Non-Coding RNAs in Peritoneal Carcinomatosis: From Bench to Bedside
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
824036
European Union
PubMed
39272819
PubMed Central
PMC11394633
DOI
10.3390/cancers16172961
PII: cancers16172961
Knihovny.cz E-zdroje
- Klíčová slova
- ascites, exosomes, miRNA, non-coding RNA, peritoneal carcinomatosis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Peritoneal carcinomatosis represents an advanced stage of tumors within the peritoneal cavity. Once considered an incurable terminal cancer metastasis, contemporary medicine is on the hunt for certain potentially curative options alongside the present day's palliative disease management. However, for most patients, peritoneal carcinomatosis continues to pose a fatal late-stage prognosis with a grim future outlook. Over the past two decades, non-coding RNAs have garnered significant attention due to their undeniable significance in regulating cellular processes across all levels. Disruption of the intricate regulation led by non-coding RNAs has been demonstrated to have a substantial impact on various human diseases, particularly in cancer, including solid tumors originating from the organs of the peritoneal cavity. This review aims to offer a comprehensive overview of the current state of knowledge in the under-researched field of peritoneal carcinomatosis, focusing specifically on the role of non-coding RNAs in the development of this condition and delineating potential avenues for future research.
Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
Department of Biology Faculty of Medicine Masaryk University 62500 Brno Czech Republic
Zobrazit více v PubMed
Desai J.P., Moustarah F. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2023. Peritoneal Metastasis. PubMed
Sampson J.A. Implantation Peritoneal Carcinomatosis of Ovarian Origin. Am. J. Pathol. 1931;7:423–444.39. PubMed PMC
McMullen J.R.W., Selleck M., Wall N.R., Senthil M. Peritoneal Carcinomatosis: Limits of Diagnosis and the Case for Liquid Biopsy. Oncotarget. 2017;8:43481–43490. doi: 10.18632/oncotarget.16480. PubMed DOI PMC
Harada K., Yamashita K., Iwatsuki M., Baba H., Ajani J.A. Intraperitoneal Therapy for Gastric Cancer Peritoneal Carcinomatosis. Expert Rev. Clin. Pharmacol. 2022;15:43–49. doi: 10.1080/17512433.2022.2044790. PubMed DOI
Bleicher J., Lambert L.A. A Palliative Approach to Management of Peritoneal Carcinomatosis and Malignant Ascites. Surg. Oncol. Clin. N. Am. 2021;30:475–490. doi: 10.1016/j.soc.2021.02.004. PubMed DOI
Cortés-Guiral D., Hübner M., Alyami M., Bhatt A., Ceelen W., Glehen O., Lordick F., Ramsay R., Sgarbura O., Van Der Speeten K., et al. Primary and Metastatic Peritoneal Surface Malignancies. Nat. Rev. Dis. Primers. 2021;7:91. doi: 10.1038/s41572-021-00326-6. PubMed DOI
Coccolini F., Gheza F., Lotti M., Virzì S., Iusco D., Ghermandi C., Melotti R., Baiocchi G., Giulini S.M., Ansaloni L., et al. Peritoneal Carcinomatosis. World J. Gastroenterol. 2013;19:6979–6994. doi: 10.3748/wjg.v19.i41.6979. PubMed DOI PMC
Definition of Carcinomatosis—NCI Dictionary of Cancer Terms—NCI. [(accessed on 23 February 2024)]; Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/carcinomatosis.
