YAP regulates cell mechanics by controlling focal adhesion assembly
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28504269
PubMed Central
PMC5440673
DOI
10.1038/ncomms15321
PII: ncomms15321
Knihovny.cz E-zdroje
- MeSH
- buněčná diferenciace genetika fyziologie MeSH
- buněčná membrána metabolismus MeSH
- buněčné linie MeSH
- buněčný převod mechanických signálů genetika fyziologie MeSH
- extracelulární matrix metabolismus MeSH
- fokální adheze genetika metabolismus fyziologie MeSH
- HEK293 buňky MeSH
- jaderné proteiny genetika metabolismus MeSH
- lidé MeSH
- mikrofilamenta metabolismus MeSH
- nádorové buněčné linie MeSH
- pohyb buněk genetika fyziologie MeSH
- proteiny buněčného cyklu MeSH
- rhoA protein vázající GTP genetika metabolismus MeSH
- stanovení celkové genové exprese MeSH
- transkripční faktory genetika metabolismus MeSH
- tvar buňky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- jaderné proteiny MeSH
- proteiny buněčného cyklu MeSH
- rhoA protein vázající GTP MeSH
- transkripční faktory MeSH
- YY1AP1 protein, human MeSH Prohlížeč
Hippo effectors YAP/TAZ act as on-off mechanosensing switches by sensing modifications in extracellular matrix (ECM) composition and mechanics. The regulation of their activity has been described by a hierarchical model in which elements of Hippo pathway are under the control of focal adhesions (FAs). Here we unveil the molecular mechanism by which cell spreading and RhoA GTPase activity control FA formation through YAP to stabilize the anchorage of the actin cytoskeleton to the cell membrane. This mechanism requires YAP co-transcriptional function and involves the activation of genes encoding for integrins and FA docking proteins. Tuning YAP transcriptional activity leads to the modification of cell mechanics, force development and adhesion strength, and determines cell shape, migration and differentiation. These results provide new insights into the mechanism of YAP mechanosensing activity and qualify this Hippo effector as the key determinant of cell mechanics in response to ECM cues.
CEITEC MU Masaryk University CZ 65691 Brno Czech Republic
Department of Biomaterials Science Institute of Dentistry University of Turku FI 20014 Turku Finland
Faculty of Medicine Department of Biology Masaryk University CZ 62500 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital CZ 65691 Brno Czech Republic
Ket Lab Italian Space Agency Via del Politecnico snc 00133 Rome Italy
Zobrazit více v PubMed
Chicurel M. E., Singer R. H., Meyer C. J. & Ingber D. E. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature 392, 730–733 (1998). PubMed
Wozniak M. A., Modzelewska K., Kwong L. & Keely P. J. Focal adhesion regulation of cell behavior. Biochim. Biophys. Acta 1692, 103–119 (2004). PubMed
Fenner J. et al.. Macroscopic stiffness of breast tumors predicts metastasis. Sci. Rep. 4, 5512 (2014). PubMed PMC
Mouw J. K. et al.. Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression. Nat. Med. 20, 360–367 (2014). PubMed PMC
Wang K., Degerny C., Xu M. & Yang X.-J. YAP, TAZ, and Yorkie: a conserved family of signal-responsive transcriptional coregulators in animal development and human disease. Biochem. Cell Biol. 87, 77–91 (2009). PubMed
Zhao B., Li L., Lei Q. & Guan K.-L. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev. 24, 862–874 (2010). PubMed PMC
Dupont S. et al.. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011). PubMed
Calvo F. et al.. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15, 637–646 (2013). PubMed PMC
Lian I. et al.. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 24, 1106–1118 (2010). PubMed PMC
Dumbauld D. W. et al.. How vinculin regulates force transmission. Proc. Natl Acad. Sci. USA. 110, 9788–9793 (2013). PubMed PMC
Sood A. K. et al.. Biological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion. Am. J. Pathol. 165, 1087–1095 (2004). PubMed PMC
Mo J.-S., Yu F.-X., Gong R., Brown J. H. & Guan K.-L. Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes Dev. 26, 2138–2143 (2012). PubMed PMC
Morikawa Y. et al.. Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice. Sci. Signal. 8, ra41 (2015). PubMed PMC
Lucas E. P. et al.. The Hippo pathway polarizes the actin cytoskeleton during collective migration of Drosophila border cells. J. Cell Biol. 201, 875–885 (2013). PubMed PMC
Kim N.-G. & Gumbiner B. M. Adhesion to fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway. J. Cell Biol. 210, 503–515 (2015). PubMed PMC
Ma B. et al.. Zyxin-Siah2-Lats2 axis mediates cooperation between Hippo and TGF-β signalling pathways. Nat. Commun. 7, 11123 (2016). PubMed PMC
Schlegelmilch K. et al.. Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell 144, 782–795 (2011). PubMed PMC
Goldmann W. H. & Ingber D. E. Intact vinculin protein is required for control of cell shape, cell mechanics, and rac-dependent lamellipodia formation. Biochem. Biophys. Res. Commun. 290, 749–755 (2002). PubMed
Gumbiner B. M. & Kim N.-G. The Hippo-YAP signaling pathway and contact inhibition of growth. J. Cell Sci. 127, 709–717 (2014). PubMed PMC
Azzolin L. et al.. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell 158, 157–170 (2014). PubMed
