Combining Nanomaterials and Developmental Pathways to Design New Treatments for Cardiac Regeneration: The Pulsing Heart of Advanced Therapies

. 2020 ; 8 () : 323. [epub] 20200424

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32391340

The research for heart therapies is challenged by the limited intrinsic regenerative capacity of the adult heart. Moreover, it has been hampered by the poor results obtained by tissue engineering and regenerative medicine attempts at generating functional beating constructs able to integrate with the host tissue. For this reason, organ transplantation remains the elective treatment for end-stage heart failure, while novel strategies aiming to promote cardiac regeneration or repair lag behind. The recent discovery that adult cardiomyocytes can be ectopically induced to enter the cell cycle and proliferate by a combination of microRNAs and cardioprotective drugs, like anti-oxidant, anti-inflammatory, anti-coagulants and anti-platelets agents, fueled the quest for new strategies suited to foster cardiac repair. While proposing a revolutionary approach for heart regeneration, these studies raised serious issues regarding the efficient controlled delivery of the therapeutic cargo, as well as its timely removal or metabolic inactivation from the site of action. Especially, there is need for innovative treatment because of evidence of severe side effects caused by pleiotropic drugs. Biocompatible nanoparticles possess unique physico-chemical properties that have been extensively exploited for overcoming the limitations of standard medical therapies. Researchers have put great efforts into the optimization of the nanoparticles synthesis and functionalization, to control their interactions with the biological milieu and use as a viable alternative to traditional approaches. Nanoparticles can be used for diagnosis and deliver therapies in a personalized and targeted fashion. Regarding the treatment of cardiovascular diseases, nanoparticles-based strategies have provided very promising outcomes, in preclinical studies, during the last years. Efficient encapsulation of a large variety of cargos, specific release at the desired site and improvement of cardiac function are some of the main achievements reached so far by nanoparticle-based treatments in animal models. This work offers an overview on the recent nanomedical applications for cardiac regeneration and highlights how the versatility of nanomaterials can be combined with the newest molecular biology discoveries to advance cardiac regeneration therapies.

Zobrazit více v PubMed

Akbarzadeh A., Rezaei-Sadabady R., Davaran S., Joo S. W., Zarghami N., Hanifehpour Y., et al. (2013). Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 8:102. PubMed PMC

Alfares A. A., Kelly M. A., McDermott G., Funke B. H., Lebo M. S., Baxter S. B., et al. (2015). Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet. Med. 17:880 10.1038/gim.2014.205 PubMed DOI

Allijn I. E., Czarny B. M. S., Wang X., Chong S. Y., Weiler M., da Silva A. E., et al. (2017). Liposome encapsulated berberine treatment attenuates cardiac dysfunction after myocardial infarction. J. Controll. Release 247 127–133. 10.1016/j.jconrel.2016.12.042 PubMed DOI

Amezcua R., Shirolkar A., Fraze C., Stout D. A. (2016). Nanomaterials for cardiac myocyte tissue engineering. Nanomaterials (Basel) 6:133 10.3390/nano6070133 PubMed DOI PMC

Bae S. J., Ni L., Osinski A., Tomchick D. R., Brautigam C. A., Luo X. (2017). SAV1 promotes Hippo kinase activation through antagonizing the PP2A phosphatase STRIPAK. Elife 6:e30278. PubMed PMC

Banerjee M. N., Bolli R., Hare J. M. (2018). Clinical studies of cell therapy in cardiovascular medicine recent developments and future directions. Circ. Res. 123 266–287. 10.1161/circresaha.118.311217 PubMed DOI PMC

Banik B. L., Fattahi P., Brown J. L. (2016). Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscipl. Rev. Nanomed. Nanobiotechnol. 8 271–299. 10.1002/wnan.1364 PubMed DOI

Bartel D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136 215–233. 10.1016/j.cell.2009.01.002 PubMed DOI PMC

Bartunek J., Terzic A., Davison B. A., Filippatos G. S., Radovanovic S., Beleslin B., et al. (2017). Cardiopoietic cell therapy for advanced ischaemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial. Eur. Heart J. 38 648–660. PubMed PMC

Behfar A., Crespo-Diaz R., Terzic A., Gersh B. J. (2014). Cell therapy for cardiac repair—lessons from clinical trials. Nat. Rev. Cardiol. 11 232–246. 10.1038/nrcardio.2014.9 PubMed DOI

Bejerano T., Etzion S., Elyagon S., Etzion Y., Cohen S. (2018). Nanoparticle delivery of miRNA-21 mimic to cardiac macrophages improves myocardial remodeling after myocardial infarction. Nano Lett. 18 5885–5891. 10.1021/acs.nanolett.8b02578 PubMed DOI

Bergmann O., Bhardwaj R. D., Bernard S., Zdunek S., Barnabé-Heider F., Walsh S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science 324 98–102. 10.1126/science.1164680 PubMed DOI PMC

Bobo D., Robinson K. J., Islam J., Thurecht K. J., Corrie S. R. (2016). Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33 2373–2387. 10.1007/s11095-016-1958-5 PubMed DOI

Bonauer A., Carmona G., Iwasaki M., Mione M., Koyanagi M., Fischer A., et al. (2009). MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324 1710–1713. 10.1126/science.1174381 PubMed DOI

Boon R. A., Iekushi K., Lechner S., Seeger T., Fischer A., Heydt S., et al. (2013). MicroRNA-34a regulates cardiac ageing and function. Nature 495:107 10.1038/nature11919 PubMed DOI

Boon R. A., Vickers K. C. (2013). Intercellular transport of microRNAs. Arterioscler. Thrombos. Vasc. Biol. 33 186–192. 10.1161/atvbaha.112.300139 PubMed DOI PMC

Boopathy G. T. K., Hong W. (2019). Role of hippo pathway-YAP/TAZ signaling in angiogenesis. Front. Cell Dev. Biol. 7:49 10.3389/fcell.2019.00049 PubMed DOI PMC

Borow K. M., Yaroshinsky A., Greenberg B., Perin E. C. (2019). Phase 3 DREAM-HF trial of mesenchymal precursor cells in chronic heart failure. Circ. Res. 125 265–281. 10.1161/circresaha.119.314951 PubMed DOI PMC

Botting K., Wang K., Padhee M., McMillen I., Summers-Pearce B., Rattanatray L., et al. (2012). Early origins of heart disease: low birth weight and determinants of cardiomyocyte endowment. Clin. Exp. Pharmacol. Physiol. 39 814–823. 10.1111/j.1440-1681.2011.05649.x PubMed DOI

Boverhof D. R., Bramante C. M., Butala J. H., Clancy S. F., Lafranconi M., West J., et al. (2015). Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul. Toxicol. Pharmacol. 73 137–150. 10.1016/j.yrtph.2015.06.001 PubMed DOI

Braunwald E. (2017). Cardiomyopathies. Circ. Res. 121 711–721. PubMed

Briceno N., Schuster A., Lumley M., Perera D. (2016). Ischaemic cardiomyopathy: pathophysiology, assessment and the role of revascularisation. Heart 102 397–406. 10.1136/heartjnl-2015-308037 PubMed DOI