Patel C.M., Sahdev A., Reznek R.H. CT, MRI and PET Imaging in Peritoneal Malignancy. Cancer Imaging. 2011;11:123–139. doi: 10.1102/1470-7330.2011.0016. PubMed DOI PMC
Klos D., Riško J., Loveček M., Skalický P., Svobodová I., Krejčí D., Melichar B., Mohelníková-Duchoňová B., Lemstrová R. Trends in Peritoneal Surface Malignancies: Evidence from a Czech Nationwide Population-Based Study. World J. Surg. Oncol. 2019;17:182. doi: 10.1186/s12957-019-1731-4. PubMed DOI PMC
Madani A., Thomassen I., van Gestel Y.R.B.M., van der Bilt J.D.W., Haak H.R., de Hingh I.H.J.T., Lemmens V.E.P.P. Peritoneal Metastases from Gastroenteropancreatic Neuroendocrine Tumors: Incidence, Risk Factors and Prognosis. Ann. Surg. Oncol. 2017;24:2199–2205. doi: 10.1245/s10434-016-5734-x. PubMed DOI
Klaver Y.L.B., Lemmens V.E.P.P., Nienhuijs S.W., Luyer M.D.P., de Hingh I.H.J.T. Peritoneal Carcinomatosis of Colorectal Origin: Incidence, Prognosis and Treatment Options. World J. Gastroenterol. 2012;18:5489–5494. doi: 10.3748/wjg.v18.i39.5489. PubMed DOI PMC
Quere P., Facy O., Manfredi S., Jooste V., Faivre J., Lepage C., Bouvier A.-M. Epidemiology, Management, and Survival of Peritoneal Carcinomatosis from Colorectal Cancer: A Population-Based Study. Dis. Colon. Rectum. 2015;58:743–752. doi: 10.1097/DCR.0000000000000412. PubMed DOI
Cancer Today. [(accessed on 15 February 2024)]. Available online: https://gco.iarc.who.int/today/
Manzanedo I., Pereira F., Pérez-Viejo E., Serrano Á. Gastric Cancer with Peritoneal Metastases: Current Status and Prospects for Treatment. Cancers. 2023;15:1777. doi: 10.3390/cancers15061777. PubMed DOI PMC
Rijken A., Lurvink R.J., Luyer M.D.P., Nieuwenhuijzen G.A.P., van Erning F.N., van Sandick J.W., de Hingh I.H.J.T. The Burden of Peritoneal Metastases from Gastric Cancer: A Systematic Review on the Incidence, Risk Factors and Survival. J. Clin. Med. 2021;10:4882. doi: 10.3390/jcm10214882. PubMed DOI PMC
Green B.L., Davis J.L. Gastric Adenocarcinoma Peritoneal Carcinomatosis: A Narrative Review. Dig. Med. Res. 2022;5:37. doi: 10.21037/dmr-21-94. PubMed DOI PMC
Hoskovec D., Krška Z., Dytrych P., Vočka M. Peritoneal Carcinomatosis of Gastric Origin—Treatment Possibilities. Klin. Onkol. 2019;32:345–348. doi: 10.14735/amko2019345. PubMed DOI
Miguez González J., Calaf Forn F., Pelegrí Martínez L., Lozano Arranz P., Oliveira Caiafa R., Català Forteza J., Palacio Arteaga L.M., Losa Gaspà F., Ramos Bernadó I., Barrios Sánchez P., et al. Primary and Secondary Tumors of the Peritoneum: Key Imaging Features and Differential Diagnosis with Surgical and Pathological Correlation. Insights Imaging. 2023;14:115. doi: 10.1186/s13244-023-01417-6. PubMed DOI PMC
Yap D.R.Y., Wong J.S.M., Tan Q.X., Tan J.W.-S., Chia C.S., Ong C.-A.J. Effect of HIPEC on Peritoneal Recurrence in Peritoneal Metastasis Treated with Cytoreductive Surgery: A Systematic Review. Front. Oncol. 2021;11:795390. doi: 10.3389/fonc.2021.795390. PubMed DOI PMC
