Characterization of a midgut mucin-like glycoconjugate of Lutzomyia longipalpis with a potential role in Leishmania attachment
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
078937
Wellcome Trust - United Kingdom
PubMed
27457627
PubMed Central
PMC4960694
DOI
10.1186/s13071-016-1695-y
PII: 10.1186/s13071-016-1695-y
Knihovny.cz E-zdroje
- Klíčová slova
- Glycoprotein, Leishmania, Lipophosphoglycan, Phlebotomine sand flies,
- MeSH
- glykokonjugáty genetika metabolismus MeSH
- hmyz - vektory metabolismus parazitologie MeSH
- hmyzí proteiny genetika metabolismus MeSH
- Leishmania fyziologie MeSH
- muciny genetika metabolismus MeSH
- Psychodidae genetika metabolismus parazitologie MeSH
- trávicí systém metabolismus parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glykokonjugáty MeSH
- hmyzí proteiny MeSH
- muciny MeSH
BACKGROUND: Leishmania parasites are transmitted by phlebotomine sand flies and a crucial step in their life-cycle is the binding to the sand fly midgut. Laboratory studies on sand fly competence to Leishmania parasites suggest that the sand flies fall into two groups: several species are termed "specific/restricted" vectors that support the development of one Leishmania species only, while the others belong to so-called "permissive" vectors susceptible to a wide range of Leishmania species. In a previous study we revealed a correlation between specificity vs permissivity of the vector and glycosylation of its midgut proteins. Lutzomyia longipalpis and other four permissive species tested possessed O-linked glycoproteins whereas none were detected in three specific vectors examined. RESULTS: We used a combination of biochemical, molecular and parasitological approaches to characterize biochemical and biological properties of O-linked glycoprotein of Lu. longipalpis. Lectin blotting and mass spectrometry revealed that this molecule with an apparent molecular weight about 45-50 kDa corresponds to a putative 19 kDa protein with unknown function detected in a midgut cDNA library of Lu. longipalpis. We produced a recombinant glycoprotein rLuloG with molecular weight around 45 kDa. Anti-rLuloG antibodies localize the native glycoprotein on epithelial midgut surface of Lu. longipalpis. Although we could not prove involvement of LuloG in Leishmania attachment by blocking the native protein with anti-rLuloG during sand fly infections, we demonstrated strong binding of rLuloG to whole surface of Leishmania promastigotes. CONCLUSIONS: We characterized a novel O-glycoprotein from sand fly Lutzomyia longipalpis. It has mucin-like properties and is localized on the luminal side of the midgut epithelium. Recombinant form of the protein binds to Leishmania parasites in vitro. We propose a role of this molecule in Leishmania attachment to sand fly midgut.
Zobrazit více v PubMed
Dostálová A, Volf P. Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors. 2012;5:276. doi: 10.1186/1756-3305-5-276. PubMed DOI PMC
Killick-Kendrick R, Molyneux DH, Ashford RW. Ultrastructural observations on the attachment of Leishmania in the sandfly. Trans R Soc Trop Med Hyg. 1974;68:269–76. PubMed
Warburg A, Tesh RB, McMahon-Pratt D. Studies on the Attachment of Leishmania flagella to sand fly midgut epithelium. J Protozool. 1989;36:613–7. doi: 10.1111/j.1550-7408.1989.tb01104.x. PubMed DOI
Pimenta P, Turco S, McConville M, Lawyer P, Perkins P, Sacks D. Stage-specific adhesion of Leishmania promastigotes to the sandfly midgut. Science. 1992;256:1812–5. doi: 10.1126/science.1615326. PubMed DOI
