Motion onset VEPs can see through the blur

. 2024 Sep 12 ; 14 (1) : 21296. [epub] 20240912

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39266612
Odkazy

PubMed 39266612
PubMed Central PMC11393312
DOI 10.1038/s41598-024-72483-z
PII: 10.1038/s41598-024-72483-z
Knihovny.cz E-zdroje

Motion-onset visual evoked potentials (MO VEPs) are robust to dioptric blur when low contrast and low spatial frequency patterns are used for stimulation. To reveal mechanisms of MO VEPs robustness, we studied whether the resistance to defocus persists even when using a high-contrast checkerboard using digital defocus in the emmetropic eyes of 13 subjects (males 20-60 years). We compared the dominant components of MO VEPs to pattern-reversal VEPs (PR VEP), which are sensitive to the blur. For stimulation, we used checkerboard patterns with 15´ and 60´ checks. To defocus the checkerboard, we rendered it with a second-order Zernike polynomial ( Z 2 0 ) with an equivalent defocus of 0, 2, or 4 D. For PR VEP, the checkerboards were reversed in terms of their contrast. To evoke MO VEP, the checkerboard of 60´ checks moved for 200 ms with a speed of 5 or 10 deg/s in the cardinal directions. The MO VEP did not change in peak time (P ≥ 0.0747) or interpeak amplitude (P > 0.0772) with digital blur. In contrast, for PR VEP, the results showed a decrease in interpeak amplitude (P ≤ 6.65ˑ10-4) and an increase in peak time (P ≤ 0.0385). Thus, we demonstrated that MO VEPs evoked by checkerboard, structure containing high spatial content, can be robust to defocus.

Zobrazit více v PubMed

Odom, J. V. et al. ISCEV standard for clinical visual evoked potentials: (2016 update). Doc. Ophthalmol.133, 1–9 (2016). 10.1007/s10633-016-9553-y PubMed DOI

Bach, M., Maurer, J. P. & Wolf, M. E. Visual evoked potential-based acuity assessment in normal vision, artificially degraded vision, and in patients. Br. J. Ophthalmol.92, 396–403 (2008). 10.1136/bjo.2007.130245 PubMed DOI

Hoffmann, M. B., Brands, J., Behrens-Baumann, W. & Bach, M. VEP-based acuity assessment in low vision. Doc. Ophthalmol.135, 209–218 (2017). 10.1007/s10633-017-9613-y PubMed DOI

Heinrich, S. P. & Strübin, I. Use of diffusing filters for artificially reducing visual acuity when testing equipment and procedures. Doc. Ophthalmol.140, 83–93 (2020). 10.1007/s10633-019-09715-5 PubMed DOI

Hassankarimi, H., Jafarzadehpur, E., Mohammadi, A. & Noori, S. M. Low-contrast Pattern-reversal Visual Evoked Potential in Different Spatial Frequencies. J. Ophthalmic Vis. Res.10.1850/jovr.v15i3.7455 (2020). 10.1850/jovr.v15i3.7455 PubMed DOI PMC

Kenemans, J., Baas, J. M., Mangun, G., Lijffijt, M. & Verbaten, M. On the processing of spatial frequencies as revealed by evoked-potential source modeling. Clin. Neurophysiol.111, 1113–1123 (2000). 10.1016/S1388-2457(00)00270-4 PubMed DOI

Kordek, D., Voda, P., Young, L. K. & Kremlacek, J. Effect of Dioptric Blur on Pattern-Reversal and Motion-Onset VEPs as Used in Clinical Research. Transl. Vis. Sci. Technol.11, 7 (2022). 10.1167/tvst.11.12.7 PubMed DOI PMC

Harter, M. R. & White, C. T. Effects of contour sharpness and check-size on visually evoked cortical potentials. Vision Res.8, 701–711 (1968). 10.1016/0042-6989(68)90044-8 PubMed DOI

Kothari, R., Bokariya, P., Singh, S., Narang, P. & Singh, R. Refractive errors and their effects on visual evoked potentials. J. Clin. Ophthalmol. Res.2, 3 (2014).10.4103/2320-3897.122625 DOI

Kuba, M., Kubová, Z., Kremláček, J. & Langrová, J. Motion-onset VEPs: Characteristics, methods, and diagnostic use. Vision Res.47, 189–202 (2007). 10.1016/j.visres.2006.09.020 PubMed DOI

Heinrich, S. P. A primer on motion visual evoked potentials. Doc. Ophthalmol.114, 83–105 (2007). 10.1007/s10633-006-9043-8 PubMed DOI

Kremláček, J., Kuba, M., Chlubnová, J. & Kubová, Z. Effect of stimulus localisation on motion-onset VEP. Vision Res.44, 2989–3000 (2004). 10.1016/j.visres.2004.07.002 PubMed DOI

Millodot, M. Refraction Determined Electrophysiologically. Arch. Ophthalmol.84, 272 (1970). 10.1001/archopht.1970.00990040274003 PubMed DOI

Dehnert, A., Bach, M. & Heinrich, S. P. Subjective visual acuity with simulated defocus. Ophthalmic Physiol. Opt.31, 625–631 (2011). 10.1111/j.1475-1313.2011.00857.x PubMed DOI

Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods134, 9–21 (2004). 10.1016/j.jneumeth.2003.10.009 PubMed DOI

Kordek, D., Young, L. K. & Kremláček, J. Comparison between optical and digital blur using near visual acuity. Sci. Rep.11, 3437 (2021). 10.1038/s41598-021-82965-z PubMed DOI PMC

Dai, G. Wavefront Optics for Vision Correction (SPIE press, 2008).

