Regulation of Cell-Nanoparticle Interactions through Mechanobiology

. 2025 Feb 19 ; 25 (7) : 2600-2609. [epub] 20250108

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39772635

Bio-nano interactions have been extensively explored in nanomedicine to develop selective delivery strategies and reduce systemic toxicity. To enhance the delivery of nanocarriers to cancer cells and improve the therapeutic efficiency, different nanomaterials have been developed. However, the limited clinical translation of nanoparticle-based therapies, largely due to issues associated with poor targeting, requires a deeper understanding of the biological phenomena underlying cell-nanoparticle interactions. In this context, we investigate the molecular and cellular mechanobiology parameters that control such interactions. We demonstrate that the pharmacological inhibition or the genetic ablation of the key mechanosensitive component of the Hippo pathway, i.e., yes-associated protein, enhances nanoparticle internalization by 1.5-fold. Importantly, this phenomenon occurs independently of nanoparticle properties, such as size, or cell properties such as surface area and stiffness. Our study reveals that the internalization of nanoparticles in target cells can be controlled by modulating cell mechanosensing pathways, potentially enhancing nanotherapy specificity.

Zobrazit více v PubMed

Wilhelm S.; Tavares A. J.; Dai Q.; Ohta S.; Audet J.; Dvorak H. F.; Chan W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1 (5), 16014.10.1038/natrevmats.2016.14. DOI

van der Meel R.; Sulheim E.; Shi Y.; Kiessling F.; Mulder W. J. M.; Lammers T. Smart cancer nanomedicine. Nat. Nanotechnol. 2019, 14 (11), 1007–1017. 10.1038/s41565-019-0567-y. PubMed DOI PMC

Fernandes S.; Cassani M.; Pagliari S.; Filipensky P.; Cavalieri F.; Forte G. Tumor in 3D: In Vitro Complex Cellular Models to Improve Nanodrugs Cancer Therapy. Curr. Med. Chem. 2020, 27 (42), 7234–7255. 10.2174/0929867327666200625151134. PubMed DOI

Fernandes S.; Cassani M.; Cavalieri F.; Forte G.; Caruso F. Emerging Strategies for Immunotherapy of Solid Tumors Using Lipid-Based Nanoparticles. Adv. Sci. 2024, 11 (8), 2305769.10.1002/advs.202305769. PubMed DOI PMC

Gratton S. E.; Ropp P. A.; Pohlhaus P. D.; Luft J. C.; Madden V. J.; Napier M. E.; DeSimone J. M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. U.S.A. 2008, 105 (33), 11613–8. 10.1073/pnas.0801763105. PubMed DOI PMC

Best J. P.; Yan Y.; Caruso F. The role of particle geometry and mechanics in the biological domain. Adv. Healthcare Mater. 2012, 1 (1), 35–47. 10.1002/adhm.201100012. PubMed DOI

Shimoni O.; Yan Y.; Wang Y.; Caruso F. Shape-dependent cellular processing of polyelectrolyte capsules. ACS Nano 2013, 7 (1), 522–30. 10.1021/nn3046117. PubMed DOI

van der Meel R.; Lammers T.; Hennink W. E. Cancer nanomedicines: oversold or underappreciated?. Expert opinion on drug delivery 2017, 14 (1), 1–5. 10.1080/17425247.2017.1262346. PubMed DOI PMC

Dawson K. A.; Yan Y. Current understanding of biological identity at the nanoscale and future prospects. Nat. Nanotechnol 2021, 16 (3), 229–242. 10.1038/s41565-021-00860-0. PubMed DOI

Sindhwani S.; Syed A. M.; Ngai J.; Kingston B. R.; Maiorino L.; Rothschild J.; MacMillan P.; Zhang Y.; Rajesh N. U.; Hoang T.; Wu J. L. Y.; Wilhelm S.; Zilman A.; Gadde S.; Sulaiman A.; Ouyang B.; Lin Z.; Wang L.; Egeblad M.; Chan W. C. W. The entry of nanoparticles into solid tumours. Nat. Mater. 2020, 19 (5), 566–575. 10.1038/s41563-019-0566-2. PubMed DOI

Huang C.; Butler P. J.; Tong S.; Muddana H. S.; Bao G.; Zhang S. Substrate stiffness regulates cellular uptake of nanoparticles. Nano Lett. 2013, 13 (4), 1611–5. 10.1021/nl400033h. PubMed DOI

Septiadi D.; Crippa F.; Moore T. L.; Rothen-Rutishauser B.; Petri-Fink A. Nanoparticle-Cell Interaction: A Cell Mechanics Perspective. Adv. Mater. 2018, 30 (19), 1704463.10.1002/adma.201704463. PubMed DOI

