YAP regulates cell mechanics by controlling focal adhesion assembly

. 2017 May 15 ; 8 () : 15321. [epub] 20170515

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28504269

Hippo effectors YAP/TAZ act as on-off mechanosensing switches by sensing modifications in extracellular matrix (ECM) composition and mechanics. The regulation of their activity has been described by a hierarchical model in which elements of Hippo pathway are under the control of focal adhesions (FAs). Here we unveil the molecular mechanism by which cell spreading and RhoA GTPase activity control FA formation through YAP to stabilize the anchorage of the actin cytoskeleton to the cell membrane. This mechanism requires YAP co-transcriptional function and involves the activation of genes encoding for integrins and FA docking proteins. Tuning YAP transcriptional activity leads to the modification of cell mechanics, force development and adhesion strength, and determines cell shape, migration and differentiation. These results provide new insights into the mechanism of YAP mechanosensing activity and qualify this Hippo effector as the key determinant of cell mechanics in response to ECM cues.

Zobrazit více v PubMed

Chicurel M. E., Singer R. H., Meyer C. J. & Ingber D. E. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature 392, 730–733 (1998). PubMed

Wozniak M. A., Modzelewska K., Kwong L. & Keely P. J. Focal adhesion regulation of cell behavior. Biochim. Biophys. Acta 1692, 103–119 (2004). PubMed

Fenner J. et al.. Macroscopic stiffness of breast tumors predicts metastasis. Sci. Rep. 4, 5512 (2014). PubMed PMC

Mouw J. K. et al.. Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression. Nat. Med. 20, 360–367 (2014). PubMed PMC

Wang K., Degerny C., Xu M. & Yang X.-J. YAP, TAZ, and Yorkie: a conserved family of signal-responsive transcriptional coregulators in animal development and human disease. Biochem. Cell Biol. 87, 77–91 (2009). PubMed

Zhao B., Li L., Lei Q. & Guan K.-L. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev. 24, 862–874 (2010). PubMed PMC

Dupont S. et al.. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011). PubMed

Calvo F. et al.. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15, 637–646 (2013). PubMed PMC

Lian I. et al.. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 24, 1106–1118 (2010). PubMed PMC

Dumbauld D. W. et al.. How vinculin regulates force transmission. Proc. Natl Acad. Sci. USA. 110, 9788–9793 (2013). PubMed PMC

Sood A. K. et al.. Biological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion. Am. J. Pathol. 165, 1087–1095 (2004). PubMed PMC

Mo J.-S., Yu F.-X., Gong R., Brown J. H. & Guan K.-L. Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes Dev. 26, 2138–2143 (2012). PubMed PMC

Morikawa Y. et al.. Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice. Sci. Signal. 8, ra41 (2015). PubMed PMC

Lucas E. P. et al.. The Hippo pathway polarizes the actin cytoskeleton during collective migration of Drosophila border cells. J. Cell Biol. 201, 875–885 (2013). PubMed PMC

Kim N.-G. & Gumbiner B. M. Adhesion to fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway. J. Cell Biol. 210, 503–515 (2015). PubMed PMC

Ma B. et al.. Zyxin-Siah2-Lats2 axis mediates cooperation between Hippo and TGF-β signalling pathways. Nat. Commun. 7, 11123 (2016). PubMed PMC

Schlegelmilch K. et al.. Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell 144, 782–795 (2011). PubMed PMC

Goldmann W. H. & Ingber D. E. Intact vinculin protein is required for control of cell shape, cell mechanics, and rac-dependent lamellipodia formation. Biochem. Biophys. Res. Commun. 290, 749–755 (2002). PubMed

Gumbiner B. M. & Kim N.-G. The Hippo-YAP signaling pathway and contact inhibition of growth. J. Cell Sci. 127, 709–717 (2014). PubMed PMC

Azzolin L. et al.. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell 158, 157–170 (2014). PubMed

Yoshigi M., Hoffman L. M., Jensen C. C., Yost H. J. & Beckerle M. C. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J. Cell Biol. 171, 209–215 (2005). PubMed PMC

Oka T. & Sudol M. Nuclear localization and pro-apoptotic signaling of YAP2 require intact PDZ-binding motif. Genes Cells 14, 607–615 (2009). PubMed

Komuro A., Nagai M., Navin N. E. & Sudol M. WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J. Biol. Chem. 278, 33334–33341 (2003). PubMed

Varelas X. et al.. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat. Cell Biol. 10, 837–848 (2008). PubMed

Shao D. D. et al.. KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 158, 171–184 (2014). PubMed PMC

Li Z. et al.. Structural insights into the YAP and TEAD complex. Genes Dev. 24, 235–240 (2010). PubMed PMC

Zanconato F. et al.. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat. Cell Biol. 17, 1218–1227 (2015). PubMed PMC

Mackay D. J., Esch F., Furthmayr H. & Hall A. Rho- and rac-dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: an essential role for ezrin/radixin/moesin proteins. J. Cell Biol. 138, 927–938 (1997). PubMed PMC

Benz P. M. et al.. Differential VASP phosphorylation controls remodeling of the actin cytoskeleton. J. Cell Sci. 122, 3954–3965 (2009). PubMed PMC

Burridge K. & Guilluy C. Focal adhesions, stress fibers and mechanical tension. Exp. Cell Res. 343, 14–20 (2016). PubMed PMC

Grashoff C. et al.. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010). PubMed PMC

Hamadi A. et al.. Regulation of focal adhesion dynamics and disassembly by phosphorylation of FAK at tyrosine 397. J. Cell Sci. 118, 4415–4425 (2005). PubMed

