Non-Coding RNAs in Peritoneal Carcinomatosis: From Bench to Bedside

. 2024 Aug 25 ; 16 (17) : . [epub] 20240825

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39272819

Grantová podpora
824036 European Union

Peritoneal carcinomatosis represents an advanced stage of tumors within the peritoneal cavity. Once considered an incurable terminal cancer metastasis, contemporary medicine is on the hunt for certain potentially curative options alongside the present day's palliative disease management. However, for most patients, peritoneal carcinomatosis continues to pose a fatal late-stage prognosis with a grim future outlook. Over the past two decades, non-coding RNAs have garnered significant attention due to their undeniable significance in regulating cellular processes across all levels. Disruption of the intricate regulation led by non-coding RNAs has been demonstrated to have a substantial impact on various human diseases, particularly in cancer, including solid tumors originating from the organs of the peritoneal cavity. This review aims to offer a comprehensive overview of the current state of knowledge in the under-researched field of peritoneal carcinomatosis, focusing specifically on the role of non-coding RNAs in the development of this condition and delineating potential avenues for future research.

Zobrazit více v PubMed

Desai J.P., Moustarah F. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2023. Peritoneal Metastasis. PubMed

Sampson J.A. Implantation Peritoneal Carcinomatosis of Ovarian Origin. Am. J. Pathol. 1931;7:423–444.39. PubMed PMC

McMullen J.R.W., Selleck M., Wall N.R., Senthil M. Peritoneal Carcinomatosis: Limits of Diagnosis and the Case for Liquid Biopsy. Oncotarget. 2017;8:43481–43490. doi: 10.18632/oncotarget.16480. PubMed DOI PMC

Harada K., Yamashita K., Iwatsuki M., Baba H., Ajani J.A. Intraperitoneal Therapy for Gastric Cancer Peritoneal Carcinomatosis. Expert Rev. Clin. Pharmacol. 2022;15:43–49. doi: 10.1080/17512433.2022.2044790. PubMed DOI

Bleicher J., Lambert L.A. A Palliative Approach to Management of Peritoneal Carcinomatosis and Malignant Ascites. Surg. Oncol. Clin. N. Am. 2021;30:475–490. doi: 10.1016/j.soc.2021.02.004. PubMed DOI

Cortés-Guiral D., Hübner M., Alyami M., Bhatt A., Ceelen W., Glehen O., Lordick F., Ramsay R., Sgarbura O., Van Der Speeten K., et al. Primary and Metastatic Peritoneal Surface Malignancies. Nat. Rev. Dis. Primers. 2021;7:91. doi: 10.1038/s41572-021-00326-6. PubMed DOI

Coccolini F., Gheza F., Lotti M., Virzì S., Iusco D., Ghermandi C., Melotti R., Baiocchi G., Giulini S.M., Ansaloni L., et al. Peritoneal Carcinomatosis. World J. Gastroenterol. 2013;19:6979–6994. doi: 10.3748/wjg.v19.i41.6979. PubMed DOI PMC

Definition of Carcinomatosis—NCI Dictionary of Cancer Terms—NCI. [(accessed on 23 February 2024)]; Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/carcinomatosis.

Patel C.M., Sahdev A., Reznek R.H. CT, MRI and PET Imaging in Peritoneal Malignancy. Cancer Imaging. 2011;11:123–139. doi: 10.1102/1470-7330.2011.0016. PubMed DOI PMC

Klos D., Riško J., Loveček M., Skalický P., Svobodová I., Krejčí D., Melichar B., Mohelníková-Duchoňová B., Lemstrová R. Trends in Peritoneal Surface Malignancies: Evidence from a Czech Nationwide Population-Based Study. World J. Surg. Oncol. 2019;17:182. doi: 10.1186/s12957-019-1731-4. PubMed DOI PMC

Madani A., Thomassen I., van Gestel Y.R.B.M., van der Bilt J.D.W., Haak H.R., de Hingh I.H.J.T., Lemmens V.E.P.P. Peritoneal Metastases from Gastroenteropancreatic Neuroendocrine Tumors: Incidence, Risk Factors and Prognosis. Ann. Surg. Oncol. 2017;24:2199–2205. doi: 10.1245/s10434-016-5734-x. PubMed DOI

Klaver Y.L.B., Lemmens V.E.P.P., Nienhuijs S.W., Luyer M.D.P., de Hingh I.H.J.T. Peritoneal Carcinomatosis of Colorectal Origin: Incidence, Prognosis and Treatment Options. World J. Gastroenterol. 2012;18:5489–5494. doi: 10.3748/wjg.v18.i39.5489. PubMed DOI PMC

