Regulation of Cell-Nanoparticle Interactions through Mechanobiology
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39772635
PubMed Central
PMC11849000
DOI
10.1021/acs.nanolett.4c04290
Knihovny.cz E-zdroje
- Klíčová slova
- bio−nano interactions, mechanobiology, mechanotransduction, nanoparticles,
- MeSH
- adaptorové proteiny signální transdukční metabolismus MeSH
- buněčný převod mechanických signálů účinky léků MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nanočástice * chemie MeSH
- nanomedicína MeSH
- signální dráha Hippo MeSH
- signální proteiny YAP MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- signální proteiny YAP MeSH
- YAP1 protein, human MeSH Prohlížeč
Bio-nano interactions have been extensively explored in nanomedicine to develop selective delivery strategies and reduce systemic toxicity. To enhance the delivery of nanocarriers to cancer cells and improve the therapeutic efficiency, different nanomaterials have been developed. However, the limited clinical translation of nanoparticle-based therapies, largely due to issues associated with poor targeting, requires a deeper understanding of the biological phenomena underlying cell-nanoparticle interactions. In this context, we investigate the molecular and cellular mechanobiology parameters that control such interactions. We demonstrate that the pharmacological inhibition or the genetic ablation of the key mechanosensitive component of the Hippo pathway, i.e., yes-associated protein, enhances nanoparticle internalization by 1.5-fold. Importantly, this phenomenon occurs independently of nanoparticle properties, such as size, or cell properties such as surface area and stiffness. Our study reveals that the internalization of nanoparticles in target cells can be controlled by modulating cell mechanosensing pathways, potentially enhancing nanotherapy specificity.
Department of Biochemistry Faculty of Science Masaryk University 62500 Brno Czech Republic
Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
Faculty of Medicine Department of Biomedical Sciences Masaryk University 62500 Brno Czech Republic
Institute for Bioengineering of Catalonia 08028 Barcelona Spain
International Clinical Research Center St Anne's University Hospital 65691 Brno Czech Republic
Molecular Medicine CEITEC Masaryk University 62500 Brno Czech Republic
Nanobiotechnology Core Facility CEITEC Masaryk University 62500 Brno Czech Republic
Zobrazit více v PubMed
Wilhelm S.; Tavares A. J.; Dai Q.; Ohta S.; Audet J.; Dvorak H. F.; Chan W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1 (5), 16014.10.1038/natrevmats.2016.14. DOI
van der Meel R.; Sulheim E.; Shi Y.; Kiessling F.; Mulder W. J. M.; Lammers T. Smart cancer nanomedicine. Nat. Nanotechnol. 2019, 14 (11), 1007–1017. 10.1038/s41565-019-0567-y. PubMed DOI PMC
Fernandes S.; Cassani M.; Pagliari S.; Filipensky P.; Cavalieri F.; Forte G. Tumor in 3D: In Vitro Complex Cellular Models to Improve Nanodrugs Cancer Therapy. Curr. Med. Chem. 2020, 27 (42), 7234–7255. 10.2174/0929867327666200625151134. PubMed DOI
Fernandes S.; Cassani M.; Cavalieri F.; Forte G.; Caruso F. Emerging Strategies for Immunotherapy of Solid Tumors Using Lipid-Based Nanoparticles. Adv. Sci. 2024, 11 (8), 2305769.10.1002/advs.202305769. PubMed DOI PMC
Gratton S. E.; Ropp P. A.; Pohlhaus P. D.; Luft J. C.; Madden V. J.; Napier M. E.; DeSimone J. M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. U.S.A. 2008, 105 (33), 11613–8. 10.1073/pnas.0801763105. PubMed DOI PMC
Best J. P.; Yan Y.; Caruso F. The role of particle geometry and mechanics in the biological domain. Adv. Healthcare Mater. 2012, 1 (1), 35–47. 10.1002/adhm.201100012. PubMed DOI
Shimoni O.; Yan Y.; Wang Y.; Caruso F. Shape-dependent cellular processing of polyelectrolyte capsules. ACS Nano 2013, 7 (1), 522–30. 10.1021/nn3046117. PubMed DOI