Bulbake U., Doppalapudi S., Kommineni N., Khan W. (2017). Liposomal formulations in clinical use: an updated review. Pharmaceutics 9:12 10.3390/pharmaceutics9020012 PubMed DOI PMC

Burke M. A., Cook S. A., Seidman J. G., Seidman C. E. (2016). Clinical and mechanistic insights into the genetics of cardiomyopathy. J. Am. Coll Cardiol. 68 2871–2886. 10.1016/j.jacc.2016.08.079 PubMed DOI PMC

Butler J., Epstein S. E., Greene S. J., Quyyumi A. A., Sikora S., Kim R. J., et al. (2017). Intravenous allogeneic mesenchymal stem cells for nonischemic cardiomyopathy safety and efficacy results of a phase II-A randomized trial. Circ. Res. 120 332–340. 10.1161/circresaha.116.309717 PubMed DOI

Cahill T. J., Ashrafian H., Watkins H. (2013). Genetic cardiomyopathies causing heart failure. ESC Heart Fail 113 660–675. 10.1161/circresaha.113.300282 PubMed DOI

Calcagno V., Vecchione R., Quagliariello V., Marzola P., Busato A., Giustetto P., et al. (2019). Oil core–PEG shell nanocarriers for in vivo MRI imaging. Adv. Healthc. Mater. 8:1801313 10.1002/adhm.201801313 PubMed DOI

Callis T. E., Pandya K., Seok H. Y., Tang R.-H., Tatsuguchi M., Huang Z.-P., et al. (2009). MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Investig. 119 2772–2786. 10.1172/jci36154 PubMed DOI PMC

Cannon C. P., Blazing M. A., Giugliano R. P., McCagg A., White J. A., Theroux P., et al. (2015). Ezetimibe added to statin therapy after acute coronary syndromes. N. Engl. J. Med. 372 2387–2397. PubMed

Cao N., Huang Y., Zheng J., Spencer C. I., Zhang Y., Fu J.-D., et al. (2016). Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science 352 1216–1220. 10.1126/science.aaf1502 PubMed DOI

Carè A., Catalucci D., Felicetti F., Bonci D., Addario A., Gallo P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13 613–618. PubMed

Carroll K. J., Olson E. N. (2017). Considerations for cardiac CRISPR. Circ. Res. 121 1111–1112. 10.1161/circresaha.117.311974 PubMed DOI PMC

Chamberlain K., Riyad J. M., Weber T. (2017). Cardiac gene therapy with adeno-associated virus-based vectors. Curr. Opin. Cardiol. 32 275–282. PubMed PMC

Chan K., Harper A. R., Ashrafian H., Yavari A. (2018). Cardiomyopathies. Medicine 46 606–617.

Chandarana M., Curtis A., Hoskins C. J. A. N. (2018). The use of nanotechnology in cardiovascular disease. Nanomedicine 8 1607–1619. 10.1007/s13204-018-0856-z DOI

Chen C., Seeger T., Termglinchan V., Karakikes I. (2017). Recent advances in cardiac gene therapy strategies targeting advanced heart failure. Continu. Cardiol. Educ. 3 163–169. 10.1002/cce2.68 DOI

Chen Y.-A., Lu C.-Y., Cheng T.-Y., Pan S.-H., Chen H.-F., Chang N.-S. (2019). WW domain-containing proteins YAP and TAZ in the hippo pathway as key regulators in stemness maintenance, tissue homeostasis, and tumorigenesis. Front. Oncol. 9:60 10.3389/fonc.2019.00060 PubMed DOI PMC

Cheng B., Toh E. K. W., Chen K.-H., Chang Y.-C., Hu C.-M. J., Wu H.-C., et al. (2016). Biomimicking platelet–monocyte interactions as a novel targeting strategy for heart healing. Adv. Healthc. Mater. 5 2686–2697. 10.1002/adhm.201600724 PubMed DOI

Chenthamara D., Subramaniam S., Ramakrishnan S. G., Krishnaswamy S., Essa M. M., Lin F.-H., et al. (2019). Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 23:20. PubMed PMC

Chiavacci E., Dolfi L., Verduci L., Meghini F., Gestri G., Evangelista A. M. M., et al. (2012). MicroRNA 218 mediates the effects of Tbx5a over-expression on zebrafish heart development. PLoS ONE 7:e50536 10.1371/journal.pone.0050536 PubMed DOI PMC

Chow A., Stuckey D. J., Kidher E., Rocco M., Jabbour R. J., Mansfield C. A., et al. (2017). Human induced pluripotent stem cell-derived cardiomyocyte encapsulating bioactive hydrogels improve rat heart function post myocardial infarction. Stem Cell Rep. 9 1415–1422. 10.1016/j.stemcr.2017.09.003 PubMed DOI PMC

Cianflone E., Aquila I., Scalise M., Marotta P., Torella M., Nadal-Ginard B., et al. (2018). Molecular basis of functional myogenic specification of Bona Fide multipotent adult cardiac stem cells. Cell Cycle 17 927–946. 10.1080/15384101.2018.1464852 PubMed DOI PMC

Clippinger S. R., Cloonan P. E., Greenberg L., Ernst M., Stump W. T., Greenberg M. J. (2019). Disrupted mechanobiology links the molecular and cellular phenotypes in familial dilated cardiomyopathy. Proc. Natl. Acad. Sci. U.S.A. 116 17831–17840. 10.1073/pnas.1910962116 PubMed DOI PMC

Colegrave M., Peckham M. (2014). Structural implications of β-cardiac myosin heavy chain mutations in human disease. Anatom. Rec. 297 1670–1680. 10.1002/ar.22973 PubMed DOI

Conde J., Dias J. T., Grazú V., Moros M., Baptista P. V., de la Fuente J. M. (2014). Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front. Chem. 2:48 10.3389/fchem.2014.00048 PubMed DOI PMC

Croissant J. G., Fatieiev Y., Khashab N. M. (2017). Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv. Mater. 29:1604634 10.1002/adma.201604634 PubMed DOI

Danhier F. (2016). To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Controll. Release 244 108–121. 10.1016/j.jconrel.2016.11.015 PubMed DOI

Davis M. E., Chen Z. G., Shin D. M. (2008). Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7 771–782. 10.1038/nrd2614 PubMed DOI

Dhulipala V., Bezwada P., Gottimukkula R., Abboud J. (2018). Stress-induced cardiomyopathy: as a diagnosis that is time sensitive and anticipative in certain individuals. Case Rep. Cardiol. 2018:4. PubMed PMC

Dib N., Khawaja H., Varner S., McCarthy M., Campbell A. (2011). Cell therapy for cardiovascular disease: a comparison of methods of delivery. J. Cardiovasc. Transl. Res. 4 177–181. 10.1007/s12265-010-9253-z PubMed DOI PMC

Din F. U., Aman W., Ullah I., Qureshi O. S., Mustapha O., Shafique S., et al. (2017). Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 12 7291–7309. 10.2147/ijn.s146315 PubMed DOI PMC

