A lipophosphoglycan-independent development of Leishmania in permissive sand flies
Jazyk angličtina Země Francie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
078937
Wellcome Trust - United Kingdom
R01 AI031078
NIAID NIH HHS - United States
AI31078
NIAID NIH HHS - United States
PubMed
17307009
PubMed Central
PMC2839925
DOI
10.1016/j.micinf.2006.12.010
PII: S1286-4579(07)00009-3
Knihovny.cz E-zdroje
- MeSH
- acetylgalaktosamin metabolismus MeSH
- glykoproteiny chemie metabolismus MeSH
- glykosfingolipidy metabolismus MeSH
- hmyz - vektory MeSH
- Leishmania infantum fyziologie MeSH
- Leishmania klasifikace růst a vývoj MeSH
- Phlebotomus klasifikace parazitologie MeSH
- Psychodidae klasifikace parazitologie MeSH
- trávicí systém parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- acetylgalaktosamin MeSH
- glykoproteiny MeSH
- glykosfingolipidy MeSH
- lipophosphonoglycan MeSH Prohlížeč
Leishmaniases are serious parasitic diseases the etiological organisms of which are transmitted by insect vectors, phlebotominae sand flies. Two sand fly species, Phlebotomus papatasi and P. sergenti, display remarkable specificity for Leishmania parasites they transmit in nature, but many others are broadly permissive to the development of different Leishmania species. Previous studies have suggested that in 'specific' vectors the successful parasite development is mediated by parasite surface glycoconjugates and sand fly lectins, however we show here that interactions involving 'permissive' sand flies utilize another molecules. We did find that the abundant surface glycoconjugate lipophosphoglycan, essential for attachment of Leishmania major in the specific vector P. papatasi, was not required for parasite adherence or survival in the permissive vectors P. arabicus and Lutzomyia longipalpis. Attachment in several permissive sand fly species instead correlated with the presence of midgut glycoproteins bearing terminal N-acetyl-galactosamine and with the occurrence of a lectin-like activity on Leishmania surface. This new binding modality has important implications for parasite transmission and evolution. It may contribute to the successful spreading of Leishmania due to their adaptation into new vectors, namely transmission of L. infantum by Lutzomyia longipalpis; this event led to the establishment of L. infantum/chagasi in Latin America.
Zobrazit více v PubMed
Kamhawi S. Phlebotominae sand flies and Leishmania parasites: friends or foes? Trends Parasitol. 2006;22:439–445. PubMed
Sacks DL, Modi G, Rowton E, Spath G, Epstein L, Turco SJ, Beverley SM. The role of phosphoglycans in Leishmania-sand fly interactions. Proc. Natl. Acad. Sci. USA. 2000;97:406–411. PubMed PMC
Warburg A, Tesh RB, McMahon-Pratt D. Studies on the attachment of Leishmania flagella to sand fly midgut epithelium. J. Protozool. 1989;36:613–617. PubMed
Pimenta PF, Saraiva EMB, Rowton E, Modi GB, Garraway LA, Beverley SM, Turco SJ, Sacks DL. Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc. Natl. Acad. Sci. USA. 1994;91:9155–9159. PubMed PMC
Pimenta PF, Turco SJ, McConville MJ, Lawyer PG, Perkins PV, Sacks DL. Stage-specific adhesion of Leishmania promastigotes to the sandfly midgut. Science. 1992;256:1812–1815. PubMed
Butcher BA, Turco SJ, Hilty BA, Pimenta PF, Panunzio M, Sacks DL. Deficiency in beta 1,3-galactosyltransferase of a Leishmania major lipophosphoglycan mutant adversely influences the Leishmania-sand fly interaction. J. Biol. Chem. 1996;271:20573–20579. PubMed
Kamhawi S, Ramalho-Ortigao M, Pham VM, Kumar S, Lawyer PG, Turco SJ, Barillas-Mury C, Sacks DL, Valenzuela J. A role for insect galectins in parasite survival. Cell. 2004;119:329–341. PubMed
Kamhawi S, Modi GB, Pimenta PF, Rowton E, Sacks DL. The vectorial competence of Phlebotomus sergenti is specific for Leishmania tropica and is controlled by species-specific, lipophosphoglycan-mediated midgut attachment. Parasitology. 2000;121:25–33. PubMed
Sacks DL, Pimenta PF, McConville MJ, Schneider P, Turco SJ. Stage-specific binding of Leishmania donovani to the sand fly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan. J. Exp. Med. 1995;181:685–697. PubMed PMC
Mahoney AB, Sacks DL, Saraiva E, Modi G, Turco SJ. Intra-species and stage-specific polymorphisms in lipophosphoglycan structure control Leishmania donovani-sand fly interactions. Biochemistry. 1999;38:9813–9823. PubMed