Pimenta PF, Saraiva EM, Rowton E, Modi GB, Garraway LA, Beverley SM, et al. Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc Natl Acad Sci U S A. 1994;91:9155–9. doi: 10.1073/pnas.91.19.9155. PubMed DOI PMC
Kamhawi S, Ramalho-Ortigao M, Pham VM, Kumar S, Lawyer PG, Turco SJ, Barillas-Mury C, Sacks DL, Valenzuela JG. A role for insect galectins in parasite survival. Cell. 2004;119:329–41. doi: 10.1016/j.cell.2004.10.009. PubMed DOI
Dobson DE, Kamhawi S, Lawyer P, Turco SJ, Beverley SM, Sacks DL. Leishmania major Survival in Selective Phlebotomus papatasi Sand fly vector requires a specific SCG-encoded lipophosphoglycan galactosylation pattern. PLoS Pathog. 2010;6:e1001185. doi: 10.1371/journal.ppat.1001185. PubMed DOI PMC
Di-Blasi T, Lobo AR, Nascimento LM, Córdova-Rojas JL, Pestana K, Marín-Villa M, et al. The Flagellar protein FLAG1/SMP1 is a candidate for Leishmania –sand fly interaction. Vector-Borne Zoonotic Dis. 2015;15:202–9. doi: 10.1089/vbz.2014.1736. PubMed DOI PMC
Myšková J, Svobodová M, Beverley SM, Volf P. A lipophosphoglycan-independent development of Leishmania in permissive sand flies. Microbes Infect. 2007;9:317–24. doi: 10.1016/j.micinf.2006.12.010. PubMed DOI PMC
Svárovská A, Ant TH, Šeblová V, Jecná L, Beverley SM, Volf P. Leishmania major glycosylation mutants require phosphoglycans (lpg2-) but not lipophosphoglycan (lpg1-) for survival in permissive sand fly vectors. PLoS Negl Trop Dis. 2010;4:e580. doi: 10.1371/journal.pntd.0000580. PubMed DOI PMC
Jecná L, Dostálová A, Wilson R, Seblová V, Chang KP, Bates PA, Volf P. The role of surface glycoconjugates in Leishmania midgut attachment examined by competitive binding assays and experimental development in sand flies. Parasitology. 2013;140:1026–32. doi: 10.1017/S0031182013000358. PubMed DOI
Volf P, Myšková J. Sand flies and Leishmania: specific versus permissive vectors. Trends Parasitol. 2007;23:91–2. doi: 10.1016/j.pt.2006.12.010. PubMed DOI PMC
Svobodová M, Votypka J, Pecková J, Dvorak V, Nasereddin A, Baneth G, et al. Distinct transmission cycles of Leishmania tropica in 2 adjacent foci, northern Israel. Emerg Infect Dis. 2006;12:1860–8. doi: 10.3201/eid1212.060497. PubMed DOI PMC
Volf P, Volfová V. Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011;36(Suppl 1):S1–9. doi: 10.1111/j.1948-7134.2011.00106.x. PubMed DOI
Bordier C. Phase separation of integral membrane proteins in Triton X-114. J Biol Chemist. 1981;256:1604–7. PubMed
Myšková J, Votypka J, Volf P. Leishmania in Sand Flies: Comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J Med Entomol. 2008;45:133–8. doi: 10.1093/jmedent/45.1.133. PubMed DOI
Warburg A. The structure of the female sand fly (Phlebotomus papatasi) alimentary canal. Trans R Soc Trop Med Hyg. 2008;102:161–6. doi: 10.1016/j.trstmh.2007.10.004. PubMed DOI
Jochim RC, Teixeira CR, Laughinghouse A, Mu J, Oliveira F, Gomes RB, et al. The midgut transcriptome of Lutzomyia longipalpis: comparative analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania infantum chagasi-infected sand flies. BMC Genomics. 2008;9:15. doi: 10.1186/1471-2164-9-15. PubMed DOI PMC
Ramalho-Ortigão M, Jochim RC, Anderson JM, Lawyer PG, Pham VM, Kamhawi S, Valenzuela JG. Exploring the midgut transcriptome of Phlebotomus papatasi: comparative analysis of expression profiles of sugar-fed, blood-fed and Leishmania major-infected sandflies. BMC Genomics. 2007;8:300. doi: 10.1186/1471-2164-8-300. PubMed DOI PMC
Secundino NFC, Nacif-Pimenta R, Hajmova M, Volf P, Pimenta PFP. Midgut muscle network in Lutzomyia longipalpis and Phlebotomus duboscqi sand flies: spatial organization and structural modification after blood meal. Arthropod Struct Dev. 2005;34:167–78. doi: 10.1016/j.asd.2005.01.002. DOI