Dirkx E., Gladka M. M., Philippen L. E., Armand A.-S., Kinet V., Leptidis S., et al. (2013). Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nat. Cell Biol. 15:1282 10.1038/ncb2866 PubMed DOI

Dolan E. B., Hofmann B., de Vaal M. H., Bellavia G., Straino S., Kovarova L., et al. (2019). A bioresorbable biomaterial carrier and passive stabilization device to improve heart function post-myocardial infarction. Mater. Sci. Eng. C 103 109751 10.1016/j.msec.2019.109751 PubMed DOI

Doudna J. A., Charpentier E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096 10.1126/science.1258096 PubMed DOI

Dvir T., Bauer M., Schroeder A., Tsui J. H., Anderson D. G., Langer R., et al. (2011). Nanoparticles targeting the infarcted heart. Nano Lett. 11 4411–4414. 10.1021/nl2025882 PubMed DOI PMC

El-Say K. M., El-Sawy H. S. (2017). Polymeric nanoparticles: promising platform for drug delivery. Int. J. Pharm. 528 675–691. 10.1016/j.ijpharm.2017.06.052 PubMed DOI

Engel J. L., Ardehali R. (2018). Direct cardiac reprogramming: progress and promise. Stem Cells Int. 2018:10. PubMed PMC

England J., Granados-Riveron J., Polo-Parada L., Kuriakose D., Moore C., Brook J. D., et al. (2017). Tropomyosin 1: multiple roles in the developing heart and in the formation of congenital heart defects. J. Mol. Cell Cardiol. 106 1–13. 10.1016/j.yjmcc.2017.03.006 PubMed DOI PMC

Epstein S. E., Kornowski R., Fuchs S., Dvorak H. F. (2001). Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects. Circulation 104 115–119. 10.1161/01.cir.104.1.115 PubMed DOI

Ergir E., Bachmann B., Redl H., Forte G., Ertl P. (2018). Small Force, big impact: next generation organ-on-a-chip systems incorporating biomechanical cues. Front. Physiol. 9:1417 10.3389/fphys.2018.01417 PubMed DOI PMC

Eschenhagen T., Bolli R., Braun T., Field L. J., Fleischmann B. K., Frisén J., et al. (2017). Cardiomyocyte regeneration. Cells 136 680–686. PubMed PMC

Eulalio A., Mano M., Ferro M. D., Zentilin L., Sinagra G., Zacchigna S., et al. (2012). Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492:376 10.1038/nature11739 PubMed DOI

Fadeel B. (2019). Hide and seek: nanomaterial interactions with the immune system. Front. Immunol. 10:133 10.3389/fimmu.2019.00133 PubMed DOI PMC

Feringa H. H. H., van Waning V. H., Bax J. J., Elhendy A., Boersma E., Schouten O., et al. (2006). Cardioprotective medication is associated with improved survival in patients with peripheral arterial disease. J. Am. College Cardiol. 47 1182–1187. 10.1016/j.jacc.2005.09.074 PubMed DOI

Ferrari R., Sponchioni M., Morbidelli M., Moscatelli D. (2018). Polymer nanoparticles for the intravenous delivery of anticancer drugs: the checkpoints on the road from the synthesis to clinical translation. Nanoscale 10 22701–22719. 10.1039/c8nr05933k PubMed DOI

Ferreira M. P. A., Talman V., Torrieri G., Liu D., Marques G., Moslova K., et al. (2018). Dual-drug delivery using dextran-functionalized nanoparticles targeting cardiac fibroblasts for cellular reprogramming. Adv. Funct. Mater. 28:1705134 10.1002/adfm.201705134 DOI

Fish J. E., Santoro M. M., Morton S. U., Yu S., Yeh R.-F., Wythe J. D., et al. (2008). miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell 15 272–284. 10.1016/j.devcel.2008.07.008 PubMed DOI PMC

Fitamant J., Kottakis F., Benhamouche S., Tian H. S., Chuvin N., Parachoniak C. A., et al. (2015). YAP inhibition restores hepatocyte differentiation in advanced HCC, leading to tumor regression. Cell Rep. 10 1692–1707. 10.1016/j.celrep.2015.02.027 PubMed DOI PMC

Foglia M. J., Poss K. D. (2016). Building and re-building the heart by cardiomyocyte proliferation. Development 143 729–740. 10.1242/dev.132910 PubMed DOI PMC

Fortuni B., Inose T., Ricci M., Fujita Y., Van Zundert I., Masuhara A., et al. (2019). Polymeric engineering of nanoparticles for highly efficient multifunctional drug delivery systems. Sci. Rep. 9:2666. PubMed PMC

Fu Y., Huang C., Xu X., Gu H., Ye Y., Jiang C., et al. (2015). Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res. 25 1013–1024. 10.1038/cr.2015.99 PubMed DOI PMC

Fuchs S. Y., Spiegelman V. S., Suresh Kumar K. G. (2004). The many faces of β-TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer. Oncogene 23 2028–2036. 10.1038/sj.onc.1207389 PubMed DOI

Gabisonia K., Prosdocimo G., Aquaro G. D., Carlucci L., Zentilin L., Secco I., et al. (2019). MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 569 418–422. 10.1038/s41586-019-1191-6 PubMed DOI PMC

Gao F., Kataoka M., Liu N., Liang T., Huang Z.-P., Gu F., et al. (2019). Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction. Nat. Commun. 10:1802. PubMed PMC

Gavira J. J., Nasarre E., Abizanda G., Perez-Ilzarbe M., de Martino-Rodriguez A., de Jalon J. A. G., et al. (2010). Repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction. Eur. Heart J. 31 1013–1021. 10.1093/eurheartj/ehp342 PubMed DOI

Giacca M., Zacchigna S. (2015). Harnsessing the microRNA pathway for cardiac regeneration. J. Mol. Cell Cardiol. 89 68–74. 10.1016/j.yjmcc.2015.09.017 PubMed DOI

Giner-Casares J. J., Henriksen-Lacey M., Coronado-Puchau M., Liz-Marzán L. M. (2016). Inorganic nanoparticles for biomedicine: where materials scientists meet medical research. Mater. Today 19 19–28. 10.1016/j.mattod.2015.07.004 DOI

Golombek S. K., May J.-N., Theek B., Appold L., Drude N., Kiessling F., et al. (2018). Tumor targeting via EPR: strategies to enhance patient responses. Adv. Drug Deliv. Rev. 130 17–38. 10.1016/j.addr.2018.07.007 PubMed DOI PMC

Guo X., Fan C., Tian L., Liu Y., Wang H., Zhao S., et al. (2017). The clinical features, outcomes and genetic characteristics of hypertrophic cardiomyopathy patients with severe right ventricular hypertrophy. PLoS One. 12:e0174118 10.1371/journal.pone.0174118 PubMed DOI PMC

Harel-Adar T., Mordechai T. B., Amsalem Y., Feinberg M. S., Leor J., Cohen S. (2011). Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proc. Natl. Acad. Sci. U.S.A. 108 1827–1832. 10.1073/pnas.1015623108 PubMed DOI PMC