Soares RP, Macedo ME, Ropert C, Gontijo NF, Almeida IC, Gazzinelli RT, Pimenta PF, Turco SJ. Leishmania chagasi: lipophosphoglycan characterization and binding to the midgut of the sand fly vector Lutzomyia longipalpis. Mol. Biochem. Parasit. 2002;121:213–224. PubMed
Walters LI, Irons KP, Chaplin G, Tesh RB. Life cycle of Leishmania major (Kinetoplastida: Trypanosomatidae) in the neotropical sand fly Lutzomyia longipalpis (Diptera: Psychodidae) J. Med. Entomol. 1993;30:699–718. PubMed
Sadlova J, Hajmova M, Volf P. Phlebotomus (Adlerius) halepensis vector competence for Leishmania major and L. tropica. Med. Vet. Entomol. 2003;17:244–250. PubMed
Svobodova M, Votypka J, Peckova J, Dvorak V, Nasseredin A, Baneth G, Sztern J, Kravchenko V, Orr A, Mei D, Schnur LF, Volf P, Warburg A. Distinct transmission cycles of Leishmania tropica in 2 adjacent foci, Nothern Israel. Emerg. Infect. Dis. 2006;12:1860–1868. PubMed PMC
Spath GF, Epstein L, Leader B, Singer SM, Avila HA, Turco SJ, Beverley SM. Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proc. Natl. Acad Sci USA. 2000;97:9258–9263. PubMed PMC
Dinglasan RR, Valenzuela JG, Azad AF. Sugar epitopes as potential universal disease transmission blocking targets. Insect Biochem. Molec. 2006;35:1–10. PubMed
Killick-Kendrick R. The biology and control of Phlebotomine sand flies. Clin. Dermatol. 1999;17:279–289. PubMed
Rogers ME, Ilg T, Nikolaev AV, Ferguson MA, Bates PA. Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature. 2004;430:463–467. PubMed PMC
Ma DQ, Russell G, Beverley SM, Turco SJ. Golgi GDP-mannose uptake requires Leishmania LPG2. A member of eukaryotic family of putative nucleotide-sugar transporters. J. Biol. Chem. 1997;272:3799–3805. PubMed
Boulanger N, Lowenberger C, Volf P, Ursic R, Sigutova L, Sabatier L, Svobodova M, Beverley SM, Spath G, Brun R, Pesson B, Bullet P. Characterization of a defensin from the sand fly Phlebotomus duboscqi induced by challenge with bacteria or the protozoan parasite Leishmania major. Infect. Immun. 2004;72:7140–7146. PubMed PMC
Evangelista LG, Leite AC. Histochemical localization of N-acetyl-galactosamine in the midgut of Lutzomyia longipalpis (Diptera: Psychodidae) J. Med. Entomol. 2002;39:432–439. PubMed
Hernandez AG, Rodriguez N, Stojanovic D, Candelle D. The localization of a lectin-like component on the Leishmania cell surface. Mol. Biol. Rep. 1986;11:149–153. PubMed
Mukhopadhyay NK, Shome K, Saha AK, Hassell JR, Glew RH. Heparin binds to Leishmania donovani promastigotes and inhibits protein phosphorylation. Biochem. J. 1989;264:517–525. PubMed PMC
Kock NP, Gabius HJ, Schmitz J, Schottelius J. Receptors for carbohydrate ligands including heparin on the cell surface of Leishmania and other trypanosomatids. Trop. Med. Int. Health. 1997;2:863–874. PubMed
Svobodova M, Bates PA, Volf P. Detection of lectin activity in Leishmania promastigotes and amastigotes. Acta Trop. 1997;68:23–35. PubMed
Bray RS. Leishmania mexicana mexicana: attachment and uptake of promastigotes to and by macrophages in vitro. J. Protozool. 1983;30:314–323. PubMed
Svobodova M, Capo C, Mege JM. A biological role for haemagglutination activity of Leishmania promastigotes and amastigotes. Parasite. 1997;4:245–251. PubMed
Mauricio IL, Stothard JR, Miles MA. The strange case of Leishmania chagasi. Parasitol. Today. 2000;16:188–189. PubMed
Jacobson RL, Eisenberger CL, Svobodova M, Baneth G, Sztern J, Carvalho J, Nasereddin A, ElFari M, Shalom U, Volf P, Votypka J, Dedet J-P, Pratlong F, Schonian G, Schnur LF, Jaffe CL, Warburg A. Outbreak of cutaneous leishmaniasis in northern Israel. J. Infec. Dis. 2003;188:1065–1073. PubMed
Soares RP, Barron T, McCoy-Simandle K, Svobodova M, Warburg A, Turco SJ. Leishmania tropica: intraspecific polymorphisms in lipophosphoglycan correlate with transmission by different Phlebotomus species. Exp. Parasitol. 2004;107:105–114. PubMed
Genomic analysis of two phlebotomine sand fly vectors of Leishmania from the New and Old World
Refractoriness of Sergentomyia schwetzi to Leishmania spp. is mediated by the peritrophic matrix
Leishmania development in sand flies: parasite-vector interactions overview
Analysis of salivary transcripts and antigens of the sand fly Phlebotomus arabicus
Increased transmission potential of Leishmania major/Leishmania infantum hybrids