Lower galactosylation levels of the Lipophosphoglycan from Leishmania (Leishmania) major-like strains affect interaction with Phlebotomus papatasi and Lutzomyia longipalpis
Jazyk angličtina Země Brazílie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
29513819
PubMed Central
PMC5853761
DOI
10.1590/0074-02760170333
PII: S0074-02762018000500302
Knihovny.cz E-zdroje
- MeSH
- druhová specificita MeSH
- galaktosa metabolismus MeSH
- glykosfingolipidy chemie metabolismus MeSH
- hmyz - vektory chemie fyziologie MeSH
- interakce hostitele a patogenu MeSH
- Leishmania major chemie fyziologie MeSH
- Phlebotomus parazitologie MeSH
- Psychodidae parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- galaktosa MeSH
- glykosfingolipidy MeSH
- lipophosphonoglycan MeSH Prohlížeč
BACKGROUND Leishmania major is an Old World species causing cutaneous leishmaniasis and is transmitted by Phlebotomus papatasi and Phlebotomus duboscqi. In Brazil, two isolates from patients who never left the country were characterised as L. major-like (BH49 and BH121). Using molecular techniques, these isolates were indistinguishable from the L. major reference strain (FV1). OBJECTIVES We evaluated the lipophosphoglycans (LPGs) of the strains and their behaviour in Old and New World sand fly vectors. METHODS LPGs were purified, and repeat units were qualitatively evaluated by immunoblotting. Experimental in vivo infection with L. major-like strains was performed in Lutzomyia longipalpis (New World, permissive vector) and Ph. papatasi (Old World, restrictive or specific vector). FINDINGS The LPGs of both strains were devoid of arabinosylated side chains, whereas the LPG of strain BH49 was more galactosylated than that of strain BH121. All strains with different levels of galactosylation in their LPGs were able to infect both vectors, exhibiting colonisation of the stomodeal valve and metacyclogenesis. The BH121 strain (less galactosylated) exhibited lower infection intensity compared to BH49 and FV1 in both vectors. MAIN CONCLUSIONS Intraspecific variation in the LPG of L. major-like strains occur, and the different galactosylation levels affected interactions with the invertebrate host.
Departamento de Parasitologia Universidade Federal de Minas Gerais Belo Horizonte MG Brasil
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Instituto René Rachou Fundação Oswaldo Cruz Fiocruz Belo Horizonte MG Brasil
Zobrazit více v PubMed
Anderson JM, Samake S, Jaramillo-Gutierrez G, Sissoko I, Coulibaly A, Traoré B, et al. Seasonality and prevalence of Leishmania major infection in Phlebotomus duboscqi Neveu-Lemaire from two neighboring villages in central Mali. e1139PLoS Negl Trop Dis. 2011;5(5) PubMed PMC
Assis RR, Ibraim IC, Nogueira PM, Soares RP, Turco SJ. Glycoconjugates in New World species of Leishmania: polymorphisms in lipophosphoglycan and glycoinositolphospholipids and interaction with hosts. Biochim Biophys Acta. 2012;1820(9):1354–1365. PubMed
Butcher BA, Turco SJ, Hilty BA, Pimenta PF, Panunzio M, Sacks DL. Deficiency in beta1,3-galactosyltransferase of a Leishmania major lipophosphoglycan mutant adversely influences the Leishmania-sand fly interaction. J Biol Chem. 1996;271(34):20573–20579. PubMed
Calvopina M, Armijos RX, Hashiguchi Y. Epidemiology of Leishmaniasis in Ecuador: current status of knowledge - A Review. Mem Inst Oswaldo Cruz. 2004;99(7):663–672. PubMed
Chajbullinova A, Votypka J, Sadlova J, Kvapilova K, Seblova V, Kreisinger J, et al. The development of Leishmania turanica in sand flies and competition with L. major. 219Parasit Vectors. 2012;5 PubMed PMC
Cihakova J, Volf P. Development of different Leishmania major strains in the vector sandflies Phlebotomus papatasi and P. duboscqi. Ann Trop Med Parasitol. 1997;91(3):267–279. PubMed
Coelho-Finamore JM, Freitas VC, Assis RR, Melo MN, Novozhilova N, Secundino NF, et al. Leishmania infantum: lipophosphoglycan intraspecific variation and interaction with vertebrate and invertebrate hosts. Int J Parasitol. 2011;41(3-4):333–342. PubMed
Dobson DE, Scholtes LD, Valdez KE, Sullivan DR, Mengeling BJ, Cilmi S, et al. Functional identification of galactosyltransferases (SCGs) required species-specific modifications of the lipophosphoglycan adhesin controlling Leishmania major-sand fly interactions. J Biol Chem. 2003;278(18):15523–15531. PubMed
Hashiguchi Y, Velez LN, Villegas NV, Mimori T, Gomez EA, Kato H. Leishmaniases in Ecuador: comprehensive review and current status. Acta Trop. 2016;166:299–315. PubMed