Hashimoto H., Olson E. N., Bassel-Duby R. (2018). Therapeutic approaches for cardiac regeneration and repair. Nat. Rev. Cardiol. 15 585–600. 10.1038/s41569-018-0036-6 PubMed DOI PMC

Hashmi S., Ahmad H. R. (2019). Molecular switch model for cardiomyocyte proliferation. Cell Regen. (Lond.) 8 12–20. 10.1016/j.cr.2018.11.002 PubMed DOI PMC

Hastings C. L., Roche E. T., Ruiz-Hernandez E., Schenke-Layland K., Walsh C. J., Duffy G. P. (2015). Drug and cell delivery for cardiac regeneration. Adv. Drug Deliv. Rev. 84 85–106. 10.1016/j.addr.2014.08.006 PubMed DOI

Heallen T., Morikawa Y., Leach J., Tao G., Willerson J. T., Johnson R. L., et al. (2013). Hippo signaling impedes adult heart regeneration. Development 140 4683–4690. 10.1242/dev.102798 PubMed DOI PMC

Heallen T., Zhang M., Wang J., Bonilla-Claudio M., Klysik E., Johnson R. L., et al. (2011). Hippo pathway inhibits wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332 458–461. 10.1126/science.1199010 PubMed DOI PMC

Heart Protection Study Collaborative and Group. (2002). MRC/BHF heart protection study of cholesterol lowering with simvastatin in 20 536 high-risk individuals: a randomised placebocontrolled trial. Lancet 360 7–22. 10.1016/s0140-6736(02)09327-3 PubMed DOI

Heath J. R. (2015). Nanotechnologies for biomedical science and translational medicine. Proc. Natl. Acad. Sci. U.S.A. 112 14436–14443. 10.1073/pnas.1515202112 PubMed DOI PMC

Henry T. D., Annex B. H., McKendall G. R., Azrin M. A., Lopez J. J., Giordano F. J., et al. (2003). The VIVA trial. Circulation 107 1359–1365. PubMed

Henry T. D., Rocha-Singh K., Isner J. M., Kereiakes D. J., Giordano F. J., Simons M., et al. (2001). Intracoronary administration of recombinant human vascular endothelial growth factor to patients with coronary artery disease. Am. Heart J. 142 872–880. 10.1067/mhj.2001.118471 PubMed DOI

Hershberger R. E., Hedges D. J., Morales A. (2013). Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat. Rev. Cardiol. 10 531–547. 10.1038/nrcardio.2013.105 PubMed DOI

Hershberger R. E., Pinto J. R., Parks S. B., Kushner J. D., Li D., Ludwigsen S., et al. (2009). Clinical and functional characterization of TNNT2 mutations identified in patients with dilated cardiomyopathy. Circulation 2 306–313. 10.1161/circgenetics.108.846733 PubMed DOI PMC

Huang W., Feng Y., Liang J., Yu H., Wang C., Wang B., et al. (2018). Loss of microRNA-128 promotes cardiomyocyte proliferation and heart regeneration. Nat. Commun. 9:700. PubMed PMC

Ieda M., Fu J.-D., Delgado-Olguin P., Vedantham V., Hayashi Y., Bruneau B. G., et al. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142 375–386. 10.1016/j.cell.2010.07.002 PubMed DOI PMC

Ikeda S., Mizushima W., Sciarretta S., Abdellatif M., Zhai P., Mukai R., et al. (2019). Hippo deficiency leads to cardiac dysfunction accompanied by cardiomyocyte dedifferentiation during pressure overload. Circ. Res. 124 292–305. 10.1161/circresaha.118.314048 PubMed DOI PMC

Isomi M., Sadahiro T., Ieda M. (2019). Progress and challenge of cardiac regeneration to treat heart failure. J. Cardiol. 73 97–101. 10.1016/j.jjcc.2018.10.002 PubMed DOI

Jabir N. R., Tabrez S., Ashraf G. M., Shakil S., Damanhouri G. A., Kamal M. A. (2012). Nanotechnology-based approaches in anticancer research. Int. J. Nanomed. 7 4391–4408. PubMed PMC

Jain P., Arava S., Seth S., Lalwani S., Ray R. (2017). Histological and morphometric analysis of dilated cardiomyopathy with special reference to collagen IV expression. Ind. J. Pathol. Microbiol. 60 481–486. PubMed

Jayawardena T. M., Egemnazarov B., Finch E. A., Zhang L., Payne J. A., Pandya K., et al. (2012). MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ. Res. 110 1465–1473. 10.1161/circresaha.112.269035 PubMed DOI PMC

Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337 816–821. 10.1126/science.1225829 PubMed DOI PMC

Juul A., Scheike T., Davidsen M., Gyllenborg J., Jørgensen T. (2002). Low serum insulin-like growth factor I is associated with increased risk of ischemic heart disease. Circulation 106 939–944. 10.1161/01.cir.0000027563.44593.cc PubMed DOI

Kakimoto Y., Tanaka M., Kamiguchi H., Hayashi H., Ochiai E., Osawa M. (2016). MicroRNA deep sequencing reveals chamber-specific miR-208 family expression patterns in the human heart. Int. J. Cardiol. 211 43–48. 10.1016/j.ijcard.2016.02.145 PubMed DOI

Kalepu S., Nekkanti V. (2015). Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm. Sin. B 5 442–453. 10.1016/j.apsb.2015.07.003 PubMed DOI PMC

Kalyane D., Raval N., Maheshwari R., Tambe V., Kalia K., Tekade R. K. (2019). Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C 98 1252–1276. 10.1016/j.msec.2019.01.066 PubMed DOI

Katsuki S., Matoba T., Nakashiro S., Sato K., Koga J-i, Nakano K., et al. (2014). Nanoparticle-mediated delivery of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes. Circulation 129 896–906. 10.1161/circulationaha.113.002870 PubMed DOI

Kee P. H., Danila D. (2018). CT imaging of myocardial scar burden with CNA35-conjugated gold nanoparticles. Nanomedicine 14 1941–1947. 10.1016/j.nano.2018.06.003 PubMed DOI

Kulaberoglu Y., Lin K., Holder M., Gai Z., Gomez M., Assefa Shifa B., et al. (2017). Stable MOB1 interaction with Hippo/MST is not essential for development and tissue growth control. Nat. Commun. 8:695. PubMed PMC

Lee E. J., Baek M., Gusev Y., Brackett D. J., Nuovo G. J., Schmittgen T. D. (2008). Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA 14 35–42. 10.1261/rna.804508 PubMed DOI PMC

Lee K., Conboy M., Park H. M., Jiang F., Kim H. J., Dewitt M. A., et al. (2017). Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1 889–901. 10.1038/s41551-017-0137-2 PubMed DOI PMC

Lee S. W. L., Paoletti C., Campisi M., Osaki T., Adriani G., Kamm R. D., et al. (2019). MicroRNA delivery through nanoparticles. J. Controll. Release 313 80–95. 10.1016/j.jconrel.2019.10.007 PubMed DOI PMC

