Effect of Dioptric Blur on Pattern-Reversal and Motion-Onset VEPs as Used in Clinical Research

. 2022 Dec 01 ; 11 (12) : 7.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36472879

Grantová podpora
MR/T042192/1 Medical Research Council - United Kingdom

PURPOSE: To describe the effect of dioptric blur on visual evoked potentials (VEPs) induced by motion onset (MO-VEPs). METHODS: The effect of dioptric blur up to 4 D on MO-VEPs was tested on 12 subjects using central, peripheral, and full-field stimulation with a low-contrast structure of concentric circles with spatial frequency <1 c/°. The results were compared to VEPs evoked by 15' and 60' checkerboard pattern-reversal (PR-VEPs). The relationship between peak time and interpeak amplitude of the dominant components was related to the level of dioptric blur using linear regression. RESULTS: The MO-VEPs did not show a significant peak prolongation (P > 0.28) or amplitude attenuation (P > 0.14) with the blur, whereas for the PR-VEPs we observed a significant decrease in amplitude (P < 0.001) and increase in peak time (P < 0.001) for both checkerboard sizes. CONCLUSIONS: For MO-VEPs induced by radial motion of low contrast and low spatial frequency pattern, the change in retinal blur does not affect the peak time or the interpeak amplitude of the dominant N2 component. TRANSLATIONAL RELEVANCE: The resistance to retinal blur that we demonstrated for MO-VEP provides a diagnostic opportunity to test the integrity of the visual system and reveal a retrobulbar impairment even in uncorrected refractive errors.

Zobrazit více v PubMed

Odom JV, Bach M, Brigell M, et al. .. ISCEV standard for clinical visual evoked potentials: (2016 update). Doc Ophthalmol. 2016; 133: 1–9. PubMed

Bach M, Maurer JP, Wolf ME.. Visual evoked potential-based acuity assessment in normal vision, artificially degraded vision, and in patients. Br J Ophthalmol. 2008; 92: 396–403. PubMed

Hoffmann MB, Brands J, Behrens-Baumann W, Bach M.. VEP-based acuity assessment in low vision. Doc Ophthalmol. 2017; 135: 209–218. PubMed

Heinrich SP, Strübin I.. Use of diffusing filters for artificially reducing visual acuity when testing equipment and procedures. Doc Ophthalmol. 2020; 140: 83–93. PubMed

Hassankarimi H, Jafarzadehpur E, Mohammadi A, Noori SMR.. Low-contrast Pattern-reversal Visual Evoked Potential in Different Spatial Frequencies. J Ophthalmic Vis Res. 15: 362–371. PubMed PMC

Kenemans JL, Baas JMP, Mangun GR, Lijffijt M, Verbaten MN.. On the processing of spatial frequencies as revealed by evoked-potential source modeling. Clin Neurophys. 2000; 111: 1113–1123. PubMed

Kothari R, Bokariya P, Singh S, Narang P, Singh R.. Refractive errors and their effects on visual evoked potentials. J Clin Ophthalmol Res. 2014; 2: 3.

Kuba M, Kubová Z, Kremláček J, Langrová J.. Motion-onset VEPs: Characteristics, methods, and diagnostic use. Vision Res. 2007; 47: 189–202. PubMed

Heinrich SP. A primer on motion visual evoked potentials. Doc Ophthalmol. 2007; 114: 83–105. PubMed

Kremlácek J, Kuba M, Chlubnová J, Kubová Z.. Effect of stimulus localisation on motion-onset VEP. Vision Res. 2004; 44: 2989–3000. PubMed

Kubova Z, Kuba M, Spekreijse H, Blakemore C.. Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Res. 1995; 35: 197–205. PubMed

Szanyi J, Kubová Z, Kremláček J, et al. .. Pattern and motion-related visual-evoked potentials in neuroborreliosis: Follow-up study. J Clin Neurophysiol. 2012; 29: 174–180. PubMed

Kubová Z, Szanyi J, Langrová J, Kremláček J, Kuba M, Honegr K.. Motion-onset and pattern-reversal visual evoked potentials in diagnostics of neuroborreliosis. J Clin Neurophysiol. 2006; 23: 416–420. PubMed

Kubova Z, Kuba M, Juran J, Blakemore C.. Is the motion system relatively spared in amblyopia? Evidence from cortical evoked responses. Vision Res. 1996; 36: 181–190. PubMed

Kuba M, Kubová Z, Kremláček J, Langrová J.. Motion-onset VEPs: Characteristics, methods, and diagnostic use. Vision Res. 2007; 47: 189–292. PubMed

Schulte-Körne G, Bartling J, Deimel W, Remschmidt H.. Motion-onset VEPs in dyslexia. Evidence for visual perceptual deficit. Neuroreport. 2004; 15: 1075–1078. PubMed

Korth M, Kohl S, Martus P, Sembritzki O.. Motion-Evoked Pattern Visual Evoked Potentials in Glaucoma. J Glaucoma. 2000; 9: 376–387. PubMed

Poczos P, Česák T, Jirásková N, et al. .. Optical coherence tomography and visual evoked potentials in evaluation of optic chiasm decompression. Sci Rep. 2022; 12(1): 2102. PubMed PMC

Kubova Z, Kuba M.. Clinical application of motion-onset visual evoked potentials. Doc Ophthalmol. 1992; 81: 209–218. PubMed

Kuba M, Kremláček J, Langrova J, Kubova Z, Szanyi J, Vit F.. Aging effect in pattern, motion and cognitive visual evoked potentials. Vision Res. 2012; 62: 9–16. PubMed

Muller R, Gopfert E, Schlykowa L, Anke D.. The human motion VEP as a function of size and eccentricity of the stimulation field. DocOphthalmol. 1990; 76: 81–89. PubMed

Schlykowa L, van Dijk BW, Ehrenstein WH.. Motion-onset visual-evoked potentials as a function of retinal eccentricity in man. Cogn Brain Res. 1993; 1: 169–174. PubMed

Kremláček J, Kuba M, Chlubnová J, Kubová Z.. Effect of stimulus localisation on motion-onset VEP. Vision Res. 2004; 44: 2989–3000. PubMed

Kubová Z, Kremlácek J, Kuba M, Chlubnová J, Sverák J.. Photopic and scotopic VEPs in patients with congenital stationary night-blindness. Doc Ophthalmol. 2004; 109: 9–15. PubMed

Whittingstall K, Stroink G, Schmidt M.. Evaluating the spatial relationship of event-related potential and functional MRI sources in the primary visual cortex. Hum Brain Mapp. 2007; 28: 134–142. PubMed PMC

Di Russo F, Pitzalis S, Spitoni G, et al. .. Identification of the neural sources of the pattern-reversal VEP. Neuroimage. 2005; 24: 874–886. PubMed

Meredith JT, Celesia GG.. Pattern-reversal visual evoked potentials and retinal eccentricity. Electroencephalogr Clin Neurophysiol. 1982; 53: 243–253. PubMed

Pitzalis S, Strappini F, De Gasperis M, Bultrini A, Di Russo F. Spatio-temporal brain mapping of motion-onset VEPs combined with fMRI and retinotopic maps. PLoS One. 2012; 7(4): e35771. PubMed PMC

Ungerleider LG, Mishkin M.. Two cortical systems. In: Ingle DJ, Goodale MA, Mansfield RJW, eds. Analysis of Visual Behavior. Cambridge, MA: MIT Press; 1982: 586–594.

International Organization for Standardization. Ophthalmic optics—visual acuity testing—standard and clinical optotypes and their presentation. Available at: https://www.iso.org/standard/69042.html. Accessed March 15, 2022.

Kremlácek J, Kuba M, Kubová Z, Langrová J, Vít F, Szanyi J.. Within-session reproducibility of motion-onset VEPs: effect of adaptation/habituation or fatigue on N2 peak amplitude and latency. Doc Ophthalmol. 2007; 115: 95–103. PubMed

Kremláček J, Hulan M, Kuba M, et al. .. Role of latency jittering correction in motion-onset VEP amplitude decay during prolonged visual stimulation. Doc Ophthalmol. 2012; 124: 211–223. PubMed

Colenbrander A. Visual acuity measurement standard. Ital J Ophthalmol. 1988; 2: 1–15.

