Why do Si quantum dots with stronger fast emission have lower external photoluminescence quantum yield?
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38752139
PubMed Central
PMC11093259
DOI
10.1039/d3na01031g
PII: d3na01031g
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Silicon quantum dots (QDs) are a promising non-toxic alternative to the already well-developed platform of light-emitting semiconductor QDs based on III-V and II-VI materials. Oxidized SiQDs or those surface-terminated with long alkyl chains typically feature long-lived orange-red photoluminescence originating in quantum-confined core states. However, sometimes an additional short-lived PL band, whose mechanism is still highly debated, is reported. Here, we perform a detailed study of the room-temperature PL of SiQDs using samples covering three main fabrication techniques. We find evidence for the presence of only one set of radiative processes in addition to the typical long-lived PL. Moreover, we experimentally determine the ratio between the short- and long-lived PL component, obtaining a wide range of values (0.003 - 0.1) depending on the type of sample. In accordance with an already published report, we observe a tendency of SiQDs with stronger short-lived PL to have lower external quantum yield. We explain this trend using a model of the optical performance of an ensemble of QDs with widely varying optical characteristics through a mechanism we call selective lifetime-based quenching.
Chemistry Department Giacomo Ciamician University of Bologna Via F Selmi 2 40126 Bologna Italy
Institute of Physics of the CAS v v i Cukrovarnická 10 162 00 Prague 6 Czechia
University of Chemistry and Technology Technická 5 166 28 Praha 6 Czechia
Zobrazit více v PubMed
Kovalenko M. V. Manna L. Cabot A. Hens Z. Talapin D. V. Kagan C. R. Klimov V. I. Rogach A. L. Reiss P. Milliron D. J. Guyot-Sionnnest P. Konstantatos G. Parak W. J. Hyeon T. Korgel B. A. Murray C. B. Heiss W. ACS Nano. 2015;9:1012–1057. doi: 10.1021/nn506223h. PubMed DOI
Mazzaro R. Romano F. Ceroni P. Phys. Chem. Chem. Phys. 2017;19:26507–26526. doi: 10.1039/C7CP05208A. PubMed DOI
Milliken S. Thiessen A. N. Cheong I. T. O'Connor K. M. Li Z. Hooper R. W. Robidillo C. J. T. Veinot J. G. C. Nanoscale. 2021;13:16379–16404. doi: 10.1039/D1NR04701A. PubMed DOI
Beri D. Mater. Adv. 2023;4:3380–3398. doi: 10.1039/D2MA00984F. DOI
Yang D. Cui Z. Wen Z. Piao Z. He H. Wei X. Wang L. Mei S. Zhang W. Guo R. ACS Mater. Lett. 2023;5:985–1008. doi: 10.1021/acsmaterialslett.2c01225. DOI
Saitow K.-i. Bull. Chem. Soc. Jpn. 2024;97:uoad002. doi: 10.1093/bulcsj/uoad002. DOI
Hannah D. C. Yang J. Podsiadlo P. Chan M. K. Y. Demortiére A. Gosztola D. J. Prakapenka V. B. Schatz G. C. Kortshagen U. Schaller R. D. Nano Lett. 2012;12:4200–4205. doi: 10.1021/nl301787g. PubMed DOI
Pringle T. A. Hunter K. I. Brumberg A. Anderson K. J. Fagan J. A. Thomas S. A. Petersen R. J. Sefannaser M. Han Y. Brown S. L. Kilin D. S. Schaller R. D. Kortshagen U. R. Boudjouk P. R. Hobbie E. K. ACS Nano. 2020;14:3858–3867. doi: 10.1021/acsnano.9b09614. PubMed DOI
Canham L. Faraday Discuss. 2020;222:10–81. doi: 10.1039/D0FD00018C. PubMed DOI