Liu J., Chang J., Jiang Y., Meng X., Sun T., Mao L., et al. (2019). Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles. Adv. Mater. 31:1902575 10.1002/adma.201902575 PubMed DOI PMC

Liu N., Bezprozvannaya S., Williams A. H., Qi X., Richardson J. A., Bassel-Duby R., et al. (2008). microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 22 3242–3254. 10.1101/gad.1738708 PubMed DOI PMC

Liu N., Williams A. H., Kim Y., McAnally J., Bezprozvannaya S., Sutherland L. B., et al. (2007). An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc. Natl. Acad. Sci. U.S.A. 104 20844–20849. 10.1073/pnas.0710558105 PubMed DOI PMC

Lopes L. R., Syrris P., Guttmann O. P., O’Mahony C., Tang H. C., Dalageorgou C., et al. (2015). Novel genotype-phenotype associations demonstrated by high-throughput sequencing in patients with hypertrophic cardiomyopathy. Heart 101 294–301. 10.1136/heartjnl-2014-306387 PubMed DOI PMC

Loyer X., Potteaux S., Vion A.-C., Guérin C. L., Boulkroun S., Rautou P.-E., et al. (2014). Inhibition of MicroRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ. Res. 114 434–443. 10.1161/circresaha.114.302213 PubMed DOI

Lu L., Liu M., Sun R., Zheng Y., Zhang P. J. C. B. (2015). Biophysics. Myocardial Infarct. 72 865–867. PubMed

Lundy D. J., Chen K.-H., Toh E. K. W., Hsieh P. C. H. (2016). Distribution of systemically administered nanoparticles reveals a size-dependent effect immediately following cardiac ischaemia-reperfusion injury. Sci. Rep. 6: 25613. PubMed PMC

Madonna R., Van Laake L. W., Davidson S. M., Engel F. B., Hausenloy D. J., Lecour S., et al. (2016). Position paper of the european society of cardiology working group cellular biology of the heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur. Heart J. 37 1789–1798. 10.1093/eurheartj/ehw113 PubMed DOI PMC

Marian A. J., Braunwald E. (2017). Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ. Res. 121 749–770. 10.1161/circresaha.117.311059 PubMed DOI PMC

Marino F., Scalise M., Cianflone E., Mancuso T., Aquila I., Agosti V., et al. (2019). Role of c-kit in myocardial regeneration and aging. Front. Endocrinol. (Lausanne) 10:371 10.3389/fendo.2019.00371 PubMed DOI PMC

Martino F., Perestrelo A. R., Vinarskı V., Pagliari S., Forte G. (2018). Cellular mechanotransduction: from tension to function. Front. Physiol. 9:824 10.3389/fphys.2018.00824 PubMed DOI PMC

Mazzarotto F., Girolami F., Boschi B., Barlocco F., Tomberli A., Baldini K., et al. (2019). Defining the diagnostic effectiveness of genes for inclusion in panels: the experience of two decades of genetic testing for hypertrophic cardiomyopathy at a single center. Genet. Med. 21 284–292. 10.1038/s41436-018-0046-0 PubMed DOI PMC

Menasché P. (2018). Cell therapy trials for heart regeneration — lessons learned and future directions. Nat. Rev. Cardiol. 15 659–671. 10.1038/s41569-018-0013-0 PubMed DOI

Meng Z., Moroishi T., Guan K.-L. (2016). Mechanisms of hippo pathway regulation. Genes Dev. 30 1–17. 10.1101/gad.274027.115 PubMed DOI PMC

Miragoli M., Ceriotti P., Iafisco M., Vacchiano M., Salvarani N., Alogna A., et al. (2018). Inhalation of peptide-loaded nanoparticles improves heart failure. Sci. Transl. Med. 10:eaan6205 10.1126/scitranslmed.aan6205 PubMed DOI

Mitrut R., Stepan A. E., Pirici D. (2018). Histopathological aspects of the myocardium in dilated cardiomyopathy. Curr. Health Sci. J. 44 243–249. 10.12865/CHSJ.44.03.07 PubMed DOI PMC

Miyagawa S., Domae K., Yoshikawa Y., Fukushima S., Nakamura T., Saito A., et al. (2017). Phase I clinical trial of autologous stem cell-sheet transplantation therapy for treating cardiomyopathy. J. Am. Heart Assoc. 6:e003918. PubMed PMC

Miyasaka K. Y., Kida Y. S., Banjo T., Ueki Y., Nagayama K., Matsumoto T., et al. (2011). Heartbeat regulates cardiogenesis by suppressing retinoic acid signaling via expression of miR-143. Mech. Dev. 128 18–28. 10.1016/j.mod.2010.09.002 PubMed DOI

Mohamed T. M. A., Ang Y. S., Radzinsky E., Zhou P., Huang Y., Elfenbein A., et al. (2018). Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 173 104–116. PubMed PMC

Morton S. U., Scherz P. J., Cordes K. R., Ivey K. N., Stainier D. Y. R., Srivastava D. (2008). microRNA-138 modulates cardiac patterning during embryonic development. Proc. Natl. Acad. Sci. U.S.A. 105 17830–17835. 10.1073/pnas.0804673105 PubMed DOI PMC

Muchtar E., Blauwet L. A., Gertz M. A. (2017). Restrictive cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ. Res. 121 819–837. 10.1161/circresaha.117.310982 PubMed DOI

Müller P., Lemcke H., David R. (2018). Stem cell therapy in heart diseases – Cell types, mechanisms and improvement strategies. Cell. Physiol. Biochem. 48 2607–2655. 10.1159/000492704 PubMed DOI

Nam Y.-J., Song K., Luo X., Daniel E., Lambeth K., West K., et al. (2013). Reprogramming of human fibroblasts toward a cardiac fate. Proc. Natl. Acad. Sci. U.S.A. 110 5588–5593. 10.1073/pnas.1301019110 PubMed DOI PMC

Nardone G., Oliver-De, La Cruz J., Vrbsky J., Martini C., Pribyl J., et al. (2017). YAP regulates cell mechanics by controlling focal adhesion assembly. Nat. Commun. 8:15321. PubMed PMC

Nef H. M., Möllmann H., Akashi Y. J., Hamm C. W. (2010). Mechanisms of stress (Takotsubo) cardiomyopathy. Nat. Rev. Cardiol. 7 187–193. PubMed

Nguyen M. M., Carlini A. S., Chien M.-P., Sonnenberg S., Luo C., Braden R. L., et al. (2015). Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction. Adv. Mater. 27 5547–5552. 10.1002/adma.201502003 PubMed DOI PMC

Odashima M., Usui S., Takagi H., Hong C., Liu J., Yokota M., et al. (2007). Inhibition of endogenous Mst1 prevents apoptosis and cardiac dysfunction without affecting cardiac hypertrophy after myocardial infarction. Circ. Res. 100 1344–1352. 10.1161/01.res.0000265846.23485.7a PubMed DOI

Oduk Y., Zhu W., Kannappan R., Zhao M., Borovjagin A. V., Oparil S., et al. (2018). VEGF nanoparticles repair the heart after myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 314 H278–H284. PubMed PMC