Quere P., Facy O., Manfredi S., Jooste V., Faivre J., Lepage C., Bouvier A.-M. Epidemiology, Management, and Survival of Peritoneal Carcinomatosis from Colorectal Cancer: A Population-Based Study. Dis. Colon. Rectum. 2015;58:743–752. doi: 10.1097/DCR.0000000000000412. PubMed DOI

Cancer Today. [(accessed on 15 February 2024)]. Available online: https://gco.iarc.who.int/today/

Manzanedo I., Pereira F., Pérez-Viejo E., Serrano Á. Gastric Cancer with Peritoneal Metastases: Current Status and Prospects for Treatment. Cancers. 2023;15:1777. doi: 10.3390/cancers15061777. PubMed DOI PMC

Rijken A., Lurvink R.J., Luyer M.D.P., Nieuwenhuijzen G.A.P., van Erning F.N., van Sandick J.W., de Hingh I.H.J.T. The Burden of Peritoneal Metastases from Gastric Cancer: A Systematic Review on the Incidence, Risk Factors and Survival. J. Clin. Med. 2021;10:4882. doi: 10.3390/jcm10214882. PubMed DOI PMC

Green B.L., Davis J.L. Gastric Adenocarcinoma Peritoneal Carcinomatosis: A Narrative Review. Dig. Med. Res. 2022;5:37. doi: 10.21037/dmr-21-94. PubMed DOI PMC

Hoskovec D., Krška Z., Dytrych P., Vočka M. Peritoneal Carcinomatosis of Gastric Origin—Treatment Possibilities. Klin. Onkol. 2019;32:345–348. doi: 10.14735/amko2019345. PubMed DOI

Miguez González J., Calaf Forn F., Pelegrí Martínez L., Lozano Arranz P., Oliveira Caiafa R., Català Forteza J., Palacio Arteaga L.M., Losa Gaspà F., Ramos Bernadó I., Barrios Sánchez P., et al. Primary and Secondary Tumors of the Peritoneum: Key Imaging Features and Differential Diagnosis with Surgical and Pathological Correlation. Insights Imaging. 2023;14:115. doi: 10.1186/s13244-023-01417-6. PubMed DOI PMC

Yap D.R.Y., Wong J.S.M., Tan Q.X., Tan J.W.-S., Chia C.S., Ong C.-A.J. Effect of HIPEC on Peritoneal Recurrence in Peritoneal Metastasis Treated with Cytoreductive Surgery: A Systematic Review. Front. Oncol. 2021;11:795390. doi: 10.3389/fonc.2021.795390. PubMed DOI PMC

Szadkowska M.A., Pałucki J., Cieszanowski A. Diagnosis and Treatment of Peritoneal Carcinomatosis—A Comprehensive Overview. Pol. J. Radiol. 2023;88:e89–e97. doi: 10.5114/pjr.2023.125027. PubMed DOI PMC

Lambert L.A., Hendrix R.J. Palliative Management of Advanced Peritoneal Carcinomatosis. Surg. Oncol. Clin. N. Am. 2018;27:585–602. doi: 10.1016/j.soc.2018.02.008. PubMed DOI

Nemeth K., Bayraktar R., Ferracin M., Calin G.A. Non-Coding RNAs in Disease: From Mechanisms to Therapeutics. Nat. Rev. Genet. 2024;25:211–232. doi: 10.1038/s41576-023-00662-1. PubMed DOI

Slack F.J., Chinnaiyan A.M. The Role of Non-Coding RNAs in Oncology. Cell. 2019;179:1033–1055. doi: 10.1016/j.cell.2019.10.017. PubMed DOI PMC

Anastasiadou E., Jacob L.S., Slack F.J. Non-Coding RNA Networks in Cancer. Nat. Rev. Cancer. 2018;18:5–18. doi: 10.1038/nrc.2017.99. PubMed DOI PMC

Okugawa Y., Toiyama Y., Hur K., Toden S., Saigusa S., Tanaka K., Inoue Y., Mohri Y., Kusunoki M., Boland C.R., et al. Metastasis-Associated Long Non-Coding RNA Drives Gastric Cancer Development and Promotes Peritoneal Metastasis. Carcinogenesis. 2014;35:2731–2739. doi: 10.1093/carcin/bgu200. PubMed DOI PMC

Schindler P., Kupcinskas J., Juzenas S., Skieceviciene J., Salteniene V., Schulz C., Weigt J., Malfertheiner P., Link A. Expression of microRNAs in the Ascites of Patients with Peritoneal Carcinomatosis and Peritonitis. Cancer Cytopathol. 2018;126:353–363. doi: 10.1002/cncy.21966. PubMed DOI