Yu Y. Fan G. Fermi A. Mazzaro R. Morandi V. Ceroni P. Smilgies D.-M. Korgel B. A. J. Phys. Chem. C. 2017;121:23240–23248. doi: 10.1021/acs.jpcc.7b08054. DOI
Dohnalová K. Ondič L. Kůsová K. Pelant I. Rehspringer J. L. Mafouana R.-R. J. Appl. Phys. 2010;107:053102. doi: 10.1063/1.3289719. DOI
Dasog M. Yang Z. Regli S. Atkins T. M. Faramus A. Singh M. P. Muthuswamy E. Kauzlarich S. M. Tilley R. D. Veinot J. G. C. ACS Nano. 2013;7:2676–2685. doi: 10.1021/nn4000644. PubMed DOI PMC
Chen K. K. Mastronardi M. L. Kübel C. Ozin G. A. Part. Part. Syst. Charact. 2015;32:301–306. doi: 10.1002/ppsc.201400185. DOI
Coxon P. R. Wang Q. Chao Y. J. Phys. D: Appl. Phys. 2011;44:495301. doi: 10.1088/0022-3727/44/49/495301. DOI
DeBenedetti W. J. I. Chiu S.-K. Radlinger C. M. Ellison R. J. Manhat B. A. Zhang J. Z. Shi J. Goforth A. M. J. Phys. Chem. C. 2015;119:9595–9608. doi: 10.1021/acs.jpcc.5b01137. DOI
Rodriguez Nunez J. R. Kelly J. a. Henderson E. J. Veinot J. G. C. Rodríguez Núñez J. R. Kelly J. a. Henderson E. J. Veinot J. G. C. Chem. Mater. 2012;24:346–352. doi: 10.1021/cm203085f. DOI
Choi J. Wang N. S. Reipa V. Langmuir. 2007;23:3388–3394. doi: 10.1021/la062906+. PubMed DOI
Kang Z. Liu Y. Tsang C. H. A. Ma D. D. D. Fan X. Wong N.-B. Lee S.-T. Adv. Mater. 2009;21:661–664. doi: 10.1002/adma.200801642. DOI
Hua F. Swihart M. T. Ruckenstein E. Langmuir. 2005;21:6054–6062. doi: 10.1021/la0509394. PubMed DOI
Dohnalová K. Kůsová K. Pelant I. Appl. Phys. Lett. 2009;94:211903. doi: 10.1063/1.3141481. DOI
Dasog M. los Reyes G. B. D. Titova L. V. Hegmann F. A. Veinot J. G. C. ACS Nano. 2014;8:9636–9648. doi: 10.1021/nn504109a. PubMed DOI
Carroll G. M. Limpens R. Neale N. R. Nano Lett. 2018;18:3118–3124. doi: 10.1021/acs.nanolett.8b00680. PubMed DOI
Li Q. He Y. Chang J. Wang L. Chen H. Tan Y.-W. Wang H. Shao Z. J. Am. Chem. Soc. 2013;135:14924–14927. doi: 10.1021/ja407508v. PubMed DOI
Kůsová K. Hapala P. Valenta J. Jelínek P. Cibulka O. Ondič L. Pelant I. Adv. Mater. Interfaces. 2014;1:1300042. doi: 10.1002/admi.201300042. DOI
Poddubny A. N. Dohnalová K. Phys. Rev. B: Condens. Matter Mater. Phys. 2014;90:245439. doi: 10.1103/PhysRevB.90.245439. DOI
van Dam B. Osorio C. I. Hink M. A. Muller R. Koenderink A. F. Dohnalova K. ACS Photonics. 2018;5:2129–2136. doi: 10.1021/acsphotonics.7b01624. PubMed DOI PMC
Dohnalová K. Hapala P. Kůsová K. Infante I. Chem. Mater. 2020;32:6326–6337. doi: 10.1021/acs.chemmater.0c00443. DOI
Essner J. B. Kist J. A. Polo-Parada L. Baker G. A. Chem. Mater. 2018;30:1878–1887. doi: 10.1021/acs.chemmater.7b04446. DOI
Oliinyk B. V. Korytko D. Lysenko V. Alekseev S. Chem. Mater. 2019;31:7167–7172. doi: 10.1021/acs.chemmater.9b01067. DOI
Ddungu J. L. Z. Silvestrini S. Tassoni A. De Cola L. Faraday Discuss. 2020;222:350–361. doi: 10.1039/C9FD00127A. PubMed DOI
Wilbrink J. Huang C.-C. Dohnalova K. Paulusse J. M. J. Faraday Discuss. 2020;222:149–165. doi: 10.1039/C9FD00099B. PubMed DOI
Morselli G. Romano F. Ceroni P. Faraday Discuss. 2020;222:108–121. doi: 10.1039/C9FD00089E. PubMed DOI
Galář P. Popelář T. Khun J. Matulková I. Němec I. Newell K. Michalcová A. Scholtz V. Kůsová K. Faraday Discuss. 2020;222:240–257. doi: 10.1039/C9FD00092E. PubMed DOI