van der Meel R.; Lammers T.; Hennink W. E. Cancer nanomedicines: oversold or underappreciated?. Expert opinion on drug delivery 2017, 14 (1), 1–5. 10.1080/17425247.2017.1262346. PubMed DOI PMC
Dawson K. A.; Yan Y. Current understanding of biological identity at the nanoscale and future prospects. Nat. Nanotechnol 2021, 16 (3), 229–242. 10.1038/s41565-021-00860-0. PubMed DOI
Sindhwani S.; Syed A. M.; Ngai J.; Kingston B. R.; Maiorino L.; Rothschild J.; MacMillan P.; Zhang Y.; Rajesh N. U.; Hoang T.; Wu J. L. Y.; Wilhelm S.; Zilman A.; Gadde S.; Sulaiman A.; Ouyang B.; Lin Z.; Wang L.; Egeblad M.; Chan W. C. W. The entry of nanoparticles into solid tumours. Nat. Mater. 2020, 19 (5), 566–575. 10.1038/s41563-019-0566-2. PubMed DOI
Huang C.; Butler P. J.; Tong S.; Muddana H. S.; Bao G.; Zhang S. Substrate stiffness regulates cellular uptake of nanoparticles. Nano Lett. 2013, 13 (4), 1611–5. 10.1021/nl400033h. PubMed DOI
Septiadi D.; Crippa F.; Moore T. L.; Rothen-Rutishauser B.; Petri-Fink A. Nanoparticle-Cell Interaction: A Cell Mechanics Perspective. Adv. Mater. 2018, 30 (19), 1704463.10.1002/adma.201704463. PubMed DOI
Wei Q.; Huang C.; Zhang Y.; Zhao T.; Zhao P.; Butler P.; Zhang S. Mechanotargeting: Mechanics-Dependent Cellular Uptake of Nanoparticles. Adv. Mater. 2018, 30 (27), 1707464.10.1002/adma.201707464. PubMed DOI
Zhang D.; Wang G.; Yu X.; Wei T.; Farbiak L.; Johnson L. T.; Taylor A. M.; Xu J.; Hong Y.; Zhu H.; Siegwart D. J. Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy. Nat. Nanotechnol. 2022, 17 (7), 777–787. 10.1038/s41565-022-01122-3. PubMed DOI PMC
Sheridan C. Pancreatic cancer provides testbed for first mechanotherapeutics. Nat. Biotechnol. 2019, 37 (8), 829–831. 10.1038/d41587-019-00019-2. PubMed DOI
Pagliari S.; Vinarsky V.; Martino F.; Perestrelo A. R.; Oliver De La Cruz J.; Caluori G.; Vrbsky J.; Mozetic P.; Pompeiano A.; Zancla A.; Ranjani S. G.; Skladal P.; Kytyr D.; Zdráhal Z.; Grassi G.; Sampaolesi M.; Rainer A.; Forte G. YAP-TEAD1 control of cytoskeleton dynamics and intracellular tension guides human pluripotent stem cell mesoderm specification. Cell death and differentiation 2021, 28 (4), 1193–1207. 10.1038/s41418-020-00643-5. PubMed DOI PMC
Martino F.; Perestrelo A. R.; Vinarský V.; Pagliari S.; Forte G. Cellular Mechanotransduction: From Tension to Function. Frontiers in physiology 2018, 9, 824.10.3389/fphys.2018.00824. PubMed DOI PMC
Gujral T. S.; Kirschner M. W. Hippo pathway mediates resistance to cytotoxic drugs. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (18), E3729-e373810.1073/pnas.1703096114. PubMed DOI PMC
Dupont S.; Morsut L.; Aragona M.; Enzo E.; Giulitti S.; Cordenonsi M.; Zanconato F.; Le Digabel J.; Forcato M.; Bicciato S.; Elvassore N.; Piccolo S. Role of YAP/TAZ in mechanotransduction. Nature 2011, 474 (7350), 179–83. 10.1038/nature10137. PubMed DOI
Panciera T.; Azzolin L.; Cordenonsi M.; Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nature reviews. Molecular cell biology 2017, 18 (12), 758–770. 10.1038/nrm.2017.87. PubMed DOI PMC
Pan Z.; Tian Y.; Cao C.; Niu G. The Emerging Role of YAP/TAZ in Tumor Immunity. Molecular cancer research: MCR 2019, 17 (9), 1777–1786. 10.1158/1541-7786.MCR-19-0375. PubMed DOI
Zanconato F.; Cordenonsi M.; Piccolo S. YAP/TAZ at the Roots of Cancer. Cancer cell 2016, 29 (6), 783–803. 10.1016/j.ccell.2016.05.005. PubMed DOI PMC
Nardone G.; Oliver-De La Cruz J.; Vrbsky J.; Martini C.; Pribyl J.; Skládal P.; Pešl M.; Caluori G.; Pagliari S.; Martino F.; Maceckova Z.; Hajduch M.; Sanz-Garcia A.; Pugno N. M.; Stokin G. B.; Forte G. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat. Commun. 2017, 8 (1), 15321.10.1038/ncomms15321. PubMed DOI PMC
Cassani M.; Fernandes S.; Oliver-De La Cruz J.; Durikova H.; Vrbsky J.; Patočka M.; Hegrova V.; Klimovic S.; Pribyl J.; Debellis D.; Skladal P.; Cavalieri F.; Caruso F.; Forte G. YAP Signaling Regulates the Cellular Uptake and Therapeutic Effect of Nanoparticles. Adv. Sci. 2024, 11 (2), 2302965.10.1002/advs.202302965. PubMed DOI PMC