Kamhawi S, Ramalho-Ortigao M, Pham VM, Kumar S, Lawyer PG, Turco SJ, et al. A role for insect galectins in parasite survival. Cell. 2004;119(3):329–341. PubMed
Kelleher M, Bacic A, Handman E. Identification of a macrophage-binding determinant on lipophosphoglycan from Leishmania major promastigotes. Proc Natl Acad Sci USA. 1992;89(1):6–10. PubMed PMC
Kelleher M, Curtis JM, Sacks DL, Handman E, Bacic A. Epitope mapping of monoclonal antibodies directed against lipophosphoglycan of Leishmania major promastigotes. Mol Biochem Parasitol. 1994;66(2):187–200. PubMed
Mauricio IL, Stothard JR, Miles MA. The strange case of Leishmania chagasi. Parasitol Today. 2000;16(5):188–189. PubMed
Mayrink W, Williams P, Coelho MV, Dias M, Martins AV, Magalhães PA, et al. Epidemiology of dermal leishmaniasis in the Rio Doce Valley, State of Minas Gerais, Brazil. Ann Trop Med Parasitol. 1979;73(2):123–137. PubMed
McConville MJ, Turco SJ, Ferguson MAJ, Sacks DL. Developmental modification of lipophosphoglycan during the differentiation of Leishmania major promastigotes to an infectious stage. EMBO J. 1992;11(10):3593–3600. PubMed PMC
Momen H, Grimaldi JR, Pacheco RS, Jaffe CL, Pratt DM, Marzochi MCA. Brazilian Leishmania stocks phenotypically similar to Leishmania major. Am J Trop Med Hyg. 1985;34(6):1076–1084. PubMed
Momen H, Pacheco RS, Cupolillo E, Grimaldi G., Jr Molecular evidence for the importation of Old World Leishmania into the Americas. Biol Res. 1993;26(1-2):249–255. PubMed
Myskova J, Votypka J, Volf P. Leishmania in sand flies: comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J Med Entomol. 2008;45(1):133–138. PubMed
Nogueira PM, Assis RR, Torrecilhas AC, Saraiva EM, Pessoa NL, Campos MAS, et al. Lipophosphoglycans from Leishmania amazonensis strains display immunomodulatory properties via TLR4 and do not affect sand fly infection. PLoS Negl Trop Dis. 2016;10(8):e0004848. PubMed PMC
Nogueira PM, Guimarães AC, Assis RR, Sadlova J, Myskova J, Pruzinova K, et al. Lipophosphoglycan polymorphisms do not affect Leishmania amazonensis development in permissive vectors Lutzomyia migonei and Lutzomyia longipalpis. 608Parasit Vectors. 2017;10 PubMed PMC
Rocha NM, Melo MN, Babá EH, Dias M, Michalick MS, Costa CA, et al. Leishmania braziliensis braziliensis isolated from Akodon arviculoides captured in Caratinga, Minas Gerais, Brazil. Trans R Soc Trop Med Hyg. 1988;82(1):68. PubMed
Sádlová J, Svobodová M, Volf P. Leishmania major: effect of repeated passages through sandfly vectors or murine hosts. Ann Trop Med Parasitol. 1999;93(6):599–611. PubMed
Salam N, Al-Shaqha WM, Azzi A. Leishmaniasis in the Middle East: incidence and epidemiology. e3208PLoS Negl Trop Dis. 2014;8(10) PubMed PMC
Salomón OD, Feliciangeli MD, Quintana MG, Afonso MMS, Rangel EF. Lutzomyia longipalpis urbanisation and control. Mem Inst Oswaldo Cruz. 2015;110(7):831–846. PubMed PMC
Silva SO, Wu AA, Evans DA, Vieira LQ, Melo MN. Leishmania sp. isolated from human cases of cutaneous leishmaniasis in Brazil characterized as Leishmania major-like. Acta Trop. 2009;112(3):239–248. PubMed
Soares RPP, Macedo ME, Ropert C, Gontijo NF, Almeida IC, Gazzinelli RT, et al. Leishmania chagasi: lipophosphoglycan characterization and binding to the midgut of sand fly vector Lutzomyia longipalpis. Mol Biochem Parasitol. 2002;121:213–224. PubMed
Soares RP, Turco SJ. Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae): a review. An Acad Bras Cienc. 2003;75(3):301–330. PubMed
Tolson DL, Turco SJ, Beecroft RP, Pearson TW. The immunochemical structure and surface arrangement of Leishmania donovani lipophosphoglycan determined using monoclonal antibodies. Mol Biochem Parasitol. 1989;35(2):109–118. PubMed
Volf P, Nogueira PM, Myskova J, Turco SJ, Soares RP. Structural comparison of lipophosphoglycan from Leishmania turanica and L. major, two species transmitted by Phlebotomus papatasi. Parasitol Int. 2014;63(5):683–686. PubMed
Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011;36(Suppl. 1):S1–S9. PubMed
Walters LL. Leishmania differentiation in natural and unnatural sand fly hosts. J Eukaryot Microbiol. 1993;40(2):196–206. PubMed
Wu ÂC, Freitas MA, Silva SO, Nogueira PM, Soares RP, Pesquero JB, et al. Genetic differences between two Leishmania major-like strains revealed by suppression subtractive hybridization. Mol Biochem Parasitol. 2015;203(1-2):34–38. PubMed