Tsybeskov L. Vandyshev J. V. Fauchet P. M. Phys. Rev. B: Condens. Matter Mater. Phys. 1994;49:7821–7824. doi: 10.1103/PhysRevB.49.7821. PubMed DOI
Valenta J. Fučíková A. Pelant I. Kůsová K. Dohnalová K. Aleknavičius A. Cibulka O. Fojtík A. Kada G. New J. Phys. 2008;10:073022. doi: 10.1088/1367-2630/10/7/073022. DOI
de Boer W. D. A. M. Timmerman D. Dohnalova K. Yassievich I. N. Zhang H. Buma W. J. Gregorkiewicz T. Nat. Nanotechnol. 2010;5:878–884. doi: 10.1038/nnano.2010.236. PubMed DOI
Ondič L. Kůsová K. Ziegler M. Fekete L. Gärtnerová V. Cháb V. Holý V. Cibulka O. Herynková K. Gallart M. Gilliot P. Hönerlage B. Pelant I. Nanoscale. 2014;6:3837–3845. doi: 10.1039/C3NR06454A. PubMed DOI
Popelář T. Galář P. Matějka F. Morsellli G. Ceroni P. Kůsová K. J. Phys. Chem. C. 2023;127:20426–20437. doi: 10.1021/acs.jpcc.3c05423. DOI
Mazzaro R. Gradone A. Angeloni S. Morselli G. Cozzi P. G. Romano F. Vomiero A. Ceroni P. ACS Photonics. 2019;6:2303–2311. doi: 10.1021/acsphotonics.9b00802. DOI
Zajac V. Němec H. Kadlec C. Kůsová K. Pelant I. Kužel P. New J. Phys. 2014;16:093013. doi: 10.1088/1367-2630/16/9/093013. DOI
Kůsová K. Popelář T. J. Appl. Phys. 2019;125:193103. doi: 10.1063/1.5097065. DOI
Wang Y. Townsend P. J. Lumin. 2013;142:202–211. doi: 10.1016/j.jlumin.2013.03.052. DOI
Valenta J. Nanosci. Methods. 2014;3:11–27. doi: 10.1080/21642311.2014.884288. DOI
Hapala P. Kůsová K. Pelant I. Jelínek P. Phys. Rev. B: Condens. Matter Mater. Phys. 2013;87:195420. doi: 10.1103/PhysRevB.87.195420. DOI
Kovalev D. Heckler H. Ben-Chorin M. Polisski G. Schwartzkopff M. Koch F. Phys. Rev. Lett. 1998;81:2803–2806. doi: 10.1103/PhysRevLett.81.2803. DOI
Sychugov I. Valenta J. Mitsuishi K. Fujii M. Linnros J. Phys. Rev. B: Condens. Matter Mater. Phys. 2011;84:125326. doi: 10.1103/PhysRevB.84.125326. DOI
Moskalenko A. S. Berakdar J. Poddubny A. N. Prokofiev A. A. Yassievich I. N. Goupalov S. V. Phys. Rev. B: Condens. Matter Mater. Phys. 2012;85:085432. doi: 10.1103/PhysRevB.85.085432. DOI
Prokofiev A. A. Moskalenko A. S. Yassievich I. N. de Boer W. D. A. M. Timmerman D. Zhang H. Buma W. J. Gregorkiewicz T. JETP Lett. 2009;90:758–762. doi: 10.1134/S0021364009240059. DOI
Kanemitsu Y. Futagi T. Matsumoto T. Mimura H. Phys. Rev. B: Condens. Matter Mater. Phys. 1994;49:14732–14735. doi: 10.1103/PhysRevB.49.14732. PubMed DOI
Brown S. L. Miller J. B. Anthony R. J. Kortshagen U. R. Kryjevski A. Hobbie E. K. ACS Nano. 2017;11:1597–1603. doi: 10.1021/acsnano.6b07285. PubMed DOI
Greben M. Khoroshyy P. Gutsch S. Hiller D. Zacharias M. Valenta J. Beilstein J. Nanotechnol. 2017;8:2315–2323. doi: 10.3762/bjnano.8.231. PubMed DOI PMC
Kovalev D. Diener J. Heckler H. Polisski G. Künzner N. Koch F. Phys. Rev. B: Condens. Matter Mater. Phys. 2000;61:4485–4487. doi: 10.1103/PhysRevB.61.4485. DOI
Liu X. Zhang Y. Yu T. Qiao X. Gresback R. Pi X. Yang D. Part. Part. Syst. Charact. 2016;33:44–52. doi: 10.1002/ppsc.201500148. DOI
Miura S. Nakamura T. Fujii M. Inui M. Hayashi S. Phys. Rev. B: Condens. Matter Mater. Phys. 2006;73:245333. doi: 10.1103/PhysRevB.73.245333. DOI