Kordek D, Young LK, Kremláček J.. Comparison between optical and digital blur using near visual acuity. Sci Rep. 2021; 11(1): 3437. PubMed PMC

Kuba M, Kubová Z.. Visual evoked potentials specific for motion onset. Doc Ophthalmol. 1992; 80: 83–89. PubMed

Kremlácek J, Kuba M, Kubová Z, Chlubnová J.. Motion-onset VEPs to translating, radial, rotating and spiral stimuli. Doc Ophthalmol. 2004; 109: 169–175. PubMed

Spehlmann R. The averaged electrical responses to diffuse and to patterned light in the human. Electroencephalogr Clin Neurophysiol. 1965; 19: 560–569. PubMed

Lifshitz K. The averaged evoked cortical response to complex visual stimuli. Psychophysiology. 1966; 3: 55–68. PubMed

Millodot M. Refraction determined electrophysiologically. Arch Ophthalmol. 1970; 84: 272. PubMed

Ludlam WM, Meyers RR.. The use of visual evoked responses in objective refraction. Trans N Y Acad Sci. 1972; 34: 154–170. PubMed

Regan D. Rapid objective refraction using evoked brain potentials. Invest Ophthalmol. 1973; 12: 669–679. PubMed

Hamilton R, Bach M, Heinrich SP, et al. .. ISCEV extended protocol for VEP methods of estimation of visual acuity. Doc Ophthalmol. 2021; 142: 17–24. PubMed PMC

Chan C, Smith G, Jacobs RJ.. Simulating refractive errors: source and observer methods. Am J Optom Physiol Opt. 1985; 62: 207–216. PubMed

Young LK, Smithson HE.. Critical band masking reveals the effects of optical distortions on the channel mediating letter identification. 2014; 5(September): 1–16. PubMed PMC

Tumas V, Sakamoto AC.. Comparison of the mechanisms of latency shift in pattern reversal visual evoked potential induced by blurring and contrast reduction. Electroencephalogr Clin Neurophysiol Potentials Sect. 1997; 104: 96–100. PubMed

Sokol S, Moskowitz A.. Effect of retinal blur on the peak latency of the pattern evoked potential. Vision Res. 1981; 21: 1279–1286. PubMed

Cobb WA, Morton HB, Ettlinger G. Cerebral potentials evoked by pattern reversal and their suppression in visual rivalry. Nature. 1967; 216(5120): 1123–1125. PubMed

Collins DWK, Carroll WM, Black JL, Walsh M.. Effect of refractive error on the visual evoked response. BMJ. 1979; 1(6158): 231–232. PubMed PMC

Yang Y-R, Zhao J-L, Xiao F, Zhao H-X, Dai Y. Effect of high-order aberrations on pattern-reversal visual evoked potentials. Vision Res. 2019; 161: 52–59. PubMed

Heinrich SP, Renkl AE, Bach M.. Pattern specificity of human visual motion processing. Vision Res. 2005; 45: 2137–2143. PubMed

Kim US, Mahroo OA, Mollon JD, Yu-Wai-Man P.. Retinal ganglion cells—diversity of cell types and clinical relevance. Front Neurol. 2021; 12(May): 1–20. PubMed PMC

Strasburger H, Bach M, Heinrich SP.. Blur unblurred—a mini tutorial. Iperception. 2018; 9(2): 2041669518765850. PubMed PMC

Bach M, Ullrich D.. Contrast dependency of motion-onset and pattern-reversal VEPS: Interaction of stimulus type, recording site and response component. Vision Res. 1997; 37: 1845–1849. PubMed

Williams D, Yoon GY, Porter J, Guirao A, Hofer H, Cox I.. Visual benefit of correcting higher order aberrations of the eye. J Refract Surg. 2000; 16: 554–559. PubMed

Hawkes CH, Stow B.. Pupil size and the pattern evoked visual response. J Neurol Neurosurg Psychiatry. 1981; 44: 90–91. PubMed PMC

Lovasik JV, Spafford M, Szymkiw M.. Modification of pattern reversal VERs by ocular accommodation. Vision Res. 1985; 25: 599–608. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Motion onset VEPs can see through the blur

. 2024 Sep 12 ; 14 (1) : 21296. [epub] 20240912

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...