Wei Q.; Huang C.; Zhang Y.; Zhao T.; Zhao P.; Butler P.; Zhang S. Mechanotargeting: Mechanics-Dependent Cellular Uptake of Nanoparticles. Adv. Mater. 2018, 30 (27), 1707464.10.1002/adma.201707464. PubMed DOI

Zhang D.; Wang G.; Yu X.; Wei T.; Farbiak L.; Johnson L. T.; Taylor A. M.; Xu J.; Hong Y.; Zhu H.; Siegwart D. J. Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy. Nat. Nanotechnol. 2022, 17 (7), 777–787. 10.1038/s41565-022-01122-3. PubMed DOI PMC

Sheridan C. Pancreatic cancer provides testbed for first mechanotherapeutics. Nat. Biotechnol. 2019, 37 (8), 829–831. 10.1038/d41587-019-00019-2. PubMed DOI

Pagliari S.; Vinarsky V.; Martino F.; Perestrelo A. R.; Oliver De La Cruz J.; Caluori G.; Vrbsky J.; Mozetic P.; Pompeiano A.; Zancla A.; Ranjani S. G.; Skladal P.; Kytyr D.; Zdráhal Z.; Grassi G.; Sampaolesi M.; Rainer A.; Forte G. YAP-TEAD1 control of cytoskeleton dynamics and intracellular tension guides human pluripotent stem cell mesoderm specification. Cell death and differentiation 2021, 28 (4), 1193–1207. 10.1038/s41418-020-00643-5. PubMed DOI PMC

Martino F.; Perestrelo A. R.; Vinarský V.; Pagliari S.; Forte G. Cellular Mechanotransduction: From Tension to Function. Frontiers in physiology 2018, 9, 824.10.3389/fphys.2018.00824. PubMed DOI PMC

Gujral T. S.; Kirschner M. W. Hippo pathway mediates resistance to cytotoxic drugs. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (18), E3729-e373810.1073/pnas.1703096114. PubMed DOI PMC

Dupont S.; Morsut L.; Aragona M.; Enzo E.; Giulitti S.; Cordenonsi M.; Zanconato F.; Le Digabel J.; Forcato M.; Bicciato S.; Elvassore N.; Piccolo S. Role of YAP/TAZ in mechanotransduction. Nature 2011, 474 (7350), 179–83. 10.1038/nature10137. PubMed DOI

Panciera T.; Azzolin L.; Cordenonsi M.; Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nature reviews. Molecular cell biology 2017, 18 (12), 758–770. 10.1038/nrm.2017.87. PubMed DOI PMC

Pan Z.; Tian Y.; Cao C.; Niu G. The Emerging Role of YAP/TAZ in Tumor Immunity. Molecular cancer research: MCR 2019, 17 (9), 1777–1786. 10.1158/1541-7786.MCR-19-0375. PubMed DOI

Zanconato F.; Cordenonsi M.; Piccolo S. YAP/TAZ at the Roots of Cancer. Cancer cell 2016, 29 (6), 783–803. 10.1016/j.ccell.2016.05.005. PubMed DOI PMC

Nardone G.; Oliver-De La Cruz J.; Vrbsky J.; Martini C.; Pribyl J.; Skládal P.; Pešl M.; Caluori G.; Pagliari S.; Martino F.; Maceckova Z.; Hajduch M.; Sanz-Garcia A.; Pugno N. M.; Stokin G. B.; Forte G. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat. Commun. 2017, 8 (1), 15321.10.1038/ncomms15321. PubMed DOI PMC

Cassani M.; Fernandes S.; Oliver-De La Cruz J.; Durikova H.; Vrbsky J.; Patočka M.; Hegrova V.; Klimovic S.; Pribyl J.; Debellis D.; Skladal P.; Cavalieri F.; Caruso F.; Forte G. YAP Signaling Regulates the Cellular Uptake and Therapeutic Effect of Nanoparticles. Adv. Sci. 2024, 11 (2), 2302965.10.1002/advs.202302965. PubMed DOI PMC

Barenholz Y. Doxil®-the first FDA-approved nano-drug: lessons learned. J. Controlled Release 2012, 160 (2), 117–34. 10.1016/j.jconrel.2012.03.020. PubMed DOI

Avvakumova S.; Galbiati E.; Pandolfi L.; Mazzucchelli S.; Cassani M.; Gori A.; Longhi R.; Prosperi D. Development of U11-Functionalized Gold Nanoparticles for Selective Targeting of Urokinase Plasminogen Activator Receptor-Positive Breast Cancer Cells. Bioconjugate Chem. 2014, 25 (8), 1381–1386. 10.1021/bc500202b. PubMed DOI