Heublein S., Albertsmeier M., Pfeifer D., Loehrs L., Bazhin A.V., Kirchner T., Werner J., Neumann J., Angele M.K. Association of Differential miRNA Expression with Hepatic vs. Peritoneal Metastatic Spread in Colorectal Cancer. BMC Cancer. 2018;18:201. doi: 10.1186/s12885-018-4043-0. PubMed DOI PMC

Yun J., Han S.-B., Kim H.J., Go S.-I., Lee W.S., Bae W.K., Cho S.-H., Song E.-K., Lee O.-J., Kim H.K., et al. Exosomal miR-181b-5p Downregulation in Ascites Serves as a Potential Diagnostic Biomarker for Gastric Cancer-Associated Malignant Ascites. J. Gastric Cancer. 2019;19:301–314. doi: 10.5230/jgc.2019.19.e27. PubMed DOI PMC

Hu Y., Qi C., Liu X., Zhang C., Gao J., Wu Y., Yang J., Zhao Q., Li J., Wang X., et al. Malignant Ascites-Derived Exosomes Promote Peritoneal Tumor Cell Dissemination and Reveal a Distinct miRNA Signature in Advanced Gastric Cancer. Cancer Lett. 2019;457:142–150. doi: 10.1016/j.canlet.2019.04.034. PubMed DOI

Lobos-González L., Bustos R., Campos A., Silva V., Silva V., Jeldes E., Salomon C., Varas-Godoy M., Cáceres-Verschae A., Duran E., et al. Exosomes Released upon Mitochondrial ASncmtRNA Knockdown Reduce Tumorigenic Properties of Malignant Breast Cancer Cells. Sci. Rep. 2020;10:343. doi: 10.1038/s41598-019-57018-1. PubMed DOI PMC

Li Y., Liao W., Huang W., Liu F., Ma L., Qian X. Mechanism of Gambogic Acid Repressing Invasion and Metastasis of Colorectal Cancer by Regulating Macrophage Polarization via Tumor Cell-Derived Extracellular Vesicle-Shuttled miR-21. Drug Dev. Res. 2024;85:e22141. doi: 10.1002/ddr.22141. PubMed DOI

Di Agostino S., Canu V., Donzelli S., Pulito C., Sacconi A., Ganci F., Valenti F., Goeman F., Scalera S., Rollo F., et al. HSF-1/miR-145-5p Transcriptional Axis Enhances Hyperthermic Intraperitoneal Chemotherapy Efficacy on Peritoneal Ovarian Carcinosis. Cell Death Dis. 2023;14:535. doi: 10.1038/s41419-023-06064-9. PubMed DOI PMC

Aziret M., Güney Eskiler G., Çakar G.Ç., Özkan A.D., Ercan M., Bilir C., Polat E., Koçer H.B., Yıldırım E.K., Duman M. Effect of the MiR-99b and MiR-135b on Peritoneal Carcinomatosis and Liver Metastasis in Colorectal Cancer. Clinics. 2023;78:100271. doi: 10.1016/j.clinsp.2023.100271. PubMed DOI PMC

Zhang Y., Tedja R., Millman M., Wong T., Fox A., Chehade H., Gershater M., Adzibolosu N., Gogoi R., Anderson M., et al. Adipose-Derived Exosomal miR-421 Targets CBX7 and Promotes Metastatic Potential in Ovarian Cancer Cells. J. Ovarian Res. 2023;16:233. doi: 10.1186/s13048-023-01312-0. PubMed DOI PMC

Thapa R., Afzal O., Afzal M., Gupta G., Bhat A.A., Hassan Almalki W., Kazmi I., Alzarea S.I., Saleem S., Arora P., et al. From LncRNA to Metastasis: The MALAT1-EMT Axis in Cancer Progression. Pathol. Res. Pract. 2024;253:154959. doi: 10.1016/j.prp.2023.154959. PubMed DOI

Chen L., Qian X., Wang Z., Zhou X. The HOTAIR lncRNA: A Remarkable Oncogenic Promoter in Human Cancer Metastasis. Oncol. Lett. 2021;21:302. doi: 10.3892/ol.2021.12563. PubMed DOI PMC

Hodge C., Badgwell B.D. Palliation of Malignant Ascites. J. Surg. Oncol. 2019;120:67–73. doi: 10.1002/jso.25453. PubMed DOI