Yoshigi M., Hoffman L. M., Jensen C. C., Yost H. J. & Beckerle M. C. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J. Cell Biol. 171, 209–215 (2005). PubMed PMC
Oka T. & Sudol M. Nuclear localization and pro-apoptotic signaling of YAP2 require intact PDZ-binding motif. Genes Cells 14, 607–615 (2009). PubMed
Komuro A., Nagai M., Navin N. E. & Sudol M. WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J. Biol. Chem. 278, 33334–33341 (2003). PubMed
Varelas X. et al.. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat. Cell Biol. 10, 837–848 (2008). PubMed
Shao D. D. et al.. KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 158, 171–184 (2014). PubMed PMC
Li Z. et al.. Structural insights into the YAP and TEAD complex. Genes Dev. 24, 235–240 (2010). PubMed PMC
Zanconato F. et al.. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat. Cell Biol. 17, 1218–1227 (2015). PubMed PMC
Mackay D. J., Esch F., Furthmayr H. & Hall A. Rho- and rac-dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: an essential role for ezrin/radixin/moesin proteins. J. Cell Biol. 138, 927–938 (1997). PubMed PMC
Benz P. M. et al.. Differential VASP phosphorylation controls remodeling of the actin cytoskeleton. J. Cell Sci. 122, 3954–3965 (2009). PubMed PMC
Burridge K. & Guilluy C. Focal adhesions, stress fibers and mechanical tension. Exp. Cell Res. 343, 14–20 (2016). PubMed PMC
Grashoff C. et al.. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010). PubMed PMC
Hamadi A. et al.. Regulation of focal adhesion dynamics and disassembly by phosphorylation of FAK at tyrosine 397. J. Cell Sci. 118, 4415–4425 (2005). PubMed
Ridley A. J. et al.. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003). PubMed
Amano M., Nakayama M. & Kaibuchi K. Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken) 67, 545–554 (2010). PubMed PMC
Yang N. et al.. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393, 809–812 (1998). PubMed
Nobes C. D. & Hall A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995). PubMed
Piccolo S., Dupont S. & Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol. Rev. 94, 1287–1312 (2014). PubMed
Clyman R. I., Mauray F. & Kramer R. H. Beta 1 and beta 3 integrins have different roles in the adhesion and migration of vascular smooth muscle cells on extracellular matrix. Exp. Cell Res. 200, 272–284 (1992). PubMed
Lin G. L. et al.. Activation of beta 1 but not beta 3 integrin increases cell traction forces. FEBS Lett. 587, 763–769 (2013). PubMed PMC
McBeath R., Pirone D. M., Nelson C. M., Bhadriraju K. & Chen C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004). PubMed
Goffin J. M. et al.. Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J. Cell Biol. 172, 259–268 (2006). PubMed PMC
McClatchey A. I. & Giovannini M. Membrane organization and tumorigenesis--the NF2 tumor suppressor, Merlin. Genes Dev. 19, 2265–2277 (2005). PubMed
Petrie R. J., Doyle A. D. & Yamada K. M. Random versus directionally persistent cell migration. Nat. Rev. Mol. Cell Biol. 10, 538–549 (2009). PubMed PMC
Hersey P. et al.. A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin αv β3,±dacarbazine in patients with stage IV metastatic melanoma. Cancer 116, 1526–1534 (2010). PubMed
Moroishi T., Hansen C. G. & Guan K.-L. The emerging roles of YAP and TAZ in cancer. Nat. Rev. Cancer 15, 73–79 (2015). PubMed PMC
Finch-Edmondson M. L. et al.. TAZ protein accumulation is negatively regulated by YAP abundance in mammalian cells. J. Biol. Chem. 290, 27928–27938 (2015). PubMed PMC
Czöndör K. et al.. Micropatterned substrates coated with neuronal adhesion molecules for high-content study of synapse formation. Nat. Commun. 4, 2252 (2013). PubMed
Forte G. et al.. Human cardiac progenitor cell grafts as unrestricted source of supernumerary cardiac cells in healthy murine hearts. Stem Cells 29, 2051–2061 (2011). PubMed
Langmead B., Trapnell C., Pop M. & Salzberg S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009). PubMed PMC
Uusküla-Reimand L. et al.. Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders. Genome Biol. 17, 182 (2016). PubMed PMC
Heinz S. et al.. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010). PubMed PMC
Chen T.-W. et al.. ChIPseek, a web-based analysis tool for ChIP data. BMC Genomics 15, 539 (2014). PubMed PMC
Zambelli F., Pesole G. & Pavesi G. PscanChIP: finding over-represented transcription factor-binding site motifs and their correlations in sequences from ChIP-Seq experiments. Nucleic Acids Res. 41, W535–W543 (2013). PubMed PMC
Digiuni S. et al.. Single cell wall nonlinear mechanics revealed by a multiscale analysis of AFM force-indentation curves. Biophys. J. 108, 2235–2248 (2015). PubMed PMC
Pugno N. M. Flexible nanovectors. J. Phys. Condens. Matter 20, 474205 (2008).
Regulation of Cell-Nanoparticle Interactions through Mechanobiology
Unraveling the Role of the Tumor Extracellular Matrix to Inform Nanoparticle Design for Nanomedicine
Emerging Strategies for Immunotherapy of Solid Tumors Using Lipid-Based Nanoparticles
YAP Signaling Regulates the Cellular Uptake and Therapeutic Effect of Nanoparticles
A primer to traction force microscopy
Editorial: Physico-Chemical Control of Cell Function
Biomechanical Characterization at the Cell Scale: Present and Prospects