Lévy R.; Shaheen U.; Cesbron Y.; Sée V. Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev. 2010, 1 (1), 4889.10.3402/nano.v1i0.4889. PubMed DOI PMC

Zhang W.; Besford Q. A.; Christofferson A. J.; Charchar P.; Richardson J. J.; Elbourne A.; Kempe K.; Hagemeyer C. E.; Field M. R.; McConville C. F.; Yarovsky I.; Caruso F. Cobalt-Directed Assembly of Antibodies onto Metal-Phenolic Networks for Enhanced Particle Targeting. Nano Lett. 2020, 20 (4), 2660–2666. 10.1021/acs.nanolett.0c00295. PubMed DOI

Naba A.; Clauser K. R.; Hoersch S.; Liu H.; Carr S. A.; Hynes R. O. The Matrisome: In Silico Definition and In Vivo Characterization by Proteomics of Normal and Tumor Extracellular Matrices. Mol. Cell. Proteomics 2012, 11 (4), M111.014647.10.1074/mcp.M111.014647. PubMed DOI PMC

Fernandes S.; Oliver-De La Cruz J.; Morazzo S.; Niro F.; Cassani M.; Ďuríková H.; Caravella A.; Fiore P.; Azzato G.; De Marco G.; Lauria A.; Izzi V.; Bosáková V.; Fric J.; Filipensky P.; Forte G. TGF-β induces matrisome pathological alterations and EMT in patient-derived prostate cancer tumoroids. Matrix Biology 2024, 125, 12–30. 10.1016/j.matbio.2023.11.001. PubMed DOI

Cassani M.; Fernandes S.; Vrbsky J.; Ergir E.; Cavalieri F.; Forte G. Combining Nanomaterials and Developmental Pathways to Design New Treatments for Cardiac Regeneration: The Pulsing Heart of Advanced Therapies. Front. Bioeng. Biotechnol. 2020, 8, 323.10.3389/fbioe.2020.00323. PubMed DOI PMC

Rausch V.; Hansen C. G. The Hippo Pathway, YAP/TAZ, and the Plasma Membrane. Trends in cell biology 2020, 30 (1), 32–48. 10.1016/j.tcb.2019.10.005. PubMed DOI

Verghese S.; Moberg K. Roles of Membrane and Vesicular Traffic in Regulation of the Hippo Pathway. Front. Cell Dev. Biol. 2020, 7, 384.10.3389/fcell.2019.00384. PubMed DOI PMC

Rosenbluh J.; Nijhawan D.; Cox A. G.; Li X.; Neal J. T.; Schafer E. J.; Zack T. I.; Wang X.; Tsherniak A.; Schinzel A. C.; Shao D. D.; Schumacher S. E.; Weir B. A.; Vazquez F.; Cowley G. S.; Root D. E.; Mesirov J. P.; Beroukhim R.; Kuo C. J.; Goessling W.; Hahn W. C. β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 2012, 151 (7), 1457–73. 10.1016/j.cell.2012.11.026. PubMed DOI PMC

Fan F.; He Z.; Kong L. L.; Chen Q.; Yuan Q.; Zhang S.; Ye J.; Liu H.; Sun X.; Geng J.; Yuan L.; Hong L.; Xiao C.; Zhang W.; Sun X.; Li Y.; Wang P.; Huang L.; Wu X.; Ji Z.; Wu Q.; Xia N. S.; Gray N. S.; Chen L.; Yun C. H.; Deng X.; Zhou D. Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration. Sci. Transl. Med. 2016, 8 (352), 352ra108.10.1126/scitranslmed.aaf2304. PubMed DOI

Maruyama J.; Inami K.; Michishita F.; Jiang X.; Iwasa H.; Nakagawa K.; Ishigami-Yuasa M.; Kagechika H.; Miyamura N.; Hirayama J.; Nishina H.; Nogawa D.; Yamamoto K.; Hata Y. Novel YAP1 Activator, Identified by Transcription-Based Functional Screen, Limits Multiple Myeloma Growth. Molecular Cancer Research 2018, 16 (2), 197–211. 10.1158/1541-7786.MCR-17-0382. PubMed DOI

Panzetta V.; Guarnieri D.; Paciello A.; Della Sala F.; Muscetti O.; Raiola L.; Netti P.; Fusco S. ECM Mechano-Sensing Regulates Cytoskeleton Assembly and Receptor-Mediated Endocytosis of Nanoparticles. ACS biomaterials science & engineering 2017, 3 (8), 1586–1594. 10.1021/acsbiomaterials.7b00018. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...