Yamamoto C.M., Oakes M.L., Murakami T., Muto M.G., Berkowitz R.S., Ng S.-W. Comparison of Benign Peritoneal Fluid- and Ovarian Cancer Ascites-Derived Extracellular Vesicle RNA Biomarkers. J. Ovarian Res. 2018;11:20. doi: 10.1186/s13048-018-0391-2. PubMed DOI PMC

Aziret M., Subasi O., Bilir C., Tozlu M., Altıntoprak F., Karaman K., Ercan M., Celebi F. Morbidity and Long-Term Results in Patients with Wild and Mutant Type Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) Mutations Undergoing Colorectal Cancer Surgery. Ann. Ital. Chir. 2022;92:65–77. PubMed

Elias D., Blot F., El Otmany A., Antoun S., Lasser P., Boige V., Rougier P., Ducreux M. Curative Treatment of Peritoneal Carcinomatosis Arising from Colorectal Cancer by Complete Resection and Intraperitoneal Chemotherapy. Cancer. 2001;92:71–76. doi: 10.1002/1097-0142(20010701)92:1<71::AID-CNCR1293>3.0.CO;2-9. PubMed DOI

Li J., Liang H., Bai M., Ning T., Wang C., Fan Q., Wang Y., Fu Z., Wang N., Liu R., et al. miR-135b Promotes Cancer Progression by Targeting Transforming Growth Factor Beta Receptor II (TGFBR2) in Colorectal Cancer. PLoS ONE. 2015;10:e0130194. doi: 10.1371/journal.pone.0145589. PubMed DOI PMC

Qin Y., Li L., Wang F., Zhou X., Liu Y., Yin Y., Qi X. Knockdown of Mir-135b Sensitizes Colorectal Cancer Cells to Oxaliplatin-Induced Apoptosis Through Increase of FOXO1. Cell Physiol. Biochem. 2018;48:1628–1637. doi: 10.1159/000492284. PubMed DOI

Wang H., Wang X., Zhang H., Deng T., Liu R., Liu Y., Li H., Bai M., Ning T., Wang J., et al. The HSF1/miR-135b-5p Axis Induces Protective Autophagy to Promote Oxaliplatin Resistance through the MUL1/ULK1 Pathway in Colorectal Cancer. Oncogene. 2021;40:4695–4708. doi: 10.1038/s41388-021-01898-z. PubMed DOI

Li W., Chang J., Wang S., Liu X., Peng J., Huang D., Sun M., Chen Z., Zhang W., Guo W., et al. miRNA-99b-5p Suppresses Liver Metastasis of Colorectal Cancer by down-Regulating mTOR. Oncotarget. 2015;6:24448–24462. doi: 10.18632/oncotarget.4423. PubMed DOI PMC

Eniafe J., Jiang S. MicroRNA-99 Family in Cancer and Immunity. Wiley Interdiscip. Rev. RNA. 2021;12:e1635. doi: 10.1002/wrna.1635. PubMed DOI

Xu W., Hua Y., Deng F., Wang D., Wu Y., Zhang W., Tang J. MiR-145 in Cancer Therapy Resistance and Sensitivity: A Comprehensive Review. Cancer Sci. 2020;111:3122–3131. doi: 10.1111/cas.14517. PubMed DOI PMC

Zeinali T., Mansoori B., Mohammadi A., Baradaran B. Regulatory Mechanisms of miR-145 Expression and the Importance of Its Function in Cancer Metastasis. Biomed. Pharmacother. 2019;109:195–207. doi: 10.1016/j.biopha.2018.10.037. PubMed DOI

Becker A., Thakur B.K., Weiss J.M., Kim H.S., Peinado H., Lyden D. Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis. Cancer Cell. 2016;30:836–848. doi: 10.1016/j.ccell.2016.10.009. PubMed DOI PMC

Cao M., Isaac R., Yan W., Ruan X., Jiang L., Wan Y., Wang J., Wang E., Caron C., Neben S., et al. Cancer-Cell-Secreted Extracellular Vesicles Suppress Insulin Secretion through miR-122 to Impair Systemic Glucose Homeostasis and Contribute to Tumour Growth. Nat. Cell Biol. 2022;24:954–967. doi: 10.1038/s41556-022-00919-7. PubMed DOI PMC

Pascual-Antón L., Cardeñes B., Sainz de la Cuesta R., González-Cortijo L., López-Cabrera M., Cabañas C., Sandoval P. Mesothelial-to-Mesenchymal Transition and Exosomes in Peritoneal Metastasis of Ovarian Cancer. Int. J. Mol. Sci. 2021;22:11496. doi: 10.3390/ijms222111496. PubMed DOI PMC

