Optical coherence tomography and visual evoked potentials in evaluation of optic chiasm decompression
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35136174
PubMed Central
PMC8825827
DOI
10.1038/s41598-022-06097-8
PII: 10.1038/s41598-022-06097-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Chiasmal compression is a known cause of visual impairment, often leading to surgical decompression of the optic chiasm (OC). A prospective study was held at University Hospital in Hradec Králové to explore sensitivity of optical coherence tomography (OCT) and visual evoked potentials (VEPs) to OC compression and eventual changes after a decompression. 16 patients with OC compression, caused by different sellar pathologies, were included. The main inclusion criterion was the indication for decompressive surgery. Visual acuity (VA), visual field (VF), retinal nerve fibre layer (RNFL) and ganglion cell layer (GCL) thickness, and peak time and amplitude of pattern-reversal (P-VEPs) and motion-onset VEPs (M-VEPs) were measured pre- and postoperatively. The degree of OC compression was determined on preoperative magnetic resonance imaging. For M-VEPs, there was a significant postoperative shortening of the peak time (N160) (p < 0.05). P100 peak time and its amplitude did not change significantly. The M-VEPs N160 amplitude showed a close relationship to the VF improvement. Thinner preoperative RNFL does not present a statistically important limiting factor for better functional outcomes. The morphological status of the sellar region should be taken into consideration when one evaluates the chiasmal syndrome. M-VEPs enable detection of functional changes in the visual pathway better than P-VEPs.
Zobrazit více v PubMed
Cappabianca, P., Alfieri, A. & de Divitiis, E. Endoscopic endonasal transsphenoidal approach to the sella: Towards functional endoscopic pituitary surgery (FEPS). Minim. Invasive Neurosurg.41, 66–73 (1998). PubMed
Laws ER, Jane JA. Pituitary tumors—Long-term outcomes and expectations. Clin. Neurosurg. 2001;48:306–319. PubMed
Masopust, V. et al. Endonasal endoscopic pituitary adenoma resection: Preservation of neurohypophyseal function. J. Neurol. Surg. Part A Cent. Eur. Neurosurg.75, 336–342 (2014). PubMed
Česák T, et al. Microsurgical versus endoscopic surgery for non-functioning pituitary adenomas: A retrospective study. Croat. Med. J. 2020;61:410–421. PubMed PMC
Giammattei L, et al. Surgical management of tuberculum sellae meningiomas: Myths, facts, and controversies. Acta Neurochir. (Wien) 2020;162:631–640. PubMed
Laws ER. Pituitary surgery. Endocrinol. Metab. Clin. North Am. 1987;16:647–665. PubMed
Česák T, et al. Longitudinal monitoring of the growth of post-operation. Ces. Slov. Neurol. N. 2009;105:115–124.
Bresson D, et al. Sellar lesions/pathology. Otolaryngol. Clin. North Am. 2016;49:63–93. PubMed
Romano A, et al. Primary endoscopic management of apoplexy in a giant pituitary adenoma. World Neurosurg. 2020;142:312–313. PubMed
Jacob M, et al. Predicting visual outcome after treatment of pituitary adenomas with optical coherence tomography. Am. J. Ophthalmol. 2009;147:64–70. PubMed
Cennamo G, et al. Evaluation of the retinal nerve fibre layer and ganglion cell complex thickness in pituitary macroadenomas without optic chiasmal compression. Eye. 2015;29:797–802. PubMed PMC
Tieger MG, et al. Ganglion cell complex loss in chiasmal compression by brain tumors. J. Neuro-Ophthalmol. 2017;37:7–12. PubMed PMC
Monteiro MLR, Zambon BK, Cunha LP. Predictive factors for the development of visual loss in patients with pituitary macroadenomas and for visual recovery after optic pathway decompression. Can. J. Ophthalmol. 2010;45:404–408. PubMed
