Optical coherence tomography and visual evoked potentials in evaluation of optic chiasm decompression

. 2022 Feb 08 ; 12 (1) : 2102. [epub] 20220208

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35136174
Odkazy

PubMed 35136174
PubMed Central PMC8825827
DOI 10.1038/s41598-022-06097-8
PII: 10.1038/s41598-022-06097-8
Knihovny.cz E-zdroje

Chiasmal compression is a known cause of visual impairment, often leading to surgical decompression of the optic chiasm (OC). A prospective study was held at University Hospital in Hradec Králové to explore sensitivity of optical coherence tomography (OCT) and visual evoked potentials (VEPs) to OC compression and eventual changes after a decompression. 16 patients with OC compression, caused by different sellar pathologies, were included. The main inclusion criterion was the indication for decompressive surgery. Visual acuity (VA), visual field (VF), retinal nerve fibre layer (RNFL) and ganglion cell layer (GCL) thickness, and peak time and amplitude of pattern-reversal (P-VEPs) and motion-onset VEPs (M-VEPs) were measured pre- and postoperatively. The degree of OC compression was determined on preoperative magnetic resonance imaging. For M-VEPs, there was a significant postoperative shortening of the peak time (N160) (p < 0.05). P100 peak time and its amplitude did not change significantly. The M-VEPs N160 amplitude showed a close relationship to the VF improvement. Thinner preoperative RNFL does not present a statistically important limiting factor for better functional outcomes. The morphological status of the sellar region should be taken into consideration when one evaluates the chiasmal syndrome. M-VEPs enable detection of functional changes in the visual pathway better than P-VEPs.

Zobrazit více v PubMed

Cappabianca, P., Alfieri, A. & de Divitiis, E. Endoscopic endonasal transsphenoidal approach to the sella: Towards functional endoscopic pituitary surgery (FEPS). Minim. Invasive Neurosurg.41, 66–73 (1998). PubMed

Laws ER, Jane JA. Pituitary tumors—Long-term outcomes and expectations. Clin. Neurosurg. 2001;48:306–319. PubMed

Masopust, V. et al. Endonasal endoscopic pituitary adenoma resection: Preservation of neurohypophyseal function. J. Neurol. Surg. Part A Cent. Eur. Neurosurg.75, 336–342 (2014). PubMed

Česák T, et al. Microsurgical versus endoscopic surgery for non-functioning pituitary adenomas: A retrospective study. Croat. Med. J. 2020;61:410–421. PubMed PMC

Giammattei L, et al. Surgical management of tuberculum sellae meningiomas: Myths, facts, and controversies. Acta Neurochir. (Wien) 2020;162:631–640. PubMed

Laws ER. Pituitary surgery. Endocrinol. Metab. Clin. North Am. 1987;16:647–665. PubMed

Česák T, et al. Longitudinal monitoring of the growth of post-operation. Ces. Slov. Neurol. N. 2009;105:115–124.

Bresson D, et al. Sellar lesions/pathology. Otolaryngol. Clin. North Am. 2016;49:63–93. PubMed

Romano A, et al. Primary endoscopic management of apoplexy in a giant pituitary adenoma. World Neurosurg. 2020;142:312–313. PubMed

Jacob M, et al. Predicting visual outcome after treatment of pituitary adenomas with optical coherence tomography. Am. J. Ophthalmol. 2009;147:64–70. PubMed

Cennamo G, et al. Evaluation of the retinal nerve fibre layer and ganglion cell complex thickness in pituitary macroadenomas without optic chiasmal compression. Eye. 2015;29:797–802. PubMed PMC

Tieger MG, et al. Ganglion cell complex loss in chiasmal compression by brain tumors. J. Neuro-Ophthalmol. 2017;37:7–12. PubMed PMC

Monteiro MLR, Zambon BK, Cunha LP. Predictive factors for the development of visual loss in patients with pituitary macroadenomas and for visual recovery after optic pathway decompression. Can. J. Ophthalmol. 2010;45:404–408. PubMed

Moura FC, Costa-Cunha LVF, Malta RFS, Monteiro MLR. Relationship between visual field sensitivity loss and quadrantic macular thickness measured with stratus-optical coherence tomography in patients with chiasmal syndrome. Arq. Bras. Oftalmol. 2010;73:409–413. PubMed

