Why do Si quantum dots with stronger fast emission have lower external photoluminescence quantum yield?

. 2024 May 14 ; 6 (10) : 2644-2655. [epub] 20240409

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38752139

Silicon quantum dots (QDs) are a promising non-toxic alternative to the already well-developed platform of light-emitting semiconductor QDs based on III-V and II-VI materials. Oxidized SiQDs or those surface-terminated with long alkyl chains typically feature long-lived orange-red photoluminescence originating in quantum-confined core states. However, sometimes an additional short-lived PL band, whose mechanism is still highly debated, is reported. Here, we perform a detailed study of the room-temperature PL of SiQDs using samples covering three main fabrication techniques. We find evidence for the presence of only one set of radiative processes in addition to the typical long-lived PL. Moreover, we experimentally determine the ratio between the short- and long-lived PL component, obtaining a wide range of values (0.003 - 0.1) depending on the type of sample. In accordance with an already published report, we observe a tendency of SiQDs with stronger short-lived PL to have lower external quantum yield. We explain this trend using a model of the optical performance of an ensemble of QDs with widely varying optical characteristics through a mechanism we call selective lifetime-based quenching.

Zobrazit více v PubMed

Kovalenko M. V. Manna L. Cabot A. Hens Z. Talapin D. V. Kagan C. R. Klimov V. I. Rogach A. L. Reiss P. Milliron D. J. Guyot-Sionnnest P. Konstantatos G. Parak W. J. Hyeon T. Korgel B. A. Murray C. B. Heiss W. ACS Nano. 2015;9:1012–1057. doi: 10.1021/nn506223h. PubMed DOI

Mazzaro R. Romano F. Ceroni P. Phys. Chem. Chem. Phys. 2017;19:26507–26526. doi: 10.1039/C7CP05208A. PubMed DOI

Milliken S. Thiessen A. N. Cheong I. T. O'Connor K. M. Li Z. Hooper R. W. Robidillo C. J. T. Veinot J. G. C. Nanoscale. 2021;13:16379–16404. doi: 10.1039/D1NR04701A. PubMed DOI

Beri D. Mater. Adv. 2023;4:3380–3398. doi: 10.1039/D2MA00984F. DOI

Yang D. Cui Z. Wen Z. Piao Z. He H. Wei X. Wang L. Mei S. Zhang W. Guo R. ACS Mater. Lett. 2023;5:985–1008. doi: 10.1021/acsmaterialslett.2c01225. DOI

Saitow K.-i. Bull. Chem. Soc. Jpn. 2024;97:uoad002. doi: 10.1093/bulcsj/uoad002. DOI

Hannah D. C. Yang J. Podsiadlo P. Chan M. K. Y. Demortiére A. Gosztola D. J. Prakapenka V. B. Schatz G. C. Kortshagen U. Schaller R. D. Nano Lett. 2012;12:4200–4205. doi: 10.1021/nl301787g. PubMed DOI

Pringle T. A. Hunter K. I. Brumberg A. Anderson K. J. Fagan J. A. Thomas S. A. Petersen R. J. Sefannaser M. Han Y. Brown S. L. Kilin D. S. Schaller R. D. Kortshagen U. R. Boudjouk P. R. Hobbie E. K. ACS Nano. 2020;14:3858–3867. doi: 10.1021/acsnano.9b09614. PubMed DOI

Canham L. Faraday Discuss. 2020;222:10–81. doi: 10.1039/D0FD00018C. PubMed DOI

Yu Y. Fan G. Fermi A. Mazzaro R. Morandi V. Ceroni P. Smilgies D.-M. Korgel B. A. J. Phys. Chem. C. 2017;121:23240–23248. doi: 10.1021/acs.jpcc.7b08054. DOI

Dohnalová K. Ondič L. Kůsová K. Pelant I. Rehspringer J. L. Mafouana R.-R. J. Appl. Phys. 2010;107:053102. doi: 10.1063/1.3289719. DOI

Dasog M. Yang Z. Regli S. Atkins T. M. Faramus A. Singh M. P. Muthuswamy E. Kauzlarich S. M. Tilley R. D. Veinot J. G. C. ACS Nano. 2013;7:2676–2685. doi: 10.1021/nn4000644. PubMed DOI PMC

Chen K. K. Mastronardi M. L. Kübel C. Ozin G. A. Part. Part. Syst. Charact. 2015;32:301–306. doi: 10.1002/ppsc.201400185. DOI

