ABA008
991    __
$a 20190930104935 $b ABA008
999    __
$a ok $b bmc $g 1444094 $s 1070089
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 119 $c 3 $d 81-87 $i 1213-0613 $m Česká stomatologie a Praktické zubní lékařství $x MED00010986 $y 113547
LZP    __
$c NLK109 $d 20190924 $b NLK111 $a Meditorial-20190912

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace