Lipophosphoglycan polymorphisms do not affect Leishmania amazonensis development in the permissive vectors Lutzomyia migonei and Lutzomyia longipalpis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PPM-00102-16
Fundação de Amparo à Pesquisa do Estado de Minas Gerais
UNCE 204017/2012
Chales University
FAPESP 2016-01917-3
Fundação de Amparo à Pesquisa do Estado de São Paulo
PubMed
29246180
PubMed Central
PMC5732482
DOI
10.1186/s13071-017-2568-8
PII: 10.1186/s13071-017-2568-8
Knihovny.cz E-zdroje
- Klíčová slova
- Leishmania amazonensis, Lipophosphoglycan, Lutzomyia longipalpis, Lutzomyia migonei, Phlebotomus papatasi, Vector-parasite interaction,
- MeSH
- glykosfingolipidy analýza MeSH
- Leishmania chemie růst a vývoj izolace a purifikace MeSH
- lidé MeSH
- Psychodidae parazitologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glykosfingolipidy MeSH
- lipophosphonoglycan MeSH Prohlížeč
BACKGROUND: Lipophosphoglycan (LPG) is a dominant surface molecule of Leishmania promastigotes. Its species-specific polymorphisms are found mainly in the sugars that branch off the conserved Gal(β1,4)Man(α1)-PO4 backbone of repeat units. Leishmania amazonensis is one of the most important species causing human cutaneous leishmaniasis in the New World. Here, we describe LPG intraspecific polymorphisms in two Le. amazonensis reference strains and their role during the development in three sand fly species. RESULTS: Strains isolated from Lutzomyia flaviscutellata (PH8) and from a human patient (Josefa) displayed structural polymorphism in the LPG repeat units, possessing side chains with 1 and 2 β-glucose or 1 to 3 β-galactose, respectively. Both strains successfully infected permissive vectors Lutzomyia longipalpis and Lutzomyia migonei and could colonize their stomodeal valve and differentiate into metacyclic forms. Despite bearing terminal galactose residues on LPG, Josefa could not sustain infection in the restrictive vector Phlebotomus papatasi. CONCLUSIONS: LPG polymorphisms did not affect the ability of Le. amazonensis to develop late-stage infections in permissive vectors. However, the non-establishment of infection in Ph. papatasi by Josefa strain suggested other LPG-independent factors in this restrictive vector.
Departamento de Parasitologia UFMG Belo Horizonte MG Brazil
Department of Biochemistry University of Kentucky Medical Center Lexington KY USA
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Carvalho BM, Rangel EF, Ready PD, Vale MM. Ecological niche Modelling predicts southward expansion of Lutzomyia (Nyssomyia) flaviscutellata (Diptera: Psychodidae: Phlebotominae), vector of Leishmania (Leishmania) amazonensis in South America, under climate change. PLoS One. 2015;30:10(11). PubMed PMC
Marques FA, Soares RP, Almeida GG, Souza CC, Melo MN, Pinto SA, et al. Parasitology international effectiveness of an immunohistochemical protocol for Leishmania detection in different clinical forms of American tegumentary leishmaniasis. Parasitol Int. 2017;66:884–888. doi: 10.1016/j.parint.2016.10.003. PubMed DOI
De Assis RR, Ibraim IC, Nogueira PM, Soares RP, Turco SJ. Glycoconjugates in new world species of Leishmania: polymorphisms in lipophosphoglycan and glycoinositolphospholipids and interaction with hosts. Biochim Biophys Acta. 2012;1820:1354–1365. doi: 10.1016/j.bbagen.2011.11.001. PubMed DOI
Pimenta PF, Saraiva EM, Rowton E, Modi GB, Garraway L a, Beverley SM, et al. Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc Natl Acad Sci USA 1994;91:9155–9159. PubMed PMC
McConville MJ, Schnur LF, Jaffe C, Schneider P. Structure of Leishmania lipophosphoglycan: inter- and intra-specific polymorphism in old world species. Biochem J. 1995;310:807–818. doi: 10.1042/bj3100807. PubMed DOI PMC
Dobson DE, Kamhawi S, Lawyer P, Turco SJ, Beverley SM, Sacks DL. Leishmania major survival in selective Phlebotomus papatasi sand fly vector requires a specific SCG-encoded lipophosphoglycan galactosylation pattern. PLoS Pathog. 2010;11;6(11):e1001185. PubMed PMC
Soares RPP, Barron T, McCoy-Simandle K, Svobodova M, Warburg A, Turco SJ. Leishmania tropica: intraspecific polymorphisms in lipophosphoglycan correlate with transmission by different Phlebotomus species. Exp Parasitol. 2004;107:105–114. doi: 10.1016/j.exppara.2004.05.001. PubMed DOI
Svobodova M, Votypka J, Dvorak J, Nasereddin A, Baneth G, Sztern J, et al. Distinct transmission cycles of Leishmania tropica in 2 adjacent foci, northern Israel. Emerg Infect Dis. 2006;12:1860–1868. doi: 10.3201/eid1212.060497. PubMed DOI PMC
Mahoney AB, Sacks DL, Saraiva E, Modi G, Turco SJ. Intra-species and stage-specific polymorphisms in lipophosphoglycan structure control Leishmania donovani - sand fly interactions. Biochemistry. 1999;38:9813–9823. doi: 10.1021/bi990741g. PubMed DOI
Soares RPP, Macedo ME, Ropert C, Gontijo NF, Almeida IC, Gazzinelli RT, et al. Leishmania chagasi: Lipophosphoglycan characterization and binding to the midgut of the sand fly vector Lutzomyia longipalpis. Mol Biochem Parasitol. 2002;121:213–224. doi: 10.1016/S0166-6851(02)00033-6. PubMed DOI
Coelho-Finamore JM, Freitas VC, Assis RR, Melo MN, Novozhilova N, Secundino NF, et al. Leishmania infantum: Lipophosphoglycan intraspecific variation and interaction with vertebrate and invertebrate hosts. Int J Parasitol. 2011;41:333–342. doi: 10.1016/j.ijpara.2010.10.004. PubMed DOI
Nogueira PM, Assis RR, Torrecilhas AC, Saraiva EM, Pessoa NL, Campos MA, et al. Lipophosphoglycans from Leishmania amazonensis strains display immunomodulatory properties via TLR4 and do not affect sand fly infection. PLoS Negl Trop Dis. 2016;10:e0004848. doi: 10.1371/journal.pntd.0004848. PubMed DOI PMC
Volf P, Myskova J. Sand flies and Leishmania: specific versus permissive vectors. Trends Parasitol. 2007;23:91–92. doi: 10.1016/j.pt.2006.12.010. PubMed DOI PMC
Chajbullinova A, Votypka J, Sadlova J, Kvapilova K, Seblova V, Kreisinger J, et al. The development of Leishmania turanica in sand flies and competition with L. major. Parasit Vectors. 2012;5:219. doi: 10.1186/1756-3305-5-219. PubMed DOI PMC
McConville MJ, Turco SJ, Ferguson MA, Sacks DL. Developmental modification of lipophosphoglycan during the differentiation of Leishmania major promastigotes to an infectious. EMBO J. 1992;11(10):3593–3600. PubMed PMC
Butcher BA, Turco SJ, Hilty BA, Pimenta PF, Panunzio M, Sacks DL. Deficiency in b1,3-galactosyltransferase of a Leishmania major lipophosphoglycan mutant adversely influences the Leishmania -sand fly interaction. J Biol Chem. 1996;271:20573–20579. doi: 10.1074/jbc.271.34.20573. PubMed DOI
Volf P, Nogueira PM, Myskova J, Turco SJ, Soares RP. Structural comparison of lipophosphoglycan from Leishmania turanica and L. major, two species transmitted by Phlebotomus papatasi. Parasitol Int. 2014;63:683–686. doi: 10.1016/j.parint.2014.05.004. PubMed DOI
Soares RP, Turco SJ. Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae): a review. Ann Acad Bras Cienc. 2003;75:301–330. doi: 10.1590/S0001-37652003000300005. PubMed DOI
Nieves E, Pimenta PFP. Development of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis in the sand fly Lutzomyia migonei (Diptera: Psychodidae) J Med Entomol. 2000;37:134–140. doi: 10.1603/0022-2585-37.1.134. PubMed DOI
Guimarães VCFV, Pruzinova K, Sadlova J, Volfova V, Myskova J, Filho SPB, et al. Lutzomyia migonei is a permissive vector competent for Leishmania infantum. Parasit Vectors. 2016;9:159. doi: 10.1186/s13071-016-1444-2. PubMed DOI PMC
Pimenta PF, Turco SJ, McConville MJ, Lawyer PG, Perkins PV, Sacks DL. Stage-specific adhesion of Leishmania promastigotes to the sandfly midgut. Science. 1992;256:1812–1815. doi: 10.1126/science.1615326. PubMed DOI
Kamhawi S, Ramalho-Ortigao M, Van MP, Kumar S, Lawyer PG, Turco SJ, et al. A role for insect galectins in parasite survival. Cell. 2004;119:329–341. doi: 10.1016/j.cell.2004.10.009. PubMed DOI
Myskova J, Svobodova M, Beverley SM, Volf PA. Lipophosphoglycan-independent development of Leishmania in permissive sand flies. Microbes Infect. 2007;9:317–324. doi: 10.1016/j.micinf.2006.12.010. PubMed DOI PMC
Svárovská A, Ant TH, Seblová V, Jecná L, Beverley SM, Volf P. Leishmania major glycosylation mutants require phosphoglycans (lpg2-) but not lipophosphoglycan (lpg1-) for survival in permissive sand fly vectors. PLoS Negl Trop Dis. 2010;4:1–7. doi: 10.1371/journal.pntd.0000580. PubMed DOI PMC
Myšková J, Dostálová A, Pěničková L, Halada P, Bates PA, Volf P. Characterization of a midgut mucin-like glycoconjugate of Lutzomyia longipalpis with a potential role in Leishmania attachment. Parasit Vectors. 2016;9:413. doi: 10.1186/s13071-016-1695-y. PubMed DOI PMC
Garcia L, Kindt A, Bermudez H, Llanos-Cuentas A, De Doncker S, Arevalo J, et al. Culture-independent species typing of neotropical Leishmania for clinical validation of a PCR-based assay targeting heat shock protein 70 genes. J Clin Microbiol. 2004;42:2294–2297. doi: 10.1128/JCM.42.5.2294-2297.2004. PubMed DOI PMC
Rocha MN, Margonari C, Presot IM, Soares RP. Evaluation of 4 polymerase chain reaction protocols for cultured Leishmania spp. typing. Diagn Microbiol Infect Dis. 2010;68:401–409. doi: 10.1016/j.diagmicrobio.2010.08.007. PubMed DOI
Tavares NM, Araújo-Santos T, Afonso L, Nogueira PM, Lopes UG, Soares RP, et al. Understanding the mechanisms controlling Leishmania amazonensis infection in vitro: the role of LTB4 derived from human neutrophils. J Infect Dis. 2014;210:1–11. doi: 10.1093/infdis/jiu158. PubMed DOI PMC
Tolson DL, Turco SJ, Beecroft RP, Pearson TW. The immunochemical structure and surface arrangement of Leishmania donovani lipophosphoglycan determined using monoclonal antibodies. Mol Biochem Parasitol. 1989;35:109–118. doi: 10.1016/0166-6851(89)90113-8. PubMed DOI
Ilg T, Harbecke D, Wiese M, Overath P. Monoclonal antibodies directed against Leishmania secreted acid phosphatase and lipophosphoglycan. Partial characterization of private and public epitopes. Eur J Biochem. 1993;217:603–615. doi: 10.1111/j.1432-1033.1993.tb18283.x. PubMed DOI
Soares RPP, Cardoso TL, Barron T, Araújo MSS, Pimenta PFP, Turco SJ. Leishmania braziliensis: a novel mechanism in the lipophosphoglycan regulation during metacyclogenesis. Int J Parasitol. 2005;35:245–253. doi: 10.1016/j.ijpara.2004.12.008. PubMed DOI
Assis RR, Ibraim IC, Noronha FS, Turco SJ, Soares RP. Glycoinositolphospholipids from Leishmania braziliensis and L. infantum: modulation of innate immune system and variations in carbohydrate structure. PLoS Negl Trop Dis. 2012;6:1–11. doi: 10.1371/journal.pntd.0001543. PubMed DOI PMC
Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011; PubMed
Sádlová J, Price HP, Smith BA, Votỳpka J, Volf P, Smith DF. The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell Microbiol. 2010;12:1765–1779. doi: 10.1111/j.1462-5822.2010.01507.x. PubMed DOI PMC
Rogers ME, Chance ML, Bates PA. The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitology. 2002;124(Pt 5):495–507. PubMed
Rocha MN, Nogueira PM, Demicheli C, de Oliveira LG, da Silva MM, Frézard F, Melo MN, Soares RP. Cytotoxicity and in vitro antileishmanial activity of antimony (V), bismuth (V), and tin (IV) complexes of Lapachol. Bioinorg Chem Appl. 2013;2013:961783. doi: 10.1155/2013/961783. PubMed DOI PMC
Kamhawi S. Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends Parasitol. 2006;22:439–445. doi: 10.1016/j.pt.2006.06.012. PubMed DOI
Kamhawi S, Modi GB, Pimenta PF, Rowton E, Sacks DL. The vectorial competence of Phlebotomus sergenti is specific for Leishmania tropica and is controlled by species-specific, lipophosphoglycan-mediated midgut attachment. Parasitology. 2000;121:25–33. doi: 10.1017/S0031182099006125. PubMed DOI
Soares RP, Margonari C, Secundino NC, MacÊdo ME, Da Costa SM, Rangel EF, et al. Differential midgut attachment of Leishmania (Viannia) braziliensis in the sand flies Lutzomyia (Nyssomyia) whitmani and Lutzomyia (Nyssomyia) intermedia. J Biomed Biotechnol. 2010;2010:439174. doi: 10.1155/2010/439174. PubMed DOI PMC
Soares RP, Altoé ECF, Ennes-Vidal V, da Costa SM, Rangel EF, de Souza NA, et al. In vitro inhibition of Leishmania attachment to sandfly midguts and LL-5 cells by divalent metal chelators, anti-gp63 and phosphoglycans. Protist. 2017;168:326–334. doi: 10.1016/j.protis.2017.03.004. PubMed DOI
Wilson R, Bates MD, Dostalova A, Jecna L, Dillon RJ, Volf P, et al. Stage-specific adhesion of Leishmania promastigotes to sand fly midguts assessed using an improved comparative binding assay. PLoS Negl Trop Dis. 2010;4:e816. doi: 10.1371/journal.pntd.0000816. PubMed DOI PMC
Ilg T, Etges R, Overath P, McConville MJ, Thomas-Oates J, Thomas J, et al. Structure of Leishmania mexicana lipophosphoglycan. J Biol Chem. 1992;267(10):6834–6840. PubMed
Hajmová M, Chang KP, Kolli B, Volf P. Down-regulation of gp63 in Leishmania amazonensis reduces its early development in Lutzomyia longipalpis. Microbes Infect. 2004;6:646–649. doi: 10.1016/j.micinf.2004.03.003. PubMed DOI
Jecna L, Dostalova A, Wilson R, Seblova V, Chang K-P, Bates P. A, et al. the role of surface glycoconjugates in Leishmania midgut attachment examined by competitive binding assays and experimental development in sand flies. Parasitology. 2013;140:1026–1032. doi: 10.1017/S0031182013000358. PubMed DOI
Freitas VC, Parreiras KP, Duarte APM, Secundino NFC, Pimenta PFP. Development of Leishmania (Leishmania) infantum chagasi in its natural sandfly vector Lutzomyia longipalpis. Am J Trop Med Hyg. 2012;86:606–612. doi: 10.4269/ajtmh.2012.11-0386. PubMed DOI PMC