Motion onset VEPs can see through the blur
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39266612
PubMed Central
PMC11393312
DOI
10.1038/s41598-024-72483-z
PII: 10.1038/s41598-024-72483-z
Knihovny.cz E-zdroje
- Klíčová slova
- Digital blur, Motion-onset, Pattern-reversal, Visual evoked potential,
- MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- světelná stimulace MeSH
- vnímání pohybu fyziologie MeSH
- zrakové evokované potenciály * fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Motion-onset visual evoked potentials (MO VEPs) are robust to dioptric blur when low contrast and low spatial frequency patterns are used for stimulation. To reveal mechanisms of MO VEPs robustness, we studied whether the resistance to defocus persists even when using a high-contrast checkerboard using digital defocus in the emmetropic eyes of 13 subjects (males 20-60 years). We compared the dominant components of MO VEPs to pattern-reversal VEPs (PR VEP), which are sensitive to the blur. For stimulation, we used checkerboard patterns with 15´ and 60´ checks. To defocus the checkerboard, we rendered it with a second-order Zernike polynomial ( Z 2 0 ) with an equivalent defocus of 0, 2, or 4 D. For PR VEP, the checkerboards were reversed in terms of their contrast. To evoke MO VEP, the checkerboard of 60´ checks moved for 200 ms with a speed of 5 or 10 deg/s in the cardinal directions. The MO VEP did not change in peak time (P ≥ 0.0747) or interpeak amplitude (P > 0.0772) with digital blur. In contrast, for PR VEP, the results showed a decrease in interpeak amplitude (P ≤ 6.65ˑ10-4) and an increase in peak time (P ≤ 0.0385). Thus, we demonstrated that MO VEPs evoked by checkerboard, structure containing high spatial content, can be robust to defocus.
Zobrazit více v PubMed
Odom, J. V. et al. ISCEV standard for clinical visual evoked potentials: (2016 update). Doc. Ophthalmol.133, 1–9 (2016). 10.1007/s10633-016-9553-y PubMed DOI
Bach, M., Maurer, J. P. & Wolf, M. E. Visual evoked potential-based acuity assessment in normal vision, artificially degraded vision, and in patients. Br. J. Ophthalmol.92, 396–403 (2008). 10.1136/bjo.2007.130245 PubMed DOI
Hoffmann, M. B., Brands, J., Behrens-Baumann, W. & Bach, M. VEP-based acuity assessment in low vision. Doc. Ophthalmol.135, 209–218 (2017). 10.1007/s10633-017-9613-y PubMed DOI
Heinrich, S. P. & Strübin, I. Use of diffusing filters for artificially reducing visual acuity when testing equipment and procedures. Doc. Ophthalmol.140, 83–93 (2020). 10.1007/s10633-019-09715-5 PubMed DOI
Hassankarimi, H., Jafarzadehpur, E., Mohammadi, A. & Noori, S. M. Low-contrast Pattern-reversal Visual Evoked Potential in Different Spatial Frequencies. J. Ophthalmic Vis. Res.10.1850/jovr.v15i3.7455 (2020). 10.1850/jovr.v15i3.7455 PubMed DOI PMC
Kenemans, J., Baas, J. M., Mangun, G., Lijffijt, M. & Verbaten, M. On the processing of spatial frequencies as revealed by evoked-potential source modeling. Clin. Neurophysiol.111, 1113–1123 (2000). 10.1016/S1388-2457(00)00270-4 PubMed DOI
Kordek, D., Voda, P., Young, L. K. & Kremlacek, J. Effect of Dioptric Blur on Pattern-Reversal and Motion-Onset VEPs as Used in Clinical Research. Transl. Vis. Sci. Technol.11, 7 (2022). 10.1167/tvst.11.12.7 PubMed DOI PMC
Harter, M. R. & White, C. T. Effects of contour sharpness and check-size on visually evoked cortical potentials. Vision Res.8, 701–711 (1968). 10.1016/0042-6989(68)90044-8 PubMed DOI
Kothari, R., Bokariya, P., Singh, S., Narang, P. & Singh, R. Refractive errors and their effects on visual evoked potentials. J. Clin. Ophthalmol. Res.2, 3 (2014).10.4103/2320-3897.122625 DOI
Kuba, M., Kubová, Z., Kremláček, J. & Langrová, J. Motion-onset VEPs: Characteristics, methods, and diagnostic use. Vision Res.47, 189–202 (2007). 10.1016/j.visres.2006.09.020 PubMed DOI
Heinrich, S. P. A primer on motion visual evoked potentials. Doc. Ophthalmol.114, 83–105 (2007). 10.1007/s10633-006-9043-8 PubMed DOI
Kremláček, J., Kuba, M., Chlubnová, J. & Kubová, Z. Effect of stimulus localisation on motion-onset VEP. Vision Res.44, 2989–3000 (2004). 10.1016/j.visres.2004.07.002 PubMed DOI
Millodot, M. Refraction Determined Electrophysiologically. Arch. Ophthalmol.84, 272 (1970). 10.1001/archopht.1970.00990040274003 PubMed DOI
Dehnert, A., Bach, M. & Heinrich, S. P. Subjective visual acuity with simulated defocus. Ophthalmic Physiol. Opt.31, 625–631 (2011). 10.1111/j.1475-1313.2011.00857.x PubMed DOI
Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods134, 9–21 (2004). 10.1016/j.jneumeth.2003.10.009 PubMed DOI
Kordek, D., Young, L. K. & Kremláček, J. Comparison between optical and digital blur using near visual acuity. Sci. Rep.11, 3437 (2021). 10.1038/s41598-021-82965-z PubMed DOI PMC
Dai, G. Wavefront Optics for Vision Correction (SPIE press, 2008).