Coxon P. R. Wang Q. Chao Y. J. Phys. D: Appl. Phys. 2011;44:495301. doi: 10.1088/0022-3727/44/49/495301. DOI

DeBenedetti W. J. I. Chiu S.-K. Radlinger C. M. Ellison R. J. Manhat B. A. Zhang J. Z. Shi J. Goforth A. M. J. Phys. Chem. C. 2015;119:9595–9608. doi: 10.1021/acs.jpcc.5b01137. DOI

Rodriguez Nunez J. R. Kelly J. a. Henderson E. J. Veinot J. G. C. Rodríguez Núñez J. R. Kelly J. a. Henderson E. J. Veinot J. G. C. Chem. Mater. 2012;24:346–352. doi: 10.1021/cm203085f. DOI

Choi J. Wang N. S. Reipa V. Langmuir. 2007;23:3388–3394. doi: 10.1021/la062906+. PubMed DOI

Kang Z. Liu Y. Tsang C. H. A. Ma D. D. D. Fan X. Wong N.-B. Lee S.-T. Adv. Mater. 2009;21:661–664. doi: 10.1002/adma.200801642. DOI

Hua F. Swihart M. T. Ruckenstein E. Langmuir. 2005;21:6054–6062. doi: 10.1021/la0509394. PubMed DOI

Dohnalová K. Kůsová K. Pelant I. Appl. Phys. Lett. 2009;94:211903. doi: 10.1063/1.3141481. DOI

Dasog M. los Reyes G. B. D. Titova L. V. Hegmann F. A. Veinot J. G. C. ACS Nano. 2014;8:9636–9648. doi: 10.1021/nn504109a. PubMed DOI

Carroll G. M. Limpens R. Neale N. R. Nano Lett. 2018;18:3118–3124. doi: 10.1021/acs.nanolett.8b00680. PubMed DOI

Li Q. He Y. Chang J. Wang L. Chen H. Tan Y.-W. Wang H. Shao Z. J. Am. Chem. Soc. 2013;135:14924–14927. doi: 10.1021/ja407508v. PubMed DOI

Kůsová K. Hapala P. Valenta J. Jelínek P. Cibulka O. Ondič L. Pelant I. Adv. Mater. Interfaces. 2014;1:1300042. doi: 10.1002/admi.201300042. DOI

Poddubny A. N. Dohnalová K. Phys. Rev. B: Condens. Matter Mater. Phys. 2014;90:245439. doi: 10.1103/PhysRevB.90.245439. DOI

van Dam B. Osorio C. I. Hink M. A. Muller R. Koenderink A. F. Dohnalova K. ACS Photonics. 2018;5:2129–2136. doi: 10.1021/acsphotonics.7b01624. PubMed DOI PMC

Dohnalová K. Hapala P. Kůsová K. Infante I. Chem. Mater. 2020;32:6326–6337. doi: 10.1021/acs.chemmater.0c00443. DOI

Essner J. B. Kist J. A. Polo-Parada L. Baker G. A. Chem. Mater. 2018;30:1878–1887. doi: 10.1021/acs.chemmater.7b04446. DOI

Oliinyk B. V. Korytko D. Lysenko V. Alekseev S. Chem. Mater. 2019;31:7167–7172. doi: 10.1021/acs.chemmater.9b01067. DOI

Ddungu J. L. Z. Silvestrini S. Tassoni A. De Cola L. Faraday Discuss. 2020;222:350–361. doi: 10.1039/C9FD00127A. PubMed DOI

Wilbrink J. Huang C.-C. Dohnalova K. Paulusse J. M. J. Faraday Discuss. 2020;222:149–165. doi: 10.1039/C9FD00099B. PubMed DOI

Morselli G. Romano F. Ceroni P. Faraday Discuss. 2020;222:108–121. doi: 10.1039/C9FD00089E. PubMed DOI

Galář P. Popelář T. Khun J. Matulková I. Němec I. Newell K. Michalcová A. Scholtz V. Kůsová K. Faraday Discuss. 2020;222:240–257. doi: 10.1039/C9FD00092E. PubMed DOI

Tsybeskov L. Vandyshev J. V. Fauchet P. M. Phys. Rev. B: Condens. Matter Mater. Phys. 1994;49:7821–7824. doi: 10.1103/PhysRevB.49.7821. PubMed DOI

