Effect of Dioptric Blur on Pattern-Reversal and Motion-Onset VEPs as Used in Clinical Research
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MR/T042192/1
Medical Research Council - United Kingdom
PubMed
36472879
PubMed Central
PMC9733653
DOI
10.1167/tvst.11.12.7
PII: 2783904
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- zrakové evokované potenciály * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
PURPOSE: To describe the effect of dioptric blur on visual evoked potentials (VEPs) induced by motion onset (MO-VEPs). METHODS: The effect of dioptric blur up to 4 D on MO-VEPs was tested on 12 subjects using central, peripheral, and full-field stimulation with a low-contrast structure of concentric circles with spatial frequency <1 c/°. The results were compared to VEPs evoked by 15' and 60' checkerboard pattern-reversal (PR-VEPs). The relationship between peak time and interpeak amplitude of the dominant components was related to the level of dioptric blur using linear regression. RESULTS: The MO-VEPs did not show a significant peak prolongation (P > 0.28) or amplitude attenuation (P > 0.14) with the blur, whereas for the PR-VEPs we observed a significant decrease in amplitude (P < 0.001) and increase in peak time (P < 0.001) for both checkerboard sizes. CONCLUSIONS: For MO-VEPs induced by radial motion of low contrast and low spatial frequency pattern, the change in retinal blur does not affect the peak time or the interpeak amplitude of the dominant N2 component. TRANSLATIONAL RELEVANCE: The resistance to retinal blur that we demonstrated for MO-VEP provides a diagnostic opportunity to test the integrity of the visual system and reveal a retrobulbar impairment even in uncorrected refractive errors.
Biosciences Institute Newcastle University Newcastle UK
Department of Biophysics Faculty of Medicine Charles University Hradec Kralove Czech Republic
Zobrazit více v PubMed
Odom JV, Bach M, Brigell M, et al. .. ISCEV standard for clinical visual evoked potentials: (2016 update). Doc Ophthalmol. 2016; 133: 1–9. PubMed
Bach M, Maurer JP, Wolf ME.. Visual evoked potential-based acuity assessment in normal vision, artificially degraded vision, and in patients. Br J Ophthalmol. 2008; 92: 396–403. PubMed
Hoffmann MB, Brands J, Behrens-Baumann W, Bach M.. VEP-based acuity assessment in low vision. Doc Ophthalmol. 2017; 135: 209–218. PubMed
Heinrich SP, Strübin I.. Use of diffusing filters for artificially reducing visual acuity when testing equipment and procedures. Doc Ophthalmol. 2020; 140: 83–93. PubMed
Hassankarimi H, Jafarzadehpur E, Mohammadi A, Noori SMR.. Low-contrast Pattern-reversal Visual Evoked Potential in Different Spatial Frequencies. J Ophthalmic Vis Res. 15: 362–371. PubMed PMC
Kenemans JL, Baas JMP, Mangun GR, Lijffijt M, Verbaten MN.. On the processing of spatial frequencies as revealed by evoked-potential source modeling. Clin Neurophys. 2000; 111: 1113–1123. PubMed
Kothari R, Bokariya P, Singh S, Narang P, Singh R.. Refractive errors and their effects on visual evoked potentials. J Clin Ophthalmol Res. 2014; 2: 3.