Blanch RJ, Micieli JA, Oyesiku NM, Newman NJ, Biousse V. Optical coherence tomography retinal ganglion cell complex analysis for the detection of early chiasmal compression. Pituitary. 2018;21:515–523. PubMed

Ohkubo S, et al. Relationship between macular ganglion cell complex parameters and visual field parameters after tumor resection in chiasmal compression. Jpn. J. Ophthalmol. 2012;56:68–75. PubMed

Jeong AR, Kim EY, Kim NR. Preferential ganglion cell loss in the nasal hemiretina in patients with pituitary tumor. J. Neuro-Ophthalmol. 2016;36:152–155. PubMed

Lee EJ, et al. Comparison of the pattern of retinal ganglion cell damage between patients with compressive and glaucomatous optic neuropathies. Investig. Ophthalmol. Vis. Sci. 2015;56:7012–7020. PubMed

Yum HR, Park SH, Park HYL, Shin SY. Macular ganglion cell analysis determined by Cirrus HD optical coherence tomography for early detecting chiasmal compression. PLoS One. 2016;11:1–14. PubMed PMC

Monteiro MLR, et al. Evaluation of inner retinal layers in eyes with temporal hemianopic visual loss from chiasmal compression using optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2014;55:3328–3336. PubMed PMC

Newman SA, et al. Guidelines: Congress of neurological surgeons systematic review and evidence-based guideline on pretreatment ophthalmology evaluation in patients with suspected nonfunctioning pituitary adenomas. Neurosurgery. 2016;79:E530–E532. PubMed

Danesh-Meyer HV, Carroll SC, Gaskin BJ, Gao A, Gamble GD. Correlation of the multifocal visual evoked potential and standard automated perimetry in compressive optic neuropathies. Investig. Ophthalmol. Vis. Sci. 2006;47:1458–1463. PubMed

Semela L, Hedges TR, Vuong L. Serial multifocal visual evoked potential recordings in compressive optic neuropathy. Ophthalmic Surg. Lasers Imaging. 2007;38:250–253. PubMed

Jayaraman M, et al. Multifocal visual evoked potential recordings in compressive optic neuropathy secondary to pituitary adenoma. Doc. Ophthalmol. 2010;121:197–204. PubMed

Sousa RM, Oyamada MK, Cunha LP, Monteiro MLR. Multifocal visual evoked potential in eyes with temporal hemianopia from chiasmal compression: Correlation with standard automated perimetry and OCT findings. Investig. Ophthalmol. Vis. Sci. 2017;58:4436–4446. PubMed

Kremlácek J, Kuba M, Chlubnová J, Kubová Z. Effect of stimulus localisation on motion-onset VEP. Vis. Res. 2004;44:2989–3000. PubMed

Póczoš P, Kremláček J, Česák T, Macháčková M, Jirásková N. The use of optical coherence tomography in chiasmal compression. Ces. a Slov. Oftalmol. 2019;75:120–127. PubMed

Klem, G. H., Lüders, H. O., Jasper, H. H. & Elger, C. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 3–6 (1999). PubMed

Barrett G, Blumhardt L, Halliday AM, Halliday E, Kriss A. A paradox in the lateralisation of the visual evoked response. Nature. 1976;261:253–255. PubMed

Pitzalis, S., Strappini, F., De Gasperis, M., Bultrini, A. & Di Russo, F. Spatio-temporal brain mapping of motion-onset VEPs combined with fMRI and retinotopic maps. PLoS One7, e35771 (2012). PubMed PMC

Hollants-Gilhuijs MAM, De Munck JC, Kubova Z, Van Royen E, Spekreijse H. The development of hemispheric asymmetry in human motion VEPs. Vis. Res. 2000;40:1–11. PubMed

Fujimoto N, Saeki N, Miyauchi O, Adachi-Usami E. Criteria for early detection of temporal hemianopia in asymptomatic pituitary tumor. Eye. 2002;16:731–738. PubMed

R Development Cote Team. A Language and Environment for Statistical Computing (R. Found. Stat. Comput., 2020).