Young, L. K. & Smithson, H. E. Critical band masking reveals the effects of optical distortions on the channel mediating letter identification. Front. Psychol.5, 1060 (2014). 10.3389/fpsyg.2014.01060 PubMed DOI PMC
Thibos, L. N., Applegate, R. A., Schwiegerling, J. T. & Webb, R. Standards for Reporting the Optical Aberrations of Eyes. J. Refract. Surg.18, S652–S660 (2002). PubMed
Benjamin, W. Borish’s Clinical Refraction (Butterworth-Heinemann, 2006).
Harris, C. R. et al. Array programming with NumPy. Nature585, 357–362 (2020). 10.1038/s41586-020-2649-2 PubMed DOI PMC
Li, J. et al. Quantifying sensory eye dominance in the normal visual system: A new technique and insights into variation across traditional tests. Investig. Opthalmology Vis. Sci.51, 6875 (2010).10.1167/iovs.10-5549 PubMed DOI
Cheng, C.-Y., Yen, M.-Y., Lin, H.-Y., Hsia, W.-W. & Hsu, W.-M. Association of Ocular Dominance and Anisometropic Myopia. Investig. Opthalmology Vis. Sci.45, 2856 (2004).10.1167/iovs.03-0878 PubMed DOI
ISO/TC 172/SC 7 Ophthalmic optics and instruments. ISO 8596:2017 Ophthalmic optics — Visual acuity testing — Standard and clinical optotypes and their presentation. 1–10 (2017).
Li, X. et al. Influence of lenslet configuration on short-term visual performance in myopia control spectacle lenses. Front. Neurosci.10.3389/fnins.2021.667329 (2021). 10.3389/fnins.2021.667329 PubMed DOI PMC
Pomerance, G. N. & Evans, D. W. Test-retest reliability of the CSV-1000 contrast test and its relationship to glaucoma therapy. Invest. Ophthalmol. Vis. Sci.35, 3357–3361 (1994). PubMed
Kremláček, J. et al. Within-session reproducibility of motion-onset VEPs: Effect of adaptation/habituation or fatigue on N2 peak amplitude and latency. Doc. Ophthalmol.115, 95–103 (2007). 10.1007/s10633-007-9063-z PubMed DOI
Kremláček, J. et al. Role of latency jittering correction in motion-onset VEP amplitude decay during prolonged visual stimulation. Doc. Ophthalmol.124, 211–223 (2012). 10.1007/s10633-012-9321-6 PubMed DOI
Bobak, P., Bodis-Wollner, I. & Guillory, S. The effect of blur and contrast of VEP latency: Comparison between check and sinusoidal grating patterns. Electroencephalogr. Clin. Neurophysiol. Potentials Sect.68, 247–255 (1987).10.1016/0168-5597(87)90045-1 PubMed DOI
Spehlmann, R. The averaged electrical responses to diffuse and to patterned light in the human. Electroencephalogr. Clin. Neurophysiol.19, 560–569 (1965). 10.1016/0013-4694(65)90241-5 PubMed DOI
Lifshitz, K. The averaged evoked cortical response to complex visual stimuli. Psychophysiology3, 55–68 (1966). 10.1111/j.1469-8986.1966.tb02680.x PubMed DOI
Ludlam, W. M. & Meyers, R. R. The use of visual evoked responses in objective refraction*. Trans. N. Y. Acad. Sci.34, 154–170 (1972). 10.1111/j.2164-0947.1972.tb02670.x PubMed DOI
Regan, D. Rapid objective refraction using evoked brain potentials. Invest. Ophthalmol.12, 669–679 (1973). PubMed
Hamilton, R. et al. ISCEV extended protocol for VEP methods of estimation of visual acuity. Doc. Ophthalmol.142, 17–24 (2021). 10.1007/s10633-020-09780-1 PubMed DOI PMC
Tumas, V. & Sakamoto, A. C. Comparison of the mechanisms of latency shift in pattern reversal visual evoked potential induced by blurring and contrast reduction. Electroencephalogr. Clin. Neurophysiol. Potentials Sect.104, 96–100 (1997).10.1016/S0168-5597(96)96123-7 PubMed DOI
Sokol, S. & Moskowitz, A. Effect of retinal blur on the peak latency of the pattern evoked potential. Vision Res.21, 1279–1286 (1981). 10.1016/0042-6989(81)90232-7 PubMed DOI
Cobb, W. A., Morton, H. B. & Ettlinger, G. Cerebral potentials evoked by pattern reversal and their suppression in visual rivalry. Nature216, 1123–1125 (1967). 10.1038/2161123b0 PubMed DOI
Collins, D. W., Carroll, W. M., Black, J. L. & Walsh, M. Effect of refractive error on the visual evoked response. BMJ1, 231–232 (1979). 10.1136/bmj.1.6158.231 PubMed DOI PMC
Di Russo, F. et al. Identification of the neural sources of the pattern-reversal VEP. Neuroimage24, 874–886 (2005). 10.1016/j.neuroimage.2004.09.029 PubMed DOI
Pitzalis, S., Strappini, F., De Gasperis, M., Bultrini, A. & Di Russo, F. Spatio-temporal brain mapping of motion-onset veps combined with fmri and Retinotopic maps. PLoS One7, e35771 (2012). 10.1371/journal.pone.0035771 PubMed DOI PMC