Szadkowska M.A., Pałucki J., Cieszanowski A. Diagnosis and Treatment of Peritoneal Carcinomatosis—A Comprehensive Overview. Pol. J. Radiol. 2023;88:e89–e97. doi: 10.5114/pjr.2023.125027. PubMed DOI PMC
Lambert L.A., Hendrix R.J. Palliative Management of Advanced Peritoneal Carcinomatosis. Surg. Oncol. Clin. N. Am. 2018;27:585–602. doi: 10.1016/j.soc.2018.02.008. PubMed DOI
Nemeth K., Bayraktar R., Ferracin M., Calin G.A. Non-Coding RNAs in Disease: From Mechanisms to Therapeutics. Nat. Rev. Genet. 2024;25:211–232. doi: 10.1038/s41576-023-00662-1. PubMed DOI
Slack F.J., Chinnaiyan A.M. The Role of Non-Coding RNAs in Oncology. Cell. 2019;179:1033–1055. doi: 10.1016/j.cell.2019.10.017. PubMed DOI PMC
Anastasiadou E., Jacob L.S., Slack F.J. Non-Coding RNA Networks in Cancer. Nat. Rev. Cancer. 2018;18:5–18. doi: 10.1038/nrc.2017.99. PubMed DOI PMC
Okugawa Y., Toiyama Y., Hur K., Toden S., Saigusa S., Tanaka K., Inoue Y., Mohri Y., Kusunoki M., Boland C.R., et al. Metastasis-Associated Long Non-Coding RNA Drives Gastric Cancer Development and Promotes Peritoneal Metastasis. Carcinogenesis. 2014;35:2731–2739. doi: 10.1093/carcin/bgu200. PubMed DOI PMC
Schindler P., Kupcinskas J., Juzenas S., Skieceviciene J., Salteniene V., Schulz C., Weigt J., Malfertheiner P., Link A. Expression of microRNAs in the Ascites of Patients with Peritoneal Carcinomatosis and Peritonitis. Cancer Cytopathol. 2018;126:353–363. doi: 10.1002/cncy.21966. PubMed DOI
Heublein S., Albertsmeier M., Pfeifer D., Loehrs L., Bazhin A.V., Kirchner T., Werner J., Neumann J., Angele M.K. Association of Differential miRNA Expression with Hepatic vs. Peritoneal Metastatic Spread in Colorectal Cancer. BMC Cancer. 2018;18:201. doi: 10.1186/s12885-018-4043-0. PubMed DOI PMC
Yun J., Han S.-B., Kim H.J., Go S.-I., Lee W.S., Bae W.K., Cho S.-H., Song E.-K., Lee O.-J., Kim H.K., et al. Exosomal miR-181b-5p Downregulation in Ascites Serves as a Potential Diagnostic Biomarker for Gastric Cancer-Associated Malignant Ascites. J. Gastric Cancer. 2019;19:301–314. doi: 10.5230/jgc.2019.19.e27. PubMed DOI PMC
Hu Y., Qi C., Liu X., Zhang C., Gao J., Wu Y., Yang J., Zhao Q., Li J., Wang X., et al. Malignant Ascites-Derived Exosomes Promote Peritoneal Tumor Cell Dissemination and Reveal a Distinct miRNA Signature in Advanced Gastric Cancer. Cancer Lett. 2019;457:142–150. doi: 10.1016/j.canlet.2019.04.034. PubMed DOI
Lobos-González L., Bustos R., Campos A., Silva V., Silva V., Jeldes E., Salomon C., Varas-Godoy M., Cáceres-Verschae A., Duran E., et al. Exosomes Released upon Mitochondrial ASncmtRNA Knockdown Reduce Tumorigenic Properties of Malignant Breast Cancer Cells. Sci. Rep. 2020;10:343. doi: 10.1038/s41598-019-57018-1. PubMed DOI PMC