Barenholz Y. Doxil®-the first FDA-approved nano-drug: lessons learned. J. Controlled Release 2012, 160 (2), 117–34. 10.1016/j.jconrel.2012.03.020. PubMed DOI
Avvakumova S.; Galbiati E.; Pandolfi L.; Mazzucchelli S.; Cassani M.; Gori A.; Longhi R.; Prosperi D. Development of U11-Functionalized Gold Nanoparticles for Selective Targeting of Urokinase Plasminogen Activator Receptor-Positive Breast Cancer Cells. Bioconjugate Chem. 2014, 25 (8), 1381–1386. 10.1021/bc500202b. PubMed DOI
Lévy R.; Shaheen U.; Cesbron Y.; Sée V. Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev. 2010, 1 (1), 4889.10.3402/nano.v1i0.4889. PubMed DOI PMC
Zhang W.; Besford Q. A.; Christofferson A. J.; Charchar P.; Richardson J. J.; Elbourne A.; Kempe K.; Hagemeyer C. E.; Field M. R.; McConville C. F.; Yarovsky I.; Caruso F. Cobalt-Directed Assembly of Antibodies onto Metal-Phenolic Networks for Enhanced Particle Targeting. Nano Lett. 2020, 20 (4), 2660–2666. 10.1021/acs.nanolett.0c00295. PubMed DOI
Naba A.; Clauser K. R.; Hoersch S.; Liu H.; Carr S. A.; Hynes R. O. The Matrisome: In Silico Definition and In Vivo Characterization by Proteomics of Normal and Tumor Extracellular Matrices. Mol. Cell. Proteomics 2012, 11 (4), M111.014647.10.1074/mcp.M111.014647. PubMed DOI PMC
Fernandes S.; Oliver-De La Cruz J.; Morazzo S.; Niro F.; Cassani M.; Ďuríková H.; Caravella A.; Fiore P.; Azzato G.; De Marco G.; Lauria A.; Izzi V.; Bosáková V.; Fric J.; Filipensky P.; Forte G. TGF-β induces matrisome pathological alterations and EMT in patient-derived prostate cancer tumoroids. Matrix Biology 2024, 125, 12–30. 10.1016/j.matbio.2023.11.001. PubMed DOI
Cassani M.; Fernandes S.; Vrbsky J.; Ergir E.; Cavalieri F.; Forte G. Combining Nanomaterials and Developmental Pathways to Design New Treatments for Cardiac Regeneration: The Pulsing Heart of Advanced Therapies. Front. Bioeng. Biotechnol. 2020, 8, 323.10.3389/fbioe.2020.00323. PubMed DOI PMC
Rausch V.; Hansen C. G. The Hippo Pathway, YAP/TAZ, and the Plasma Membrane. Trends in cell biology 2020, 30 (1), 32–48. 10.1016/j.tcb.2019.10.005. PubMed DOI
Verghese S.; Moberg K. Roles of Membrane and Vesicular Traffic in Regulation of the Hippo Pathway. Front. Cell Dev. Biol. 2020, 7, 384.10.3389/fcell.2019.00384. PubMed DOI PMC
Rosenbluh J.; Nijhawan D.; Cox A. G.; Li X.; Neal J. T.; Schafer E. J.; Zack T. I.; Wang X.; Tsherniak A.; Schinzel A. C.; Shao D. D.; Schumacher S. E.; Weir B. A.; Vazquez F.; Cowley G. S.; Root D. E.; Mesirov J. P.; Beroukhim R.; Kuo C. J.; Goessling W.; Hahn W. C. β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 2012, 151 (7), 1457–73. 10.1016/j.cell.2012.11.026. PubMed DOI PMC
Fan F.; He Z.; Kong L. L.; Chen Q.; Yuan Q.; Zhang S.; Ye J.; Liu H.; Sun X.; Geng J.; Yuan L.; Hong L.; Xiao C.; Zhang W.; Sun X.; Li Y.; Wang P.; Huang L.; Wu X.; Ji Z.; Wu Q.; Xia N. S.; Gray N. S.; Chen L.; Yun C. H.; Deng X.; Zhou D. Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration. Sci. Transl. Med. 2016, 8 (352), 352ra108.10.1126/scitranslmed.aaf2304. PubMed DOI
Maruyama J.; Inami K.; Michishita F.; Jiang X.; Iwasa H.; Nakagawa K.; Ishigami-Yuasa M.; Kagechika H.; Miyamura N.; Hirayama J.; Nishina H.; Nogawa D.; Yamamoto K.; Hata Y. Novel YAP1 Activator, Identified by Transcription-Based Functional Screen, Limits Multiple Myeloma Growth. Molecular Cancer Research 2018, 16 (2), 197–211. 10.1158/1541-7786.MCR-17-0382. PubMed DOI
Panzetta V.; Guarnieri D.; Paciello A.; Della Sala F.; Muscetti O.; Raiola L.; Netti P.; Fusco S. ECM Mechano-Sensing Regulates Cytoskeleton Assembly and Receptor-Mediated Endocytosis of Nanoparticles. ACS biomaterials science & engineering 2017, 3 (8), 1586–1594. 10.1021/acsbiomaterials.7b00018. PubMed DOI