Li J., Alvero A.B., Nuti S., Tedja R., Roberts C.M., Pitruzzello M., Li Y., Xiao Q., Zhang S., Gan Y., et al. CBX7 Binds the E-Box to Inhibit TWIST-1 Function and Inhibit Tumorigenicity and Metastatic Potential. Oncogene. 2020;39:3965–3979. doi: 10.1038/s41388-020-1269-5. PubMed DOI PMC

Borgna V., Villegas J., Burzio V.A., Belmar S., Araya M., Jeldes E., Lobos-González L., Silva V., Villota C., Oliveira-Cruz L., et al. Mitochondrial ASncmtRNA-1 and ASncmtRNA-2 as Potent Targets to Inhibit Tumor Growth and Metastasis in the RenCa Murine Renal Adenocarcinoma Model. Oncotarget. 2017;8:43692–43708. doi: 10.18632/oncotarget.18460. PubMed DOI PMC

Villegas J., Burzio V., Villota C., Landerer E., Martinez R., Santander M., Martinez R., Pinto R., Vera M.I., Boccardo E., et al. Expression of a Novel Non-Coding Mitochondrial RNA in Human Proliferating Cells. Nucleic Acids Res. 2007;35:7336–7347. doi: 10.1093/nar/gkm863. PubMed DOI PMC

Varas-Godoy M., Lladser A., Farfan N., Villota C., Villegas J., Tapia J.C., Burzio L.O., Burzio V.A., Valenzuela P.D.T. In Vivo Knockdown of Antisense Non-Coding Mitochondrial RNAs by a Lentiviral-Encoded shRNA Inhibits Melanoma Tumor Growth and Lung Colonization. Pigment. Cell Melanoma Res. 2018;31:64–72. doi: 10.1111/pcmr.12615. PubMed DOI

Fitzpatrick C., Bendek M.F., Briones M., Farfán N., Silva V.A., Nardocci G., Montecino M., Boland A., Deleuze J.-F., Villegas J., et al. Mitochondrial ncRNA Targeting Induces Cell Cycle Arrest and Tumor Growth Inhibition of MDA-MB-231 Breast Cancer Cells through Reduction of Key Cell Cycle Progression Factors. Cell Death Dis. 2019;10:423. doi: 10.1038/s41419-019-1649-3. PubMed DOI PMC

Gao G., Bian Y., Qian H., Yang M., Hu J., Li L., Yu L., Liu B., Qian X. Gambogic Acid Regulates the Migration and Invasion of Colorectal Cancer via microRNA-21-Mediated Activation of Phosphatase and Tensin Homolog. Exp. Ther. Med. 2018;16:1758–1765. doi: 10.3892/etm.2018.6421. PubMed DOI PMC

Huang X.-Z., Pang M.-J., Li J.-Y., Chen H.-Y., Sun J.-X., Song Y.-X., Ni H.-J., Ye S.-Y., Bai S., Li T.-H., et al. Single-Cell Sequencing of Ascites Fluid Illustrates Heterogeneity and Therapy-Induced Evolution during Gastric Cancer Peritoneal Metastasis. Nat. Commun. 2023;14:822. doi: 10.1038/s41467-023-36310-9. PubMed DOI PMC

Roman-Canal B., Tarragona J., Moiola C.P., Gatius S., Bonnin S., Ruiz-Miró M., Sierra J.E., Rufas M., González E., Porcel J.M., et al. EV-Associated miRNAs from Peritoneal Lavage as Potential Diagnostic Biomarkers in Colorectal Cancer. J. Transl. Med. 2019;17:208. doi: 10.1186/s12967-019-1954-8. PubMed DOI PMC

Ford C.E., Werner B., Hacker N.F., Warton K. The Untapped Potential of Ascites in Ovarian Cancer Research and Treatment. Br. J. Cancer. 2020;123:9–16. doi: 10.1038/s41416-020-0875-x. PubMed DOI PMC

Lu J., Getz G., Miska E.A., Alvarez-Saavedra E., Lamb J., Peck D., Sweet-Cordero A., Ebert B.L., Mak R.H., Ferrando A.A., et al. MicroRNA Expression Profiles Classify Human Cancers. Nature. 2005;435:834–838. doi: 10.1038/nature03702. PubMed DOI

Lu W., Liu H., Zhang X., Guo Y., Liu L., Guo T., Qu L., Yang S., Li Z. A ceRNA Network Composed of Survival-Related lncRNAs, miRNAs, and mRNAs in Clear Cell Renal Carcinoma. Comput. Math. Methods Med. 2022;2022:8504441. doi: 10.1155/2022/8504441. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...