Changes of the absorption cross section of Si nanocrystals with temperature and distance
Status PubMed-not-MEDLINE Language English Country Germany Media electronic-ecollection
Document type Journal Article
PubMed
29181288
PubMed Central
PMC5687048
DOI
10.3762/bjnano.8.231
Knihovny.cz E-resources
- Keywords
- absorption cross section, average lifetime, nanocrystal distance, photoluminescence decay, silicon nanocrystals,
- Publication type
- Journal Article MeSH
The absorption cross section (ACS) of silicon nanocrystals (Si NCs) in single-layer and multilayer structures with variable thickness of oxide barriers is determined via a photoluminescence (PL) modulation technique that is based on the analysis of excitation intensity-dependent PL kinetics under modulated pumping. We clearly demonstrate that roughly doubling the barrier thickness (from ca. 1 to 2.2 nm) induces a decrease of the ACS by a factor of 1.5. An optimum separation barrier thickness of ca. 1.6 nm is calculated to maximize the PL intensity yield. This large variation of ACS values with barrier thickness is attributed to a modulation of either defect population states or of the efficiency of energy transfer between confined NC layers. An exponential decrease of the ACS with decreasing temperature down to 120 K can be explained by smaller occupation number of phonons and expansion of the band gap of Si NCs at low temperatures. This study clearly shows that the ACS of Si NCs cannot be considered as independent on experimental conditions and sample parameters.
See more in PubMed
Pelant I, Valenta J. Luminescence Spectroscopy of Semiconductors. Oxford, United Kingdom: Oxford University Press; 2012. DOI
Valenta J, Mirabella S. Nanotechnology and Photovoltaic Devices. Stanford, CA, U.S.A.: Pan Stanford Publishing; 2015. DOI
Dohnalová K, Gregorkiewicz T, Kůsová K. J Phys: Condens Matter. 2014;26:173201. doi: 10.1088/0953-8984/26/17/173201. PubMed DOI
Zacharias M, Heitmann J, Scholz R, Kahler U, Schmidt M, Bläsing J. Appl Phys Lett. 2002;80:661–663. doi: 10.1063/1.1433906. DOI
Valenta J, Greben M, Gutsch S, Hiller D, Zacharias M. Appl Phys Lett. 2014;105:243107. doi: 10.1063/1.4904472. DOI
Hartel A M. Structural and Optical Properties of PECVD Grown Silicon Nanocrystals Embedded in SiOxNy Matrix. Freiburg, Germany: Albert-Ludwigs University; 2013.
Poddubny A N, Prokofiev A A, Yassievich I N. Appl Phys Lett. 2010;97:231116. doi: 10.1063/1.3525375. DOI
Yu P, Beard M C, Ellingson R J, Ferrere S, Curtis C, Drexler J, Luiszer F, Nozik A J. J Phys Chem B. 2005;109:7084–7087. doi: 10.1021/jp046127i. PubMed DOI
Hens Z, Moreels I. J Mater Chem. 2012;22:10406–10415. doi: 10.1039/c2jm30760j. DOI
Valenta J, Greben M, Remeš Z, Gutsch S, Hiller D, Zacharias M. Appl Phys Lett. 2016;108:23102. doi: 10.1063/1.4939699. DOI
Hartel A M, Hiller D, Gutsch S, Löper P, Estradé S, Peiró F, Garrido B, Zacharias M. Thin Solid Films. 2011;520:121–125. doi: 10.1016/j.tsf.2011.06.084. DOI
Valenta J, Greben M. AIP Adv. 2015;5:47131. doi: 10.1063/1.4918970. DOI
Kovalev D, Heckler H, Polisski G, Koch F. Phys Status Solidi B. 1999;215:871–932. doi: 10.1002/(SICI)1521-3951(199910)215:2<871::AID-PSSB871>3.0.CO;2-9. DOI
Kovalev D, Diener J, Heckler H, Polisski G, Künzner N, Koch F. Phys Rev B. 2000;61:4485–4487. doi: 10.1103/PhysRevB.61.4485. DOI
Trinh M T, Limpens R, Gregorkiewicz T. J Phys Chem C. 2013;117:5963–5968. doi: 10.1021/jp311124c. DOI
Mahdouani M, Bourguiga R, Jaziri S, Gardelis S, Nassiopoulou A G. Physica E. 2009;42:57–62. doi: 10.1016/j.physe.2009.08.020. DOI
Priolo F, Franzò G, Pacifici D, Vinciguerra V, Iacona F, Irrera A. J Appl Phys. 2001;89:264–272. doi: 10.1063/1.1331074. DOI
Pavesi L, Dal Negro L, Mazzoleni C, Franzò G, Priolo F. Nature. 2000;408:440–444. doi: 10.1038/35044012. PubMed DOI
Nguyen A, Gonzalez C M, Sinelnikov R, Newman W, Sun S, Lockwood R, Veinot J G C, Meldrum A. Nanotechnology. 2016;27:105501. doi: 10.1088/0957-4484/27/10/105501. PubMed DOI
Brown S L, Miller J B, Anthony R J, Kortshagen U R, Kryjevski A, Hobbie E K. ACS Nano. 2017;11:1597–1603. doi: 10.1021/acsnano.6b07285. PubMed DOI
Hartel A M, Gutsch S, Hiller D, Zacharias M. Phys Rev B. 2013;87:35428. doi: 10.1103/PhysRevB.87.035428. DOI
Linnros J, Lalic N, Galeckas A, Grivickas V. J Appl Phys. 1999;86:6128–6134. doi: 10.1063/1.371663. DOI
Nikolaev I S, Lodahl P, van Driel A F, Koenderink A F, Vos W L. Phys Rev B. 2007;75:115302. doi: 10.1103/PhysRevB.75.115302. DOI
Greben M, Valenta J. Rev Sci Instrum. 2016;87:126101. doi: 10.1063/1.4971368. PubMed DOI
Garcia C, Garrido B, Pellegrino P, Ferre R, Moreno J A, Morante J R, Pavesi L, Cazzanelli M. Appl Phys Lett. 2003;82:1595–1597. doi: 10.1063/1.1558894. DOI
Rinnert H, Jambois O, Vergnat M. J Appl Phys. 2009;106:23501. doi: 10.1063/1.3169513. DOI
Sangghaleh F, Bruhn B, Schmidt T, Linnros J. Nanotechnology. 2013;24:225204. doi: 10.1088/0957-4484/24/22/225204. PubMed DOI
Pavesi L. J Appl Phys. 1996;80:216–225. doi: 10.1063/1.362807. DOI
Kovalev D, Polisski G, Ben-Chorin M, Diener J, Koch F. J Appl Phys. 1996;80:5978–5983. doi: 10.1063/1.363595. DOI
Lautenschlager P, Garriga M, Vina L, Cardona M. Phys Rev B. 1987;36:4821–4830. doi: 10.1103/PhysRevB.36.4821. PubMed DOI
Garrido B, López M, Pérez-Rodriguez A, Garcia C, Pellegrino P, Ferré R, Moreno J, Morante J, Bonafos C, Carrada M, et al. Nucl Instrum Methods Phys Res, Sect B. 2004;216:213–221. doi: 10.1016/j.nimb.2003.11.037. DOI
Bohm G, Zech G. Introduction to Statistics and Data Analysis for Physicists. Hamburg, Germany: Verlag Deutsches Elektronen-Synchrotron; 2010.