Moura FC, Costa-Cunha LVF, Malta RFS, Monteiro MLR. Relationship between visual field sensitivity loss and quadrantic macular thickness measured with stratus-optical coherence tomography in patients with chiasmal syndrome. Arq. Bras. Oftalmol. 2010;73:409–413. PubMed
Blanch RJ, Micieli JA, Oyesiku NM, Newman NJ, Biousse V. Optical coherence tomography retinal ganglion cell complex analysis for the detection of early chiasmal compression. Pituitary. 2018;21:515–523. PubMed
Ohkubo S, et al. Relationship between macular ganglion cell complex parameters and visual field parameters after tumor resection in chiasmal compression. Jpn. J. Ophthalmol. 2012;56:68–75. PubMed
Jeong AR, Kim EY, Kim NR. Preferential ganglion cell loss in the nasal hemiretina in patients with pituitary tumor. J. Neuro-Ophthalmol. 2016;36:152–155. PubMed
Lee EJ, et al. Comparison of the pattern of retinal ganglion cell damage between patients with compressive and glaucomatous optic neuropathies. Investig. Ophthalmol. Vis. Sci. 2015;56:7012–7020. PubMed
Yum HR, Park SH, Park HYL, Shin SY. Macular ganglion cell analysis determined by Cirrus HD optical coherence tomography for early detecting chiasmal compression. PLoS One. 2016;11:1–14. PubMed PMC
Monteiro MLR, et al. Evaluation of inner retinal layers in eyes with temporal hemianopic visual loss from chiasmal compression using optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2014;55:3328–3336. PubMed PMC
Newman SA, et al. Guidelines: Congress of neurological surgeons systematic review and evidence-based guideline on pretreatment ophthalmology evaluation in patients with suspected nonfunctioning pituitary adenomas. Neurosurgery. 2016;79:E530–E532. PubMed
Danesh-Meyer HV, Carroll SC, Gaskin BJ, Gao A, Gamble GD. Correlation of the multifocal visual evoked potential and standard automated perimetry in compressive optic neuropathies. Investig. Ophthalmol. Vis. Sci. 2006;47:1458–1463. PubMed
Semela L, Hedges TR, Vuong L. Serial multifocal visual evoked potential recordings in compressive optic neuropathy. Ophthalmic Surg. Lasers Imaging. 2007;38:250–253. PubMed
Jayaraman M, et al. Multifocal visual evoked potential recordings in compressive optic neuropathy secondary to pituitary adenoma. Doc. Ophthalmol. 2010;121:197–204. PubMed
Sousa RM, Oyamada MK, Cunha LP, Monteiro MLR. Multifocal visual evoked potential in eyes with temporal hemianopia from chiasmal compression: Correlation with standard automated perimetry and OCT findings. Investig. Ophthalmol. Vis. Sci. 2017;58:4436–4446. PubMed
Kremlácek J, Kuba M, Chlubnová J, Kubová Z. Effect of stimulus localisation on motion-onset VEP. Vis. Res. 2004;44:2989–3000. PubMed
Póczoš P, Kremláček J, Česák T, Macháčková M, Jirásková N. The use of optical coherence tomography in chiasmal compression. Ces. a Slov. Oftalmol. 2019;75:120–127. PubMed
Klem, G. H., Lüders, H. O., Jasper, H. H. & Elger, C. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 3–6 (1999). PubMed
Barrett G, Blumhardt L, Halliday AM, Halliday E, Kriss A. A paradox in the lateralisation of the visual evoked response. Nature. 1976;261:253–255. PubMed
Pitzalis, S., Strappini, F., De Gasperis, M., Bultrini, A. & Di Russo, F. Spatio-temporal brain mapping of motion-onset VEPs combined with fMRI and retinotopic maps. PLoS One7, e35771 (2012). PubMed PMC
Hollants-Gilhuijs MAM, De Munck JC, Kubova Z, Van Royen E, Spekreijse H. The development of hemispheric asymmetry in human motion VEPs. Vis. Res. 2000;40:1–11. PubMed
Fujimoto N, Saeki N, Miyauchi O, Adachi-Usami E. Criteria for early detection of temporal hemianopia in asymptomatic pituitary tumor. Eye. 2002;16:731–738. PubMed
R Development Cote Team. A Language and Environment for Statistical Computing (R. Found. Stat. Comput., 2020).