Young, L. K. & Smithson, H. E. Critical band masking reveals the effects of optical distortions on the channel mediating letter identification. Front. Psychol.5, 1060 (2014). 10.3389/fpsyg.2014.01060 PubMed DOI PMC

Thibos, L. N., Applegate, R. A., Schwiegerling, J. T. & Webb, R. Standards for Reporting the Optical Aberrations of Eyes. J. Refract. Surg.18, S652–S660 (2002). PubMed

Benjamin, W. Borish’s Clinical Refraction (Butterworth-Heinemann, 2006).

Harris, C. R. et al. Array programming with NumPy. Nature585, 357–362 (2020). 10.1038/s41586-020-2649-2 PubMed DOI PMC

Li, J. et al. Quantifying sensory eye dominance in the normal visual system: A new technique and insights into variation across traditional tests. Investig. Opthalmology Vis. Sci.51, 6875 (2010).10.1167/iovs.10-5549 PubMed DOI

Cheng, C.-Y., Yen, M.-Y., Lin, H.-Y., Hsia, W.-W. & Hsu, W.-M. Association of Ocular Dominance and Anisometropic Myopia. Investig. Opthalmology Vis. Sci.45, 2856 (2004).10.1167/iovs.03-0878 PubMed DOI

ISO/TC 172/SC 7 Ophthalmic optics and instruments. ISO 8596:2017 Ophthalmic optics — Visual acuity testing — Standard and clinical optotypes and their presentation. 1–10 (2017).

Li, X. et al. Influence of lenslet configuration on short-term visual performance in myopia control spectacle lenses. Front. Neurosci.10.3389/fnins.2021.667329 (2021). 10.3389/fnins.2021.667329 PubMed DOI PMC

Pomerance, G. N. & Evans, D. W. Test-retest reliability of the CSV-1000 contrast test and its relationship to glaucoma therapy. Invest. Ophthalmol. Vis. Sci.35, 3357–3361 (1994). PubMed

Kremláček, J. et al. Within-session reproducibility of motion-onset VEPs: Effect of adaptation/habituation or fatigue on N2 peak amplitude and latency. Doc. Ophthalmol.115, 95–103 (2007). 10.1007/s10633-007-9063-z PubMed DOI

Kremláček, J. et al. Role of latency jittering correction in motion-onset VEP amplitude decay during prolonged visual stimulation. Doc. Ophthalmol.124, 211–223 (2012). 10.1007/s10633-012-9321-6 PubMed DOI

Bobak, P., Bodis-Wollner, I. & Guillory, S. The effect of blur and contrast of VEP latency: Comparison between check and sinusoidal grating patterns. Electroencephalogr. Clin. Neurophysiol. Potentials Sect.68, 247–255 (1987).10.1016/0168-5597(87)90045-1 PubMed DOI

Spehlmann, R. The averaged electrical responses to diffuse and to patterned light in the human. Electroencephalogr. Clin. Neurophysiol.19, 560–569 (1965). 10.1016/0013-4694(65)90241-5 PubMed DOI

Lifshitz, K. The averaged evoked cortical response to complex visual stimuli. Psychophysiology3, 55–68 (1966). 10.1111/j.1469-8986.1966.tb02680.x PubMed DOI

Ludlam, W. M. & Meyers, R. R. The use of visual evoked responses in objective refraction*. Trans. N. Y. Acad. Sci.34, 154–170 (1972). 10.1111/j.2164-0947.1972.tb02670.x PubMed DOI

Regan, D. Rapid objective refraction using evoked brain potentials. Invest. Ophthalmol.12, 669–679 (1973). PubMed

Hamilton, R. et al. ISCEV extended protocol for VEP methods of estimation of visual acuity. Doc. Ophthalmol.142, 17–24 (2021). 10.1007/s10633-020-09780-1 PubMed DOI PMC

Tumas, V. & Sakamoto, A. C. Comparison of the mechanisms of latency shift in pattern reversal visual evoked potential induced by blurring and contrast reduction. Electroencephalogr. Clin. Neurophysiol. Potentials Sect.104, 96–100 (1997).10.1016/S0168-5597(96)96123-7 PubMed DOI

Sokol, S. & Moskowitz, A. Effect of retinal blur on the peak latency of the pattern evoked potential. Vision Res.21, 1279–1286 (1981). 10.1016/0042-6989(81)90232-7 PubMed DOI

Cobb, W. A., Morton, H. B. & Ettlinger, G. Cerebral potentials evoked by pattern reversal and their suppression in visual rivalry. Nature216, 1123–1125 (1967). 10.1038/2161123b0 PubMed DOI

Collins, D. W., Carroll, W. M., Black, J. L. & Walsh, M. Effect of refractive error on the visual evoked response. BMJ1, 231–232 (1979). 10.1136/bmj.1.6158.231 PubMed DOI PMC

Di Russo, F. et al. Identification of the neural sources of the pattern-reversal VEP. Neuroimage24, 874–886 (2005). 10.1016/j.neuroimage.2004.09.029 PubMed DOI

Pitzalis, S., Strappini, F., De Gasperis, M., Bultrini, A. & Di Russo, F. Spatio-temporal brain mapping of motion-onset veps combined with fmri and Retinotopic maps. PLoS One7, e35771 (2012). 10.1371/journal.pone.0035771 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...