Li Y., Liao W., Huang W., Liu F., Ma L., Qian X. Mechanism of Gambogic Acid Repressing Invasion and Metastasis of Colorectal Cancer by Regulating Macrophage Polarization via Tumor Cell-Derived Extracellular Vesicle-Shuttled miR-21. Drug Dev. Res. 2024;85:e22141. doi: 10.1002/ddr.22141. PubMed DOI
Di Agostino S., Canu V., Donzelli S., Pulito C., Sacconi A., Ganci F., Valenti F., Goeman F., Scalera S., Rollo F., et al. HSF-1/miR-145-5p Transcriptional Axis Enhances Hyperthermic Intraperitoneal Chemotherapy Efficacy on Peritoneal Ovarian Carcinosis. Cell Death Dis. 2023;14:535. doi: 10.1038/s41419-023-06064-9. PubMed DOI PMC
Aziret M., Güney Eskiler G., Çakar G.Ç., Özkan A.D., Ercan M., Bilir C., Polat E., Koçer H.B., Yıldırım E.K., Duman M. Effect of the MiR-99b and MiR-135b on Peritoneal Carcinomatosis and Liver Metastasis in Colorectal Cancer. Clinics. 2023;78:100271. doi: 10.1016/j.clinsp.2023.100271. PubMed DOI PMC
Zhang Y., Tedja R., Millman M., Wong T., Fox A., Chehade H., Gershater M., Adzibolosu N., Gogoi R., Anderson M., et al. Adipose-Derived Exosomal miR-421 Targets CBX7 and Promotes Metastatic Potential in Ovarian Cancer Cells. J. Ovarian Res. 2023;16:233. doi: 10.1186/s13048-023-01312-0. PubMed DOI PMC
Thapa R., Afzal O., Afzal M., Gupta G., Bhat A.A., Hassan Almalki W., Kazmi I., Alzarea S.I., Saleem S., Arora P., et al. From LncRNA to Metastasis: The MALAT1-EMT Axis in Cancer Progression. Pathol. Res. Pract. 2024;253:154959. doi: 10.1016/j.prp.2023.154959. PubMed DOI
Chen L., Qian X., Wang Z., Zhou X. The HOTAIR lncRNA: A Remarkable Oncogenic Promoter in Human Cancer Metastasis. Oncol. Lett. 2021;21:302. doi: 10.3892/ol.2021.12563. PubMed DOI PMC
Hodge C., Badgwell B.D. Palliation of Malignant Ascites. J. Surg. Oncol. 2019;120:67–73. doi: 10.1002/jso.25453. PubMed DOI
Yamamoto C.M., Oakes M.L., Murakami T., Muto M.G., Berkowitz R.S., Ng S.-W. Comparison of Benign Peritoneal Fluid- and Ovarian Cancer Ascites-Derived Extracellular Vesicle RNA Biomarkers. J. Ovarian Res. 2018;11:20. doi: 10.1186/s13048-018-0391-2. PubMed DOI PMC
Aziret M., Subasi O., Bilir C., Tozlu M., Altıntoprak F., Karaman K., Ercan M., Celebi F. Morbidity and Long-Term Results in Patients with Wild and Mutant Type Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) Mutations Undergoing Colorectal Cancer Surgery. Ann. Ital. Chir. 2022;92:65–77. PubMed
Elias D., Blot F., El Otmany A., Antoun S., Lasser P., Boige V., Rougier P., Ducreux M. Curative Treatment of Peritoneal Carcinomatosis Arising from Colorectal Cancer by Complete Resection and Intraperitoneal Chemotherapy. Cancer. 2001;92:71–76. doi: 10.1002/1097-0142(20010701)92:1<71::AID-CNCR1293>3.0.CO;2-9. PubMed DOI
Li J., Liang H., Bai M., Ning T., Wang C., Fan Q., Wang Y., Fu Z., Wang N., Liu R., et al. miR-135b Promotes Cancer Progression by Targeting Transforming Growth Factor Beta Receptor II (TGFBR2) in Colorectal Cancer. PLoS ONE. 2015;10:e0130194. doi: 10.1371/journal.pone.0145589. PubMed DOI PMC