Patil Y., Panyam J. (2009). Polymeric nanoparticles for siRNA delivery and gene silencing. Int. J. Pharm. 367 195–203. 10.1016/j.ijpharm.2008.09.039 PubMed DOI PMC

Patra J. K., Das G., Fraceto L. F., Campos E. V. R., Rodriguez-Torres MdP, et al. (2018). Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16:71. PubMed PMC

Paulis L. E., Geelen T., Kuhlmann M. T., Coolen B. F., Schäfers M., Nicolay K., et al. (2012). Distribution of lipid-based nanoparticles to infarcted myocardium with potential application for MRI-monitored drug delivery. J. Controll. Release 162 276–285. 10.1016/j.jconrel.2012.06.035 PubMed DOI

Pelaz B., Alexiou C., Alvarez-Puebla R. A., Alves F., Andrews A. M., Ashraf S., et al. (2017). Diverse applications of nanomedicine. ACS Nano 11 2313–2381. PubMed PMC

Penny W. F., Hammond H. K. (2017). Randomized clinical trials of gene transfer for heart failure with reduced ejection fraction. Hum. Gene Ther. 28 378–384. 10.1089/hum.2016.166 PubMed DOI PMC

Plouffe S. W., Meng Z., Lin K. C., Lin B., Hong A. W., Chun J. V., et al. (2016). Characterization of hippo pathway components by gene inactivation. Mol. Cell 64 993–1008. 10.1016/j.molcel.2016.10.034 PubMed DOI PMC

Pollack A., Kontorovich A. R., Fuster V., Dec G. W. (2015). Viral myocarditis—diagnosis, treatment options, and current controversies. Nat. Rev. Cardiol. 12 670–680. 10.1038/nrcardio.2015.108 PubMed DOI

Popara J., Accomasso L., Vitale E., Gallina C., Roggio D., Iannuzzi A., et al. (2018). Silica nanoparticles actively engage with mesenchymal stem cells in improving acute functional cardiac integration. Nanomedicine 13 1121–1138. 10.2217/nnm-2017-0309 PubMed DOI

Porrello E. R., Johnson B. A., Aurora A. B., Simpson E., Nam Y.-J., Matkovich S. J., et al. (2011a). miR-15 Family regulates postnatal mitotic arrest of cardiomyocytes. Circ. Res. 109 670–679. 10.1161/circresaha.111.248880 PubMed DOI PMC

Porrello E. R., Mahmoud A. I., Simpson E., Hill J. A., Richardson J. A., Olson E. N., et al. (2011b). Transient regenerative potential of the neonatal mouse heart. Science 331 1078–1080. 10.1126/science.1200708 PubMed DOI PMC

Psaltis P. J., Carbone A., Nelson A. J., Lau D. H., Jantzen T., Manavis J., et al. (2010). Reparative effects of allogeneic mesenchymal precursor cells delivered transendocardially in experimental nonischemic cardiomyopathy. JACC 3 974–983. 10.1016/j.jcin.2010.05.016 PubMed DOI

Qin F., Tian J., Zhou D., Chen L. (2013). Mst1 and Mst2 kinases: regulations and diseases. Cell Biosci. 3:31 10.1186/2045-3701-3-31 PubMed DOI PMC

Qin X., Chen H., Yang H., Wu H., Zhao X., Wang H., et al. (2018). Photoacoustic imaging of embryonic stem cell-derived cardiomyocytes in living hearts with ultrasensitive semiconducting polymer nanoparticles. Adv. Funct. Mater. 28:1704939 10.1002/adfm.201704939 PubMed DOI PMC

Raso A., Dirkx E. (2017). Cardiac regenerative medicine: at the crossroad of microRNA function and biotechnology. Non-coding RNA Res. 2 27–37. 10.1016/j.ncrna.2017.03.001 PubMed DOI PMC

Raval A. N., Cook T. D., Duckers H. J., Johnston P. V., Traverse J. H., Abraham W. T., et al. (2018). The CardiAMP heart failure trial: a randomized controlled pivotal trial of high-dose autologous bone marrow mononuclear cells using the CardiAMP cell therapy system in patients with post–myocardial infarction heart failure: trial rationale and study design. Am. Heart J. 201 141–148. 10.1016/j.ahj.2018.03.016 PubMed DOI

Rebouças JdS, Santos-Magalhães N. S., Formiga F. R. (2016). Cardiac regeneration using growth factors: advances and challenges. Arq. Bras. Cardiol. 107 271–275. PubMed PMC

Rikhtegar R., Pezeshkian M., Dolati S., Safaie N., Afrasiabi Rad A., Mahdipour M., et al. (2019). Stem cells as therapy for heart disease: iPSCs, ESCs, CSCs, and skeletal myoblasts. Biomed. Pharmacother. 109 304–313. 10.1016/j.biopha.2018.10.065 PubMed DOI

Rochette L., Zeller M., Cottin Y., Vergely C. (2015). Growth and differentiation factor 11 (GDF11): functions in the regulation of erythropoiesis and cardiac regeneration. Pharmacol. Therapeut. 156 26–33. 10.1016/j.pharmthera.2015.10.006 PubMed DOI

Rothbauer M., Rosser J. M., Zirath H., Ertl P. (2019). Tomorrow today: organ-on-a-chip advances towards clinically relevant pharmaceutical and medical in vitro models. Curr. Opin. Biotechnol. 55 81–86. 10.1016/j.copbio.2018.08.009 PubMed DOI

Sanganalmath S. K., Bolli R. (2013). Cell therapy for heart failure. Curr. Cardiol. Rev. 113 810–834. PubMed PMC

Schafer S., de Marvao A., Adami E., Fiedler L. R., Ng B., Khin E., et al. (2016). Titin-truncating variants affect heart function in disease cohorts and the general population. Nat. Genet. 49:46 10.1038/ng.3719 PubMed DOI PMC

Schultheiss H.-P., Fairweather D., Caforio A. L. P., Escher F., Hershberger R. E., Lipshultz S. E., et al. (2019). Dilated cardiomyopathy. Nat. Rev. Dis. Primers 5:32. PubMed PMC

Scott R. C., Rosano J. M., Ivanov Z., Wang B., Chong P. L.-G., Issekutz A. C., et al. (2009). Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. FASEB J. 23 3361–3367. 10.1096/fj.08-127373 PubMed DOI

Senyo S. E., Steinhauser M. L., Pizzimenti C. L., Yang V. K., Cai L., Wang M., et al. (2013). Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493 433–436. 10.1038/nature11682 PubMed DOI PMC

Sercombe L., Veerati T., Moheimani F., Wu S. Y., Sood A. K., Hua S. (2015). Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6:286 10.3389/fphar.2015.00286 PubMed DOI PMC

Simons M., Annex B. H., Laham R. J., Kleiman N., Henry T., Dauerman H., et al. (2002). Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2. 105 788–793. 10.1161/hc0802.104407 PubMed DOI

Sioud M. (2005). On the delivery of small interfering RNAs into mammalian cells. Expert Opin. Drug Deliv. 2 639–651. 10.1517/17425247.2.4.639 PubMed DOI

