• This record comes from PubMed

Changes of the absorption cross section of Si nanocrystals with temperature and distance

. 2017 ; 8 () : 2315-2323. [epub] 20171106

Status PubMed-not-MEDLINE Language English Country Germany Media electronic-ecollection

Document type Journal Article

The absorption cross section (ACS) of silicon nanocrystals (Si NCs) in single-layer and multilayer structures with variable thickness of oxide barriers is determined via a photoluminescence (PL) modulation technique that is based on the analysis of excitation intensity-dependent PL kinetics under modulated pumping. We clearly demonstrate that roughly doubling the barrier thickness (from ca. 1 to 2.2 nm) induces a decrease of the ACS by a factor of 1.5. An optimum separation barrier thickness of ca. 1.6 nm is calculated to maximize the PL intensity yield. This large variation of ACS values with barrier thickness is attributed to a modulation of either defect population states or of the efficiency of energy transfer between confined NC layers. An exponential decrease of the ACS with decreasing temperature down to 120 K can be explained by smaller occupation number of phonons and expansion of the band gap of Si NCs at low temperatures. This study clearly shows that the ACS of Si NCs cannot be considered as independent on experimental conditions and sample parameters.

See more in PubMed

Pelant I, Valenta J. Luminescence Spectroscopy of Semiconductors. Oxford, United Kingdom: Oxford University Press; 2012. DOI

Valenta J, Mirabella S. Nanotechnology and Photovoltaic Devices. Stanford, CA, U.S.A.: Pan Stanford Publishing; 2015. DOI

Dohnalová K, Gregorkiewicz T, Kůsová K. J Phys: Condens Matter. 2014;26:173201. doi: 10.1088/0953-8984/26/17/173201. PubMed DOI

Zacharias M, Heitmann J, Scholz R, Kahler U, Schmidt M, Bläsing J. Appl Phys Lett. 2002;80:661–663. doi: 10.1063/1.1433906. DOI

Valenta J, Greben M, Gutsch S, Hiller D, Zacharias M. Appl Phys Lett. 2014;105:243107. doi: 10.1063/1.4904472. DOI

Hartel A M. Structural and Optical Properties of PECVD Grown Silicon Nanocrystals Embedded in SiOxNy Matrix. Freiburg, Germany: Albert-Ludwigs University; 2013.

Poddubny A N, Prokofiev A A, Yassievich I N. Appl Phys Lett. 2010;97:231116. doi: 10.1063/1.3525375. DOI

Yu P, Beard M C, Ellingson R J, Ferrere S, Curtis C, Drexler J, Luiszer F, Nozik A J. J Phys Chem B. 2005;109:7084–7087. doi: 10.1021/jp046127i. PubMed DOI

Hens Z, Moreels I. J Mater Chem. 2012;22:10406–10415. doi: 10.1039/c2jm30760j. DOI

Valenta J, Greben M, Remeš Z, Gutsch S, Hiller D, Zacharias M. Appl Phys Lett. 2016;108:23102. doi: 10.1063/1.4939699. DOI

Hartel A M, Hiller D, Gutsch S, Löper P, Estradé S, Peiró F, Garrido B, Zacharias M. Thin Solid Films. 2011;520:121–125. doi: 10.1016/j.tsf.2011.06.084. DOI

Valenta J, Greben M. AIP Adv. 2015;5:47131. doi: 10.1063/1.4918970. DOI

Kovalev D, Heckler H, Polisski G, Koch F. Phys Status Solidi B. 1999;215:871–932. doi: 10.1002/(SICI)1521-3951(199910)215:2<871::AID-PSSB871>3.0.CO;2-9. DOI

Kovalev D, Diener J, Heckler H, Polisski G, Künzner N, Koch F. Phys Rev B. 2000;61:4485–4487. doi: 10.1103/PhysRevB.61.4485. DOI

Trinh M T, Limpens R, Gregorkiewicz T. J Phys Chem C. 2013;117:5963–5968. doi: 10.1021/jp311124c. DOI

Mahdouani M, Bourguiga R, Jaziri S, Gardelis S, Nassiopoulou A G. Physica E. 2009;42:57–62. doi: 10.1016/j.physe.2009.08.020. DOI

Priolo F, Franzò G, Pacifici D, Vinciguerra V, Iacona F, Irrera A. J Appl Phys. 2001;89:264–272. doi: 10.1063/1.1331074. DOI

Pavesi L, Dal Negro L, Mazzoleni C, Franzò G, Priolo F. Nature. 2000;408:440–444. doi: 10.1038/35044012. PubMed DOI

Nguyen A, Gonzalez C M, Sinelnikov R, Newman W, Sun S, Lockwood R, Veinot J G C, Meldrum A. Nanotechnology. 2016;27:105501. doi: 10.1088/0957-4484/27/10/105501. PubMed DOI

Brown S L, Miller J B, Anthony R J, Kortshagen U R, Kryjevski A, Hobbie E K. ACS Nano. 2017;11:1597–1603. doi: 10.1021/acsnano.6b07285. PubMed DOI

Hartel A M, Gutsch S, Hiller D, Zacharias M. Phys Rev B. 2013;87:35428. doi: 10.1103/PhysRevB.87.035428. DOI

Linnros J, Lalic N, Galeckas A, Grivickas V. J Appl Phys. 1999;86:6128–6134. doi: 10.1063/1.371663. DOI

Nikolaev I S, Lodahl P, van Driel A F, Koenderink A F, Vos W L. Phys Rev B. 2007;75:115302. doi: 10.1103/PhysRevB.75.115302. DOI

Greben M, Valenta J. Rev Sci Instrum. 2016;87:126101. doi: 10.1063/1.4971368. PubMed DOI

Garcia C, Garrido B, Pellegrino P, Ferre R, Moreno J A, Morante J R, Pavesi L, Cazzanelli M. Appl Phys Lett. 2003;82:1595–1597. doi: 10.1063/1.1558894. DOI

Rinnert H, Jambois O, Vergnat M. J Appl Phys. 2009;106:23501. doi: 10.1063/1.3169513. DOI

Sangghaleh F, Bruhn B, Schmidt T, Linnros J. Nanotechnology. 2013;24:225204. doi: 10.1088/0957-4484/24/22/225204. PubMed DOI

Pavesi L. J Appl Phys. 1996;80:216–225. doi: 10.1063/1.362807. DOI

Kovalev D, Polisski G, Ben-Chorin M, Diener J, Koch F. J Appl Phys. 1996;80:5978–5983. doi: 10.1063/1.363595. DOI

Lautenschlager P, Garriga M, Vina L, Cardona M. Phys Rev B. 1987;36:4821–4830. doi: 10.1103/PhysRevB.36.4821. PubMed DOI

Garrido B, López M, Pérez-Rodriguez A, Garcia C, Pellegrino P, Ferré R, Moreno J, Morante J, Bonafos C, Carrada M, et al. Nucl Instrum Methods Phys Res, Sect B. 2004;216:213–221. doi: 10.1016/j.nimb.2003.11.037. DOI

Bohm G, Zech G. Introduction to Statistics and Data Analysis for Physicists. Hamburg, Germany: Verlag Deutsches Elektronen-Synchrotron; 2010.

Newest 20 citations...

See more in
Medvik | PubMed

Why do Si quantum dots with stronger fast emission have lower external photoluminescence quantum yield?

. 2024 May 14 ; 6 (10) : 2644-2655. [epub] 20240409

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...