Qin Y., Li L., Wang F., Zhou X., Liu Y., Yin Y., Qi X. Knockdown of Mir-135b Sensitizes Colorectal Cancer Cells to Oxaliplatin-Induced Apoptosis Through Increase of FOXO1. Cell Physiol. Biochem. 2018;48:1628–1637. doi: 10.1159/000492284. PubMed DOI
Wang H., Wang X., Zhang H., Deng T., Liu R., Liu Y., Li H., Bai M., Ning T., Wang J., et al. The HSF1/miR-135b-5p Axis Induces Protective Autophagy to Promote Oxaliplatin Resistance through the MUL1/ULK1 Pathway in Colorectal Cancer. Oncogene. 2021;40:4695–4708. doi: 10.1038/s41388-021-01898-z. PubMed DOI
Li W., Chang J., Wang S., Liu X., Peng J., Huang D., Sun M., Chen Z., Zhang W., Guo W., et al. miRNA-99b-5p Suppresses Liver Metastasis of Colorectal Cancer by down-Regulating mTOR. Oncotarget. 2015;6:24448–24462. doi: 10.18632/oncotarget.4423. PubMed DOI PMC
Eniafe J., Jiang S. MicroRNA-99 Family in Cancer and Immunity. Wiley Interdiscip. Rev. RNA. 2021;12:e1635. doi: 10.1002/wrna.1635. PubMed DOI
Xu W., Hua Y., Deng F., Wang D., Wu Y., Zhang W., Tang J. MiR-145 in Cancer Therapy Resistance and Sensitivity: A Comprehensive Review. Cancer Sci. 2020;111:3122–3131. doi: 10.1111/cas.14517. PubMed DOI PMC
Zeinali T., Mansoori B., Mohammadi A., Baradaran B. Regulatory Mechanisms of miR-145 Expression and the Importance of Its Function in Cancer Metastasis. Biomed. Pharmacother. 2019;109:195–207. doi: 10.1016/j.biopha.2018.10.037. PubMed DOI
Becker A., Thakur B.K., Weiss J.M., Kim H.S., Peinado H., Lyden D. Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis. Cancer Cell. 2016;30:836–848. doi: 10.1016/j.ccell.2016.10.009. PubMed DOI PMC
Cao M., Isaac R., Yan W., Ruan X., Jiang L., Wan Y., Wang J., Wang E., Caron C., Neben S., et al. Cancer-Cell-Secreted Extracellular Vesicles Suppress Insulin Secretion through miR-122 to Impair Systemic Glucose Homeostasis and Contribute to Tumour Growth. Nat. Cell Biol. 2022;24:954–967. doi: 10.1038/s41556-022-00919-7. PubMed DOI PMC
Pascual-Antón L., Cardeñes B., Sainz de la Cuesta R., González-Cortijo L., López-Cabrera M., Cabañas C., Sandoval P. Mesothelial-to-Mesenchymal Transition and Exosomes in Peritoneal Metastasis of Ovarian Cancer. Int. J. Mol. Sci. 2021;22:11496. doi: 10.3390/ijms222111496. PubMed DOI PMC
Li J., Alvero A.B., Nuti S., Tedja R., Roberts C.M., Pitruzzello M., Li Y., Xiao Q., Zhang S., Gan Y., et al. CBX7 Binds the E-Box to Inhibit TWIST-1 Function and Inhibit Tumorigenicity and Metastatic Potential. Oncogene. 2020;39:3965–3979. doi: 10.1038/s41388-020-1269-5. PubMed DOI PMC