Sluijter J. P. G., Mil A. V., Vliet P. V., Metz C. H. G. (2010). MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arteriosclerosis Thrombosis Vasc. Biol. 30 859–868. 10.1161/atvbaha.109.197434 PubMed DOI

Small E. M., O’Rourke J. R., Moresi V., Sutherland L. B., McAnally J., Gerard R. D., et al. (2010). Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proc. Natl. Acad. Sci. U.S.A. 107 4218–4223. 10.1073/pnas.1000300107 PubMed DOI PMC

Smith A. J., Lewis F. C., Aquila I., Waring C. D., Nocera A., Agosti V., et al. (2014). Isolation and characterization of resident endogenous c-Kit+ cardiac stem cells from the adult mouse and rat heart. Nat. Protoc. 9 1662–1681. 10.1038/nprot.2014.113 PubMed DOI

Song K., Nam Y.-J., Luo X., Qi X., Tan W., Huang G. N., et al. (2012). Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485 599–604. 10.1038/nature11139 PubMed DOI PMC

Taimeh Z., Loughran J., Birks E. J., Bolli R. (2013). Vascular endothelial growth factor in heart failure. Nat. Rev. Cardiol. 10 519–530. PubMed

Tanai E., Frantz S. (2015). Pathophysiology of heart failure. Compr. Physiol. 6 187–214. PubMed

Tang F., Gao R., Jeevan-Raj B., Wyss C. B., Kalathur R. K. R., Piscuoglio S., et al. (2019). LATS1 but not LATS2 represses autophagy by a kinase-independent scaffold function. Nat. Commun. 10:5755. PubMed PMC

Tao G., Kahr P. C., Morikawa Y., Zhang M., Rahmani M., Heallen T. R., et al. (2016). Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury. Nature 534:119 10.1038/nature17959 PubMed DOI PMC

thebiogrid.org. (2019). Available from: https://thebiogrid.org/115684.

Thum T., Gross C., Fiedler J., Fischer T., Kissler S., Bussen M., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456 980–984. 10.1038/nature07511 PubMed DOI

Tian Y., Liu Y., Wang T., Zhou N., Kong J., Chen L., et al. (2015). A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci. Transl. Med. 7 ra38–ra38. PubMed PMC

Torrini C., Cubero R. J., Dirkx E., Braga L., Ali H., Prosdocimo G., et al. (2019). Common regulatory pathways mediate activity of microRNAs inducing cardiomyocyte proliferation. Cell Rep. 27 2759–2771.e5. 10.1016/j.celrep.2019.05.005 PubMed DOI PMC

Traverse J. H., Henry T. D., Dib N., Patel A. N., Pepine C., Schaer G. L., et al. (2019). First-in-man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients. JACC 4 659–669. 10.1016/j.jacbts.2019.07.012 PubMed DOI PMC

Troncoso R., Ibarra C., Vicencio J. M., Jaimovich E., Lavandero S. (2014). New insights into IGF-1 signaling in the heart. Trends Endocrinol. Metabol. 25 128–137. 10.1016/j.tem.2013.12.002 PubMed DOI

Tzahor E., Poss K. D. (2017). Cardiac regeneration strategies: staying young at heart. Science 356 1035–1039. 10.1126/science.aam5894 PubMed DOI PMC

U.S. Department of Health & Human Services (2013). Health Topic: Cardiomyopathy. Available online at: https://www.nhlbi.nih.gov/health-topics/cardiomyopathy

U.S. National Library of Medicine. Nanoparticles in Heart Diseases: Overview on the Existing Clinical Trials. Available online at: https://clinicaltrials.gov/ct2/results?term=nanoparticles&cond=Heart+Diseases &draw=2&rank=7#rowId6. ClinicalTrials.govUNLoM

U.S. National Library of Medicine. VEGF in Heart Diseases: Overview on the Existing Clinical Trials. Available online at: https:// clinicaltrials.gov/ct2/results?cond=heart&term=VEGF. ClinicalTrials.govUNLoM

U.S. National Library of Medicine (2013). IRon Nanoparticle Enhanced MRI in the Assessment of Myocardial infarctioN (IRNMAN). Available online at: ClinicalTrials.govUNLom

U.S. National Library of Medicine (2014a). Ferumoxytol for Magnetic Resonance Imaging of Myocardial Infarction. Available online at: ClinicalTrials.govUNLom

U.S. National Library of Medicine (2014b). Inflammatory Cell Trafficking After Myocardial Infarction. Available online at: ClinicalTrials.govUNLom

U.S. National Library of Medicine (2019a). A Study of VentriGel in Post-MI Patient. Available online at: ClinicalTrials.gov UNLom

U.S. National Library of Medicine (2019b). The Transendocardial Autologous Cells (hMSC) or (hMSC) and (hCSC) in Ischemic Heart Failure Trial (TAC-HFT-II). Available online at: ClinicalTrials.gov UNLom

U.S. National Library of Medicine (2019c). Bone Marrow Derived Mesenchymal Stem Cells in Improving Heart Function in Patients With Heart Failure Caused by Anthracyclines. Available online at: ClinicalTrials.gov UNLom

U.S. National Library of Medicine (2019d). CardiAMPTM Heart Failure Trial. Available online at: ClinicalTrials.gov UNLoM

U.S. National Library of Medicine (2020a). Efficacy and Safety of Allogeneic Mesenchymal Precursor Cells (Rexlemestrocel-L) for the Treatment of Heart Failure (DREAM HF-1). Available online at: ClinicalTrials.gov UNLom

U.S. National Library of Medicine (2020b). Nanoparticles in Heart Diseases: Overview on the Existing Clinical Trials Available online at: https://clinicaltrials.gov/ct2/results?term=nanoparticles&cond=Heart+Diseases &draw=2&rank=7#rowId6. ClinicalTrials.govUNLoM

U.S. National Library of Medicine (2020c). VEGF in Heart Diseases: Overview on the Existing Clinical Trials Available online at: https://clinicaltrials. gov/ct2/results?cond=heart&term=VEGF. ClinicalTrials.govUNLoM

Unger E. F., Goncalves L., Epstein S. E., Chew E. Y., Trapnell C. B., Cannon R. O., III, et al. (2000). Effects of a single intracoronary injection of basic fibroblast growth factor in stable angina pectoris. Am. J. Cardiol. 85 1414–1419. 10.1016/s0002-9149(00)00787-6 PubMed DOI

Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J. J., Lötvall J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9 654–659. 10.1038/ncb1596 PubMed DOI

van der Meel R., Lammers T., Hennink W. E. (2017). Cancer nanomedicines: oversold or underappreciated? Expert Opin. Drug Deliv. 14 1–5. 10.1080/17425247.2017.1262346 PubMed DOI PMC

van Rooij E., Sutherland L. B., Liu N., Williams A. H., McAnally J., Gerard R. D., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. U.S.A. 103 18255–18260. 10.1073/pnas.0608791103 PubMed DOI PMC

Varelas X. (2014). The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 141 1614–1626. 10.1242/dev.102376 PubMed DOI