Kuba M, Kubová Z, Kremláček J, Langrová J.. Motion-onset VEPs: Characteristics, methods, and diagnostic use. Vision Res. 2007; 47: 189–202. PubMed
Heinrich SP. A primer on motion visual evoked potentials. Doc Ophthalmol. 2007; 114: 83–105. PubMed
Kremlácek J, Kuba M, Chlubnová J, Kubová Z.. Effect of stimulus localisation on motion-onset VEP. Vision Res. 2004; 44: 2989–3000. PubMed
Kubova Z, Kuba M, Spekreijse H, Blakemore C.. Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Res. 1995; 35: 197–205. PubMed
Szanyi J, Kubová Z, Kremláček J, et al. .. Pattern and motion-related visual-evoked potentials in neuroborreliosis: Follow-up study. J Clin Neurophysiol. 2012; 29: 174–180. PubMed
Kubová Z, Szanyi J, Langrová J, Kremláček J, Kuba M, Honegr K.. Motion-onset and pattern-reversal visual evoked potentials in diagnostics of neuroborreliosis. J Clin Neurophysiol. 2006; 23: 416–420. PubMed
Kubova Z, Kuba M, Juran J, Blakemore C.. Is the motion system relatively spared in amblyopia? Evidence from cortical evoked responses. Vision Res. 1996; 36: 181–190. PubMed
Kuba M, Kubová Z, Kremláček J, Langrová J.. Motion-onset VEPs: Characteristics, methods, and diagnostic use. Vision Res. 2007; 47: 189–292. PubMed
Schulte-Körne G, Bartling J, Deimel W, Remschmidt H.. Motion-onset VEPs in dyslexia. Evidence for visual perceptual deficit. Neuroreport. 2004; 15: 1075–1078. PubMed
Korth M, Kohl S, Martus P, Sembritzki O.. Motion-Evoked Pattern Visual Evoked Potentials in Glaucoma. J Glaucoma. 2000; 9: 376–387. PubMed
Poczos P, Česák T, Jirásková N, et al. .. Optical coherence tomography and visual evoked potentials in evaluation of optic chiasm decompression. Sci Rep. 2022; 12(1): 2102. PubMed PMC
Kubova Z, Kuba M.. Clinical application of motion-onset visual evoked potentials. Doc Ophthalmol. 1992; 81: 209–218. PubMed
Kuba M, Kremláček J, Langrova J, Kubova Z, Szanyi J, Vit F.. Aging effect in pattern, motion and cognitive visual evoked potentials. Vision Res. 2012; 62: 9–16. PubMed
Muller R, Gopfert E, Schlykowa L, Anke D.. The human motion VEP as a function of size and eccentricity of the stimulation field. DocOphthalmol. 1990; 76: 81–89. PubMed
Schlykowa L, van Dijk BW, Ehrenstein WH.. Motion-onset visual-evoked potentials as a function of retinal eccentricity in man. Cogn Brain Res. 1993; 1: 169–174. PubMed
Kremláček J, Kuba M, Chlubnová J, Kubová Z.. Effect of stimulus localisation on motion-onset VEP. Vision Res. 2004; 44: 2989–3000. PubMed
Kubová Z, Kremlácek J, Kuba M, Chlubnová J, Sverák J.. Photopic and scotopic VEPs in patients with congenital stationary night-blindness. Doc Ophthalmol. 2004; 109: 9–15. PubMed
Whittingstall K, Stroink G, Schmidt M.. Evaluating the spatial relationship of event-related potential and functional MRI sources in the primary visual cortex. Hum Brain Mapp. 2007; 28: 134–142. PubMed PMC
Di Russo F, Pitzalis S, Spitoni G, et al. .. Identification of the neural sources of the pattern-reversal VEP. Neuroimage. 2005; 24: 874–886. PubMed
Meredith JT, Celesia GG.. Pattern-reversal visual evoked potentials and retinal eccentricity. Electroencephalogr Clin Neurophysiol. 1982; 53: 243–253. PubMed
Pitzalis S, Strappini F, De Gasperis M, Bultrini A, Di Russo F. Spatio-temporal brain mapping of motion-onset VEPs combined with fMRI and retinotopic maps. PLoS One. 2012; 7(4): e35771. PubMed PMC
Ungerleider LG, Mishkin M.. Two cortical systems. In: Ingle DJ, Goodale MA, Mansfield RJW, eds. Analysis of Visual Behavior. Cambridge, MA: MIT Press; 1982: 586–594.
International Organization for Standardization. Ophthalmic optics—visual acuity testing—standard and clinical optotypes and their presentation. Available at: https://www.iso.org/standard/69042.html. Accessed March 15, 2022.
Kremlácek J, Kuba M, Kubová Z, Langrová J, Vít F, Szanyi J.. Within-session reproducibility of motion-onset VEPs: effect of adaptation/habituation or fatigue on N2 peak amplitude and latency. Doc Ophthalmol. 2007; 115: 95–103. PubMed
Kremláček J, Hulan M, Kuba M, et al. .. Role of latency jittering correction in motion-onset VEP amplitude decay during prolonged visual stimulation. Doc Ophthalmol. 2012; 124: 211–223. PubMed
Colenbrander A. Visual acuity measurement standard. Ital J Ophthalmol. 1988; 2: 1–15.
