Comparison between optical and digital blur using near visual acuity
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu klinické zkoušky, srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
33564011
PubMed Central
PMC7873285
DOI
10.1038/s41598-021-82965-z
PII: 10.1038/s41598-021-82965-z
Knihovny.cz E-zdroje
- MeSH
- akomodace oka * MeSH
- dospělí MeSH
- emetropie * MeSH
- lidé středního věku MeSH
- lidé MeSH
- refrakční vady patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
In a low-cost laboratory setup, we compared visual acuity (VA) for stimuli rendered with Zernike aberrations to an equivalent optical dioptric defocus in emmetropic individuals using a relatively short observing distance of 60 cm. The equivalent spherical refractive error of + 1, + 2 or + 4 D, was applied in the rendering of Landolt Rings. Separately, the refractive error was introduced dioptrically in: (1) unchanged Landolt Rings with an added external lens (+ 1, + 2 or + 4 D) at the subject's eye; (2) same as (1) but with an added accommodation and a vertex distance adjustment. To compare all three approaches, we examined VA in 10 healthy men. Stimuli were observed on a PC CRT screen. For all three levels of refractive error, the pairwise comparison did not show a statistically significant difference between digital blur and accommodation-plus-vertex-distance-adjusted dioptric blur (p < 0.204). The best agreement, determined by Bland-Altman analysis, was measured for + 4 D and was in line with test-retest limits for examination in the clinical population. Our results show that even for a near observing distance, it is possible to use digitally rendered defocus to replicate dioptric blur without a significant change in VA in emmetropic subjects.
Biosciences Institute Faculty of Medical Sciences Newcastle University Newcastle UK
Department of Experimental Psychology University of Oxford Oxford UK
Zobrazit více v PubMed
Fernández EJ, Manzanera S, Piers P, Artal P. Adaptive optics visual simulator. J. Refract. Surg. 2002;18:S634–S638. PubMed
Marcos S, et al. Vision science and adaptive optics, the state of the field. Vis. Res. 2017;132:3–33. doi: 10.1016/j.visres.2017.01.006. PubMed DOI PMC
Greivenkamp JE, Schwiegerling J, Miller JM, Mellinger MD. Visual acuity modeling using optical raytracing of schematic eyes. Am. J. Ophthalmol. 1995;120:227–240. doi: 10.1016/S0002-9394(14)72611-X. PubMed DOI
Doshi JB, Sarver EJ, Applegate RA. Schematic eye models for simulation of patient visual performance. J. Refract. Surg. 2001;17:414–419. PubMed
Nestares O, Antona B, Navarro R. Bayesian model of Snellen visual acuity. J. Opt. Soc. Am. A. 2003;20:1371–1381. doi: 10.1364/JOSAA.20.001371. PubMed DOI
Dalimier E, Pailos E, Rivera R, Navarro R. Experimental validation of a Bayesian model of visual acuity. J. Vis. 2009;9:1–16. doi: 10.1167/9.7.12. PubMed DOI
Watson AB, Ahumada AJ. Predicting visual acuity from wavefront aberrations. J. Vis. 2008;8:17. doi: 10.1167/8.4.17. PubMed DOI
Smith G, Jacobs RJ, Chan CD. Effect of defocus on visual acuity as measured by source and observer methods. Optom. Vis. Sci. 1989;66:430–435. doi: 10.1097/00006324-198907000-00004. PubMed DOI
Ohlendorf A, Tabernero J, Schaeffel F. Visual acuity with simulated and real astigmatic defocus. Optom. Vis. Sci. 2011;88:562–569. doi: 10.1097/OPX.0b013e31821281bc. PubMed DOI
Remón L, Benlloch J, Pons A, Monsoriu JFW. Visual acuity with computer simulated and lens-induced astigmatism. Opt. Appl. 2014;44:20.
Dehnert A, Bach M, Heinrich SP. Subjective visual acuity with simulated defocus. Ophthalm. Physiol. Opt. 2011;31:625–631. doi: 10.1111/j.1475-1313.2011.00857.x. PubMed DOI
Odom JV, et al. ISCEV standard for clinical visual evoked potentials: (2016 update) Doc. Ophthalmol. 2016;133:1–9. doi: 10.1007/s10633-016-9553-y. PubMed DOI
Holder GE, et al. International Federation of Clinical Neurophysiology: Recommendations for visual system testing. Clin. Neurophysiol. 2010;121:1393–1409. doi: 10.1016/j.clinph.2010.04.010. PubMed DOI
van der Walt S, Colbert SC, Varoquaux G. The NumPy array: A structure for efficient numerical computation. Comput. Sci. Eng. 2011;13:22–30. doi: 10.1109/MCSE.2011.37. DOI
Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet (Lond., Engl.) 1986;327:307–310. doi: 10.1016/S0140-6736(86)90837-8. PubMed DOI
Bailey IL, Lovie-Kitchin JE. Visual acuity testing. From the laboratory to the clinic. Vis. Res. 2013;90:2–9. doi: 10.1016/j.visres.2013.05.004. PubMed DOI
Siderov J, Tiu AL. Variability of measurements of visual acuity in a large eye clinic. Acta Ophthalmol. Scand. 1999;77:673–676. doi: 10.1034/j.1600-0420.1999.770613.x. PubMed DOI
Murata A, Uetake A, Otsuka M, Takasawa Y. Proposal of an index to evaluate visual fatigue induced during visual display terminal tasks. Int. J. Hum. Comput. Interact. 2001;13:305–321. doi: 10.1207/S15327590IJHC1303_2. DOI
Strasburger H, Bach M, Heinrich SP. Blur unblurred—a mini tutorial. Iperception. 2018;9:2041669518765850. PubMed PMC
Colenbrander A. Visual acuity measurement standard. Ital. J. Ophthalmol. 1988;2:1–15.
Heinrich SP, Bach M. Resolution acuity versus recognition acuity with Landolt-style optotypes. Graefes Arch. Clin. Exp. Ophthalmol. 2013 doi: 10.1007/s00417-013-2404-6. PubMed DOI
Zernike von F. Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode. Physica. 1934;1:689–704. doi: 10.1016/S0031-8914(34)80259-5. DOI
Dai G. Wavefront Optics for Vision Correction. Bellingham: Society of Photo-Optical Instrumentation Engineers; 2008.
Young LK, Smithson HE. Critical band masking reveals the effects of optical distortions on the channel mediating letter identification. Front. Psychol. 2014;5:1060. PubMed PMC
Thibos LN, Applegate RA, Schwiegerling JT, Webb R, VSIA Standards Taskforce Members Vision science and its applications. Standards for reporting the optical aberrations of eyes. J. Refract. Surg. 2002;18:652–660. PubMed
Max Born EW. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. New York: Elsevier; 2013.
International Organization for Standardization. Ophthalmic Optics—Visual Acuity Testing—Standard and Clinical Optotypes and Their Presentation. (2017).
Harris CR, et al. Array programming with NumPy. Nature. 2020;585:357–362. doi: 10.1038/s41586-020-2649-2. PubMed DOI PMC
William B. Borish’s Clinical Refraction. New York: Elsevier; 2006.
Neil C. Contact Lens Practice. New York: Elsevier; 2018.
R Development Core Team. A Language and Environment for Statistical Computing. R Found. Stat. Comput.2 https://www.R-project.org (2020).
Bernhard L. BlandAltmanLeh: Plots (Slightly Extended) Bland-Altman Plots. (2015).