Lukewich, M. K. & Micieli, J. A. Chronic chiasmal compression and persistent visual field defect without detectable changes in optical coherence tomography of the macular ganglion cell complex. Am. J. Ophthalmol. Case Rep.16, 100533 (2019). PubMed PMC
Gnanalingham KK. The time course of visual field recovery following transphenoidal surgery for pituitary adenomas: Predictive factors for a good outcome. J. Neurol. Neurosurg. Psychiatry. 2005;76:415–419. PubMed PMC
Danesh-Meyer HV, et al. In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. Investig. Ophthalmol. Vis. Sci. 2008;49:1879–1885. PubMed
Danesh-Meyer HV, et al. Optical coherence tomography predicts visual outcome for pituitary tumors. J. Clin. Neurosci. 2015;22:1098–1104. PubMed
Loo JL, Tian J, Miller NR, Subramanian PS. Use of optical coherence tomography in predicting post-treatment visual outcome in anterior visual pathway meningiomas. Br. J. Ophthalmol. 2013;97:1455–1458. PubMed
Moon CH, Hwang SC, Kim BT, Ohn YH, Park TK. Visual prognostic value of optical coherence tomography and photopic negative response in chiasmal compression. Investig. Ophthalmol. Vis. Sci. 2011;52:8527–8533. PubMed
Zehnder S, et al. Retinal ganglion cell topography in patients with visual pathway pathology. J. Neuroophthalmol. 2018;38:172–178. PubMed
Yoneoka Y, et al. Early morphological recovery of the optic chiasm is associated with excellent visual outcome in patients with compressive chiasmal syndrome caused by pituitary tumors. Neurol. Res. 2015;37:1–8. PubMed
Onofrj, M., Bodis Wollner, I. & Mylin, L. Visual evoked potential diagnosis of field defects in patients with chiasmatic and retrochiasmatic lesions. J. Neurol. Neurosurg. Psychiatry45, 294–302 (1982). PubMed PMC
Flanagan JG, Harding GFA. Multi-channel visual evoked potentials in early compressive lesions of the chiasm. Doc. Ophthalmol. 1988;69:271–281. PubMed
Semela L, et al. Multifocal visual-evoked potential in unilateral compressive optic neuropathy. Br. J. Ophthalmol. 2007;91:445–448. PubMed PMC
Watanabe K, et al. Discordance between subjective perimetric visual fields and objective multifocal visual evoked potential-determined visual fields in patients with hemianopsia. Am. J. Ophthalmol. 2007;143:295–304. PubMed
Meredith, J. T. & Celesia, G. G. Pattern-reversal visual evoked potentials and retinal eccentricity. Electroencephalogr. Clin. Neurophysiol.53, 243–253 (1982). PubMed
Baseler HA, Sutter EE, Klein SA, Carney T. The topography of visual evoked response properties across the visual field. Electroencephalogr. Clin. Neurophysiol. 1994;90:65–81. PubMed
Klistorner AI, Graham SL, Grigg JR, Billson FA. Multifocal topographic visual evoked potential: Improving objective detection of local visual field defects. Investig. Ophthalmol. Vis. Sci. 1998;39:937–950. PubMed
Shen M, et al. Surgical outcomes and predictors of visual function alterations after transcranial surgery for large-to-giant pituitary adenomas. World Neurosurg. 2020;141:e60–69. PubMed
Cioffi GA. Ischemic model of optic nerve injury. Trans. Am. Ophthalmol. Soc. 2005;103:592–613. PubMed PMC
Vanburen, J. M. Trans-synaptic retrograde degeneration in the visual system of primates. J. Neurol. Neurosurg. Psychiatry26, 402–409 (1963). PubMed PMC
Danesh-Meyer H. V. et al. Visual loss and recovery in chiasmal compression. Prog. Retin. Eye Res. 73, 100765 (2019). PubMed
Kremlácek J, Kuba M, Kubová Z, Chlubnová J. Motion-onset VEPs to translating, radial, rotating and spiral stimuli. Doc. Ophthalmol. 2004;109:169–175. PubMed
Hood, D. C., Odel, J. G. & Winn, B. J. The multifocal visual evoked potential. J. Neuro-Ophthalmol.23, 279–289 (2003). PubMed