Ridley A. J. et al.. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003). PubMed

Amano M., Nakayama M. & Kaibuchi K. Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken) 67, 545–554 (2010). PubMed PMC

Yang N. et al.. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393, 809–812 (1998). PubMed

Nobes C. D. & Hall A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995). PubMed

Piccolo S., Dupont S. & Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol. Rev. 94, 1287–1312 (2014). PubMed

Clyman R. I., Mauray F. & Kramer R. H. Beta 1 and beta 3 integrins have different roles in the adhesion and migration of vascular smooth muscle cells on extracellular matrix. Exp. Cell Res. 200, 272–284 (1992). PubMed

Lin G. L. et al.. Activation of beta 1 but not beta 3 integrin increases cell traction forces. FEBS Lett. 587, 763–769 (2013). PubMed PMC

McBeath R., Pirone D. M., Nelson C. M., Bhadriraju K. & Chen C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004). PubMed

Goffin J. M. et al.. Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J. Cell Biol. 172, 259–268 (2006). PubMed PMC

McClatchey A. I. & Giovannini M. Membrane organization and tumorigenesis--the NF2 tumor suppressor, Merlin. Genes Dev. 19, 2265–2277 (2005). PubMed

Petrie R. J., Doyle A. D. & Yamada K. M. Random versus directionally persistent cell migration. Nat. Rev. Mol. Cell Biol. 10, 538–549 (2009). PubMed PMC

Hersey P. et al.. A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin αv β3,±dacarbazine in patients with stage IV metastatic melanoma. Cancer 116, 1526–1534 (2010). PubMed

Moroishi T., Hansen C. G. & Guan K.-L. The emerging roles of YAP and TAZ in cancer. Nat. Rev. Cancer 15, 73–79 (2015). PubMed PMC

Finch-Edmondson M. L. et al.. TAZ protein accumulation is negatively regulated by YAP abundance in mammalian cells. J. Biol. Chem. 290, 27928–27938 (2015). PubMed PMC

Czöndör K. et al.. Micropatterned substrates coated with neuronal adhesion molecules for high-content study of synapse formation. Nat. Commun. 4, 2252 (2013). PubMed

Forte G. et al.. Human cardiac progenitor cell grafts as unrestricted source of supernumerary cardiac cells in healthy murine hearts. Stem Cells 29, 2051–2061 (2011). PubMed

Langmead B., Trapnell C., Pop M. & Salzberg S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009). PubMed PMC

Uusküla-Reimand L. et al.. Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders. Genome Biol. 17, 182 (2016). PubMed PMC

Heinz S. et al.. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010). PubMed PMC

Chen T.-W. et al.. ChIPseek, a web-based analysis tool for ChIP data. BMC Genomics 15, 539 (2014). PubMed PMC

Zambelli F., Pesole G. & Pavesi G. PscanChIP: finding over-represented transcription factor-binding site motifs and their correlations in sequences from ChIP-Seq experiments. Nucleic Acids Res. 41, W535–W543 (2013). PubMed PMC

Digiuni S. et al.. Single cell wall nonlinear mechanics revealed by a multiscale analysis of AFM force-indentation curves. Biophys. J. 108, 2235–2248 (2015). PubMed PMC

Pugno N. M. Flexible nanovectors. J. Phys. Condens. Matter 20, 474205 (2008).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Regulation of Cell-Nanoparticle Interactions through Mechanobiology

. 2025 Feb 19 ; 25 (7) : 2600-2609. [epub] 20250108

Unraveling the Role of the Tumor Extracellular Matrix to Inform Nanoparticle Design for Nanomedicine

. 2025 Jan ; 12 (2) : e2409898. [epub] 20241204

Emerging Strategies for Immunotherapy of Solid Tumors Using Lipid-Based Nanoparticles

. 2024 Feb ; 11 (8) : e2305769. [epub] 20231206

YAP Signaling Regulates the Cellular Uptake and Therapeutic Effect of Nanoparticles

. 2024 Jan ; 11 (2) : e2302965. [epub] 20231109

A primer to traction force microscopy

. 2022 May ; 298 (5) : 101867. [epub] 20220326

YAP-TEAD1 control of cytoskeleton dynamics and intracellular tension guides human pluripotent stem cell mesoderm specification

. 2021 Apr ; 28 (4) : 1193-1207. [epub] 20201028

Functionalizable Antifouling Coatings as Tunable Platforms for the Stress-Driven Manipulation of Living Cell Machinery

. 2020 Aug 05 ; 10 (8) : . [epub] 20200805

Nuclear inclusions of pathogenic ataxin-1 induce oxidative stress and perturb the protein synthesis machinery

. 2020 May ; 32 () : 101458. [epub] 20200211

Combining Nanomaterials and Developmental Pathways to Design New Treatments for Cardiac Regeneration: The Pulsing Heart of Advanced Therapies

. 2020 ; 8 () : 323. [epub] 20200424

Editorial: Physico-Chemical Control of Cell Function

. 2019 ; 10 () : 355. [epub] 20190403

Biomechanical Characterization at the Cell Scale: Present and Prospects

. 2018 ; 9 () : 1449. [epub] 20181115

Advanced and Rationalized Atomic Force Microscopy Analysis Unveils Specific Properties of Controlled Cell Mechanics

. 2018 ; 9 () : 1121. [epub] 20180817

Cellular Mechanotransduction: From Tension to Function

. 2018 ; 9 () : 824. [epub] 20180705

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...