Velzen HGv, Schinkel A. F. L., Baart S. J., Oldenburg R. A., Frohn-Mulder I. M. E., et al. (2018). Outcomes of contemporary family screening in hypertrophic cardiomyopathy. Circulation 11:e001896. PubMed

Vicinanza C., Aquila I., Scalise M., Cristiano F., Marino F., Cianflone E., et al. (2017). Adult cardiac stem cells are multipotent and robustly myogenic: c-kit expression is necessary but not sufficient for their identification. Cell Death Differ. 24 2101–2116. 10.1038/cdd.2017.130 PubMed DOI PMC

Vikhorev P. G., Vikhoreva N. N. (2018). Cardiomyopathies and related changes in contractility of human heart muscle. Int. J. Mol. Sci. 19:E2234. PubMed PMC

von Gise A., Lin Z., Schlegelmilch K., Honor L. B., Pan G. M., Buck J. N., et al. (2012). YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc. Natl. Acad. Sci. U.S.A. 109 2394–2399. 10.1073/pnas.1116136109 PubMed DOI PMC

Wada R., Muraoka N., Inagawa K., Yamakawa H., Miyamoto K., Sadahiro T., et al. (2013). Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proc. Natl. Acad. Sci. U.S.A. 110 12667–12672. PubMed PMC

Wahlquist C., Jeong D., Rojas-Muñoz A., Kho C., Lee A., Mitsuyama S., et al. (2014). Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 508:531 10.1038/nature13073 PubMed DOI PMC

Wang H. P., Zhang W. H., Wang X. F., Zhu J., Zheng Y. Q., Xia Q., et al. (2014). Exposure to AT1 receptor autoantibodies during pregnancy increases susceptibility of the maternal heart to postpartum ischemia-reperfusion injury in rats. Int. J. Mol. Sci. 15 11495–11509. 10.3390/ijms150711495 PubMed DOI PMC

Wang J., Liu S., Heallen T., Martin J. F. (2018). The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nat. Rev. Cardiol. 15 672–684. 10.1038/s41569-018-0063-3 PubMed DOI

Wang L. V., Hu S. (2012). Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335 1458–1462. 10.1126/science.1216210 PubMed DOI PMC

Watkins H., Ashrafian H., Redwood C. (2011). Inherited cardiomyopathies. Circ. J. 364 1643–1656. PubMed

Watt K. I., Turner B. J., Hagg A., Zhang X., Davey J. R., Qian H., et al. (2015). The Hippo pathway effector YAP is a critical regulator of skeletal muscle fibre size. Nat. Commun. 6:6048. PubMed

Weis S. M. (2008). Vascular permeability in cardiovascular disease and cancer. Curr. Opin. Hematol. 15 243–249. 10.1097/moh.0b013e3282f97d86 PubMed DOI

Whyte W., Roche E. T., Varela C. E., Mendez K., Islam S., O’Neill H., et al. (2018). Sustained release of targeted cardiac therapy with a replenishable implanted epicardial reservoir. Nat. Biomed. Eng. 2 416–428. 10.1038/s41551-018-0247-5 PubMed DOI

World Health Organization (2019). Cardiovascular Diseases (CVDs). Available online at: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases.

Xi D., Dong S., Meng X., Lu Q., Meng L., Ye J. (2012). Gold nanoparticles as computerized tomography (CT) contrast agents. RSC Adv. 2 12515–12524.

Xiong F., Wang H., Feng Y., Li Y., Hua X., Pang X., et al. (2015). Cardioprotective activity of iron oxide nanoparticles. Sci. Rep. 5: 8579. PubMed PMC

Xu Z., Zhu W., Wang C., Huang L., Zhou Q., Hu J., et al. (2017). Genotype-phenotype relationship in patients with arrhythmogenic right ventricular cardiomyopathy caused by desmosomal gene mutations: a systematic review and meta-analysis. Sci. Rep. 7:41387. PubMed PMC

Xue X., Shi X., Dong H., You S., Cao H., Wang K., et al. (2018). Delivery of microRNA-1 inhibitor by dendrimer-based nanovector: an early targeting therapy for myocardial infarction in mice. Nanomedicine 14 619–631. 10.1016/j.nano.2017.12.004 PubMed DOI

Yang H., Qin X., Wang H., Zhao X., Liu Y., Wo H.-T., et al. (2019). An in vivo miRNA delivery system for restoring infarcted myocardium. ACS Nano 13 9880–9894. 10.1021/acsnano.9b03343 PubMed DOI PMC

Yildirimer L., Thanh N. T. K., Loizidou M., Seifalian A. M. (2011). Toxicology and clinical potential of nanoparticles. Nano Today 6 585–607. 10.1016/j.nantod.2011.10.001 PubMed DOI PMC

Yokoyama R., Ii M., Masuda M., Tabata Y., Hoshiga M., Ishizaka N., et al. (2019). Cardiac regeneration by statin-polymer nanoparticle-loaded adipose-derived stem cell therapy in myocardial infarction. Stem Cells Transl. Med. 8 1055–1067. 10.1002/sctm.18-0244 PubMed DOI PMC

Yu M., Wu J., Shi J., Farokhzad O. C. (2016). Nanotechnology for protein delivery: overview and perspectives. J. Control. Release 240 24–37. 10.1016/j.jconrel.2015.10.012 PubMed DOI PMC

Zeng X.-H., Zeng X.-J., Li Y.-Y. (2003). Efficacy and safety of berberine for congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 92 173–176. 10.1016/s0002-9149(03)00533-2 PubMed DOI

Zhang B.-F., Jiang H., Chen J., Hu Q., Yang S., Liu X.-P. (2019). Silica-coated magnetic nanoparticles labeled endothelial progenitor cells alleviate ischemic myocardial injury and improve long-term cardiac function with magnetic field guidance in rats with myocardial infarction. J. Cell. Physiol. 234 18544–18559. 10.1002/jcp.28492 PubMed DOI PMC

Zhang L., Gu F., Chan J., Wang A., Langer R., Farokhzad O. (2008). Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 83 761–769. 10.1038/sj.clpt.6100400 PubMed DOI

Zhang S., Zhao B., Jiang H., Wang B., Ma B. (2007). Cationic lipids and polymers mediated vectors for delivery of siRNA. J. Controll. Release 123 1–10. 10.1016/j.jconrel.2007.07.016 PubMed DOI

Zhao H., Lin Z. Y., Yildirimer L., Dhinakar A., Zhao X., Wu J. (2016). Polymer-based nanoparticles for protein delivery: design, strategies and applications. J. Mater. Chem. B 4 4060–4071. 10.1039/c6tb00308g PubMed DOI

Zhao Y., Ransom J. F., Li A., Vedantham V., von Drehle M., Muth A. N., et al. (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129 303–317. 10.1016/j.cell.2007.03.030 PubMed DOI

Zhao Y., Samal E., Srivastava D. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436 214–220. 10.1038/nature03817 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Regulation of Cell-Nanoparticle Interactions through Mechanobiology

. 2025 Feb 19 ; 25 (7) : 2600-2609. [epub] 20250108

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...