Borgna V., Villegas J., Burzio V.A., Belmar S., Araya M., Jeldes E., Lobos-González L., Silva V., Villota C., Oliveira-Cruz L., et al. Mitochondrial ASncmtRNA-1 and ASncmtRNA-2 as Potent Targets to Inhibit Tumor Growth and Metastasis in the RenCa Murine Renal Adenocarcinoma Model. Oncotarget. 2017;8:43692–43708. doi: 10.18632/oncotarget.18460. PubMed DOI PMC
Villegas J., Burzio V., Villota C., Landerer E., Martinez R., Santander M., Martinez R., Pinto R., Vera M.I., Boccardo E., et al. Expression of a Novel Non-Coding Mitochondrial RNA in Human Proliferating Cells. Nucleic Acids Res. 2007;35:7336–7347. doi: 10.1093/nar/gkm863. PubMed DOI PMC
Varas-Godoy M., Lladser A., Farfan N., Villota C., Villegas J., Tapia J.C., Burzio L.O., Burzio V.A., Valenzuela P.D.T. In Vivo Knockdown of Antisense Non-Coding Mitochondrial RNAs by a Lentiviral-Encoded shRNA Inhibits Melanoma Tumor Growth and Lung Colonization. Pigment. Cell Melanoma Res. 2018;31:64–72. doi: 10.1111/pcmr.12615. PubMed DOI
Fitzpatrick C., Bendek M.F., Briones M., Farfán N., Silva V.A., Nardocci G., Montecino M., Boland A., Deleuze J.-F., Villegas J., et al. Mitochondrial ncRNA Targeting Induces Cell Cycle Arrest and Tumor Growth Inhibition of MDA-MB-231 Breast Cancer Cells through Reduction of Key Cell Cycle Progression Factors. Cell Death Dis. 2019;10:423. doi: 10.1038/s41419-019-1649-3. PubMed DOI PMC
Gao G., Bian Y., Qian H., Yang M., Hu J., Li L., Yu L., Liu B., Qian X. Gambogic Acid Regulates the Migration and Invasion of Colorectal Cancer via microRNA-21-Mediated Activation of Phosphatase and Tensin Homolog. Exp. Ther. Med. 2018;16:1758–1765. doi: 10.3892/etm.2018.6421. PubMed DOI PMC
Huang X.-Z., Pang M.-J., Li J.-Y., Chen H.-Y., Sun J.-X., Song Y.-X., Ni H.-J., Ye S.-Y., Bai S., Li T.-H., et al. Single-Cell Sequencing of Ascites Fluid Illustrates Heterogeneity and Therapy-Induced Evolution during Gastric Cancer Peritoneal Metastasis. Nat. Commun. 2023;14:822. doi: 10.1038/s41467-023-36310-9. PubMed DOI PMC
Roman-Canal B., Tarragona J., Moiola C.P., Gatius S., Bonnin S., Ruiz-Miró M., Sierra J.E., Rufas M., González E., Porcel J.M., et al. EV-Associated miRNAs from Peritoneal Lavage as Potential Diagnostic Biomarkers in Colorectal Cancer. J. Transl. Med. 2019;17:208. doi: 10.1186/s12967-019-1954-8. PubMed DOI PMC
Ford C.E., Werner B., Hacker N.F., Warton K. The Untapped Potential of Ascites in Ovarian Cancer Research and Treatment. Br. J. Cancer. 2020;123:9–16. doi: 10.1038/s41416-020-0875-x. PubMed DOI PMC
Lu J., Getz G., Miska E.A., Alvarez-Saavedra E., Lamb J., Peck D., Sweet-Cordero A., Ebert B.L., Mak R.H., Ferrando A.A., et al. MicroRNA Expression Profiles Classify Human Cancers. Nature. 2005;435:834–838. doi: 10.1038/nature03702. PubMed DOI
Lu W., Liu H., Zhang X., Guo Y., Liu L., Guo T., Qu L., Yang S., Li Z. A ceRNA Network Composed of Survival-Related lncRNAs, miRNAs, and mRNAs in Clear Cell Renal Carcinoma. Comput. Math. Methods Med. 2022;2022:8504441. doi: 10.1155/2022/8504441. PubMed DOI PMC