Reilly RM, Domingo R, Sandhu J. Oral delivery of antibodies. Future pharmacokinetic trends. Clin Pharmacokinet. 1997;32:313–23. doi: 10.2165/00003088-199732040-00004. PubMed DOI
Bütikofer P, Malherbe T, Boschung M, Roditi I. GPI-anchored proteins: now you see ´em, now you don’t. FASEB J. 2001;15:545–8. doi: 10.1096/fj.00-0415hyp. PubMed DOI
Wilson R, Bates MD, Dostalova A, Jecna L, Dillon RJ, Volf P, Bates PA. Stage-Specific Adhesion of Leishmania promastigotes to sand fly midguts assessed using an improved comparative binding assay. PLoS Negl Trop Dis. 2010;4:e816. doi: 10.1371/journal.pntd.0000816. PubMed DOI PMC
Hernandez A, Rodriguez N, Stojanovic D, Candelle D. The localization of a lectin-like component on the Leishmania cell surface. Mol Biol Rep. 1986;11:149–53. doi: 10.1007/BF00419735. PubMed DOI
Mukhopadhyay N, Shome K, Saha A, Hassell J, Glew R. Heparin binds to Leishmania donovani promastigotes and inhibits protein phosphorylation. Biochem J. 1989;264:517–25. doi: 10.1042/bj2640517. PubMed DOI PMC
Schottelius J. Neoglycoproteins as tools for the detection of carbohydrate-specific receptors on the cell surface of Leishmania. Parasitol Res. 1992;78:309–15. doi: 10.1007/BF00937089. PubMed DOI
Svobodová M, Bates PA, Volf P. Detection of lectin activity in Leishmania promastigotes and amastigotes. Acta Trop. 1997;68:23–35. doi: 10.1016/S0001-706X(97)00069-7. PubMed DOI
Kock N, Gabius H, Schmitz J, Schottelius J. Receptors for carbohydrate ligands including heparin on the cell surface of Leishmania and other trypanosomatids. Trop Med Int Heal. 1997;2:863–74. doi: 10.1046/j.1365-3156.1997.d01-405.x. PubMed DOI
Azevedo-Pereira RL, Pereira MCS, Oliveria-Junior FOR, Brazil RP, Côrtes LMC, Madeira MF, et al. Heparin binding proteins from Leishmania (Viannia) braziliensis promastigotes. Vet Parasitol. 2007;145:234–9. doi: 10.1016/j.vetpar.2006.12.019. PubMed DOI
de Castro Côrtes L, de Souza Pereira M, da Silva F, Pereira BA, de Oliveira Junior F, de Araújo Soares R, et al. Participation of heparin binding proteins from the surface of Leishmania (Viannia) braziliensis promastigotes in the adhesion of parasites to Lutzomyia longipalpis cells (Lulo) in vitro. Parasit Vectors. 2012;5:142. doi: 10.1186/1756-3305-5-142. PubMed DOI PMC
de Castro Côrtes LM, de Souza Pereira MC, de Oliveira FOR, Corte-Real S, da Silva FS, Pereira BAS, et al. Leishmania (Viannia) braziliensis: insights on subcellular distribution and biochemical properties of heparin-binding proteins. Parasitology. 2012;139:200–7. doi: 10.1017/S0031182011001910. PubMed DOI
Yao C, Donelson JE, Wilson ME. The major surface protease (MSP or GP63) of Leishmania sp. Biosynthesis, regulation of expression, and function. Mol Biochem Parasitol. 2003;132:1–16. doi: 10.1016/S0166-6851(03)00211-1. PubMed DOI
Pereira FM, Bernardo PS, Dias Junior PFF, Silva BA, Romanos MTV, D’Avila-Levy CM, et al. Differential influence of gp63-like molecules in three distinct Leptomonas species on the adhesion to insect cells. Parasitol Res. 2009;104:347–53. doi: 10.1007/s00436-008-1202-2. PubMed DOI
Pereira FM, Dias FA, Elias CGR, d’Avila-Levy CM, Silva CS, Santos-Mallet JR, Branquinha MH, Santos ALS. Leishmanolysin-like molecules in Herpetomonas samuelpessoai mediate hydrolysis of protein substrates and interaction with insect. Protist. 2010;161:589–602. doi: 10.1016/j.protis.2010.02.001. PubMed DOI
Refractoriness of Sergentomyia schwetzi to Leishmania spp. is mediated by the peritrophic matrix