Valenta J. Fučíková A. Pelant I. Kůsová K. Dohnalová K. Aleknavičius A. Cibulka O. Fojtík A. Kada G. New J. Phys. 2008;10:073022. doi: 10.1088/1367-2630/10/7/073022. DOI

de Boer W. D. A. M. Timmerman D. Dohnalova K. Yassievich I. N. Zhang H. Buma W. J. Gregorkiewicz T. Nat. Nanotechnol. 2010;5:878–884. doi: 10.1038/nnano.2010.236. PubMed DOI

Ondič L. Kůsová K. Ziegler M. Fekete L. Gärtnerová V. Cháb V. Holý V. Cibulka O. Herynková K. Gallart M. Gilliot P. Hönerlage B. Pelant I. Nanoscale. 2014;6:3837–3845. doi: 10.1039/C3NR06454A. PubMed DOI

Popelář T. Galář P. Matějka F. Morsellli G. Ceroni P. Kůsová K. J. Phys. Chem. C. 2023;127:20426–20437. doi: 10.1021/acs.jpcc.3c05423. DOI

Mazzaro R. Gradone A. Angeloni S. Morselli G. Cozzi P. G. Romano F. Vomiero A. Ceroni P. ACS Photonics. 2019;6:2303–2311. doi: 10.1021/acsphotonics.9b00802. DOI

Zajac V. Němec H. Kadlec C. Kůsová K. Pelant I. Kužel P. New J. Phys. 2014;16:093013. doi: 10.1088/1367-2630/16/9/093013. DOI

Kůsová K. Popelář T. J. Appl. Phys. 2019;125:193103. doi: 10.1063/1.5097065. DOI

Wang Y. Townsend P. J. Lumin. 2013;142:202–211. doi: 10.1016/j.jlumin.2013.03.052. DOI

Valenta J. Nanosci. Methods. 2014;3:11–27. doi: 10.1080/21642311.2014.884288. DOI

Hapala P. Kůsová K. Pelant I. Jelínek P. Phys. Rev. B: Condens. Matter Mater. Phys. 2013;87:195420. doi: 10.1103/PhysRevB.87.195420. DOI

Kovalev D. Heckler H. Ben-Chorin M. Polisski G. Schwartzkopff M. Koch F. Phys. Rev. Lett. 1998;81:2803–2806. doi: 10.1103/PhysRevLett.81.2803. DOI

Sychugov I. Valenta J. Mitsuishi K. Fujii M. Linnros J. Phys. Rev. B: Condens. Matter Mater. Phys. 2011;84:125326. doi: 10.1103/PhysRevB.84.125326. DOI

Moskalenko A. S. Berakdar J. Poddubny A. N. Prokofiev A. A. Yassievich I. N. Goupalov S. V. Phys. Rev. B: Condens. Matter Mater. Phys. 2012;85:085432. doi: 10.1103/PhysRevB.85.085432. DOI

Prokofiev A. A. Moskalenko A. S. Yassievich I. N. de Boer W. D. A. M. Timmerman D. Zhang H. Buma W. J. Gregorkiewicz T. JETP Lett. 2009;90:758–762. doi: 10.1134/S0021364009240059. DOI

Kanemitsu Y. Futagi T. Matsumoto T. Mimura H. Phys. Rev. B: Condens. Matter Mater. Phys. 1994;49:14732–14735. doi: 10.1103/PhysRevB.49.14732. PubMed DOI

Brown S. L. Miller J. B. Anthony R. J. Kortshagen U. R. Kryjevski A. Hobbie E. K. ACS Nano. 2017;11:1597–1603. doi: 10.1021/acsnano.6b07285. PubMed DOI

Greben M. Khoroshyy P. Gutsch S. Hiller D. Zacharias M. Valenta J. Beilstein J. Nanotechnol. 2017;8:2315–2323. doi: 10.3762/bjnano.8.231. PubMed DOI PMC

Kovalev D. Diener J. Heckler H. Polisski G. Künzner N. Koch F. Phys. Rev. B: Condens. Matter Mater. Phys. 2000;61:4485–4487. doi: 10.1103/PhysRevB.61.4485. DOI

Liu X. Zhang Y. Yu T. Qiao X. Gresback R. Pi X. Yang D. Part. Part. Syst. Charact. 2016;33:44–52. doi: 10.1002/ppsc.201500148. DOI

Miura S. Nakamura T. Fujii M. Inui M. Hayashi S. Phys. Rev. B: Condens. Matter Mater. Phys. 2006;73:245333. doi: 10.1103/PhysRevB.73.245333. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...