Kordek D, Young LK, Kremláček J.. Comparison between optical and digital blur using near visual acuity. Sci Rep. 2021; 11(1): 3437. PubMed PMC
Kuba M, Kubová Z.. Visual evoked potentials specific for motion onset. Doc Ophthalmol. 1992; 80: 83–89. PubMed
Kremlácek J, Kuba M, Kubová Z, Chlubnová J.. Motion-onset VEPs to translating, radial, rotating and spiral stimuli. Doc Ophthalmol. 2004; 109: 169–175. PubMed
Spehlmann R. The averaged electrical responses to diffuse and to patterned light in the human. Electroencephalogr Clin Neurophysiol. 1965; 19: 560–569. PubMed
Lifshitz K. The averaged evoked cortical response to complex visual stimuli. Psychophysiology. 1966; 3: 55–68. PubMed
Millodot M. Refraction determined electrophysiologically. Arch Ophthalmol. 1970; 84: 272. PubMed
Ludlam WM, Meyers RR.. The use of visual evoked responses in objective refraction. Trans N Y Acad Sci. 1972; 34: 154–170. PubMed
Regan D. Rapid objective refraction using evoked brain potentials. Invest Ophthalmol. 1973; 12: 669–679. PubMed
Hamilton R, Bach M, Heinrich SP, et al. .. ISCEV extended protocol for VEP methods of estimation of visual acuity. Doc Ophthalmol. 2021; 142: 17–24. PubMed PMC
Chan C, Smith G, Jacobs RJ.. Simulating refractive errors: source and observer methods. Am J Optom Physiol Opt. 1985; 62: 207–216. PubMed
Young LK, Smithson HE.. Critical band masking reveals the effects of optical distortions on the channel mediating letter identification. 2014; 5(September): 1–16. PubMed PMC
Tumas V, Sakamoto AC.. Comparison of the mechanisms of latency shift in pattern reversal visual evoked potential induced by blurring and contrast reduction. Electroencephalogr Clin Neurophysiol Potentials Sect. 1997; 104: 96–100. PubMed
Sokol S, Moskowitz A.. Effect of retinal blur on the peak latency of the pattern evoked potential. Vision Res. 1981; 21: 1279–1286. PubMed
Cobb WA, Morton HB, Ettlinger G. Cerebral potentials evoked by pattern reversal and their suppression in visual rivalry. Nature. 1967; 216(5120): 1123–1125. PubMed
Collins DWK, Carroll WM, Black JL, Walsh M.. Effect of refractive error on the visual evoked response. BMJ. 1979; 1(6158): 231–232. PubMed PMC
Yang Y-R, Zhao J-L, Xiao F, Zhao H-X, Dai Y. Effect of high-order aberrations on pattern-reversal visual evoked potentials. Vision Res. 2019; 161: 52–59. PubMed
Heinrich SP, Renkl AE, Bach M.. Pattern specificity of human visual motion processing. Vision Res. 2005; 45: 2137–2143. PubMed
Kim US, Mahroo OA, Mollon JD, Yu-Wai-Man P.. Retinal ganglion cells—diversity of cell types and clinical relevance. Front Neurol. 2021; 12(May): 1–20. PubMed PMC
Strasburger H, Bach M, Heinrich SP.. Blur unblurred—a mini tutorial. Iperception. 2018; 9(2): 2041669518765850. PubMed PMC
Bach M, Ullrich D.. Contrast dependency of motion-onset and pattern-reversal VEPS: Interaction of stimulus type, recording site and response component. Vision Res. 1997; 37: 1845–1849. PubMed
Williams D, Yoon GY, Porter J, Guirao A, Hofer H, Cox I.. Visual benefit of correcting higher order aberrations of the eye. J Refract Surg. 2000; 16: 554–559. PubMed
Hawkes CH, Stow B.. Pupil size and the pattern evoked visual response. J Neurol Neurosurg Psychiatry. 1981; 44: 90–91. PubMed PMC
Lovasik JV, Spafford M, Szymkiw M.. Modification of pattern reversal VERs by ocular accommodation. Vision Res. 1985; 25: 599–608. PubMed