Lukewich, M. K. & Micieli, J. A. Chronic chiasmal compression and persistent visual field defect without detectable changes in optical coherence tomography of the macular ganglion cell complex. Am. J. Ophthalmol. Case Rep.16, 100533 (2019). PubMed PMC

Gnanalingham KK. The time course of visual field recovery following transphenoidal surgery for pituitary adenomas: Predictive factors for a good outcome. J. Neurol. Neurosurg. Psychiatry. 2005;76:415–419. PubMed PMC

Danesh-Meyer HV, et al. In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. Investig. Ophthalmol. Vis. Sci. 2008;49:1879–1885. PubMed

Danesh-Meyer HV, et al. Optical coherence tomography predicts visual outcome for pituitary tumors. J. Clin. Neurosci. 2015;22:1098–1104. PubMed

Loo JL, Tian J, Miller NR, Subramanian PS. Use of optical coherence tomography in predicting post-treatment visual outcome in anterior visual pathway meningiomas. Br. J. Ophthalmol. 2013;97:1455–1458. PubMed

Moon CH, Hwang SC, Kim BT, Ohn YH, Park TK. Visual prognostic value of optical coherence tomography and photopic negative response in chiasmal compression. Investig. Ophthalmol. Vis. Sci. 2011;52:8527–8533. PubMed

Zehnder S, et al. Retinal ganglion cell topography in patients with visual pathway pathology. J. Neuroophthalmol. 2018;38:172–178. PubMed

Yoneoka Y, et al. Early morphological recovery of the optic chiasm is associated with excellent visual outcome in patients with compressive chiasmal syndrome caused by pituitary tumors. Neurol. Res. 2015;37:1–8. PubMed

Onofrj, M., Bodis Wollner, I. & Mylin, L. Visual evoked potential diagnosis of field defects in patients with chiasmatic and retrochiasmatic lesions. J. Neurol. Neurosurg. Psychiatry45, 294–302 (1982). PubMed PMC

Flanagan JG, Harding GFA. Multi-channel visual evoked potentials in early compressive lesions of the chiasm. Doc. Ophthalmol. 1988;69:271–281. PubMed

Semela L, et al. Multifocal visual-evoked potential in unilateral compressive optic neuropathy. Br. J. Ophthalmol. 2007;91:445–448. PubMed PMC

Watanabe K, et al. Discordance between subjective perimetric visual fields and objective multifocal visual evoked potential-determined visual fields in patients with hemianopsia. Am. J. Ophthalmol. 2007;143:295–304. PubMed

Meredith, J. T. & Celesia, G. G. Pattern-reversal visual evoked potentials and retinal eccentricity. Electroencephalogr. Clin. Neurophysiol.53, 243–253 (1982). PubMed

Baseler HA, Sutter EE, Klein SA, Carney T. The topography of visual evoked response properties across the visual field. Electroencephalogr. Clin. Neurophysiol. 1994;90:65–81. PubMed

Klistorner AI, Graham SL, Grigg JR, Billson FA. Multifocal topographic visual evoked potential: Improving objective detection of local visual field defects. Investig. Ophthalmol. Vis. Sci. 1998;39:937–950. PubMed

Shen M, et al. Surgical outcomes and predictors of visual function alterations after transcranial surgery for large-to-giant pituitary adenomas. World Neurosurg. 2020;141:e60–69. PubMed

Cioffi GA. Ischemic model of optic nerve injury. Trans. Am. Ophthalmol. Soc. 2005;103:592–613. PubMed PMC

Vanburen, J. M. Trans-synaptic retrograde degeneration in the visual system of primates. J. Neurol. Neurosurg. Psychiatry26, 402–409 (1963). PubMed PMC

Danesh-Meyer H. V. et al. Visual loss and recovery in chiasmal compression. Prog. Retin. Eye Res. 73, 100765 (2019). PubMed

Kremlácek J, Kuba M, Kubová Z, Chlubnová J. Motion-onset VEPs to translating, radial, rotating and spiral stimuli. Doc. Ophthalmol. 2004;109:169–175. PubMed

Hood, D. C., Odel, J. G. & Winn, B. J. The multifocal visual evoked potential. J. Neuro-Ophthalmol.23, 279–289 (2003). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...