Combining Nanomaterials and Developmental Pathways to Design New Treatments for Cardiac Regeneration: The Pulsing Heart of Advanced Therapies
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
32391340
PubMed Central
PMC7193099
DOI
10.3389/fbioe.2020.00323
Knihovny.cz E-zdroje
- Klíčová slova
- Hippo pathway, YAP, cardiac regeneration, cardiomyopathy, nanoparticles, targeted delivery,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The research for heart therapies is challenged by the limited intrinsic regenerative capacity of the adult heart. Moreover, it has been hampered by the poor results obtained by tissue engineering and regenerative medicine attempts at generating functional beating constructs able to integrate with the host tissue. For this reason, organ transplantation remains the elective treatment for end-stage heart failure, while novel strategies aiming to promote cardiac regeneration or repair lag behind. The recent discovery that adult cardiomyocytes can be ectopically induced to enter the cell cycle and proliferate by a combination of microRNAs and cardioprotective drugs, like anti-oxidant, anti-inflammatory, anti-coagulants and anti-platelets agents, fueled the quest for new strategies suited to foster cardiac repair. While proposing a revolutionary approach for heart regeneration, these studies raised serious issues regarding the efficient controlled delivery of the therapeutic cargo, as well as its timely removal or metabolic inactivation from the site of action. Especially, there is need for innovative treatment because of evidence of severe side effects caused by pleiotropic drugs. Biocompatible nanoparticles possess unique physico-chemical properties that have been extensively exploited for overcoming the limitations of standard medical therapies. Researchers have put great efforts into the optimization of the nanoparticles synthesis and functionalization, to control their interactions with the biological milieu and use as a viable alternative to traditional approaches. Nanoparticles can be used for diagnosis and deliver therapies in a personalized and targeted fashion. Regarding the treatment of cardiovascular diseases, nanoparticles-based strategies have provided very promising outcomes, in preclinical studies, during the last years. Efficient encapsulation of a large variety of cargos, specific release at the desired site and improvement of cardiac function are some of the main achievements reached so far by nanoparticle-based treatments in animal models. This work offers an overview on the recent nanomedical applications for cardiac regeneration and highlights how the versatility of nanomaterials can be combined with the newest molecular biology discoveries to advance cardiac regeneration therapies.
Zobrazit více v PubMed
Akbarzadeh A., Rezaei-Sadabady R., Davaran S., Joo S. W., Zarghami N., Hanifehpour Y., et al. (2013). Liposome: classification, preparation, and applications. PubMed PMC
Alfares A. A., Kelly M. A., McDermott G., Funke B. H., Lebo M. S., Baxter S. B., et al. (2015). Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. PubMed DOI
Allijn I. E., Czarny B. M. S., Wang X., Chong S. Y., Weiler M., da Silva A. E., et al. (2017). Liposome encapsulated berberine treatment attenuates cardiac dysfunction after myocardial infarction. PubMed DOI
Amezcua R., Shirolkar A., Fraze C., Stout D. A. (2016). Nanomaterials for cardiac myocyte tissue engineering. PubMed DOI PMC
Bae S. J., Ni L., Osinski A., Tomchick D. R., Brautigam C. A., Luo X. (2017). SAV1 promotes Hippo kinase activation through antagonizing the PP2A phosphatase STRIPAK. PubMed PMC
Banerjee M. N., Bolli R., Hare J. M. (2018). Clinical studies of cell therapy in cardiovascular medicine recent developments and future directions. PubMed DOI PMC
Banik B. L., Fattahi P., Brown J. L. (2016). Polymeric nanoparticles: the future of nanomedicine. PubMed DOI
Bartel D. P. (2009). MicroRNAs: target recognition and regulatory functions. PubMed DOI PMC
Bartunek J., Terzic A., Davison B. A., Filippatos G. S., Radovanovic S., Beleslin B., et al. (2017). Cardiopoietic cell therapy for advanced ischaemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial. PubMed PMC
Behfar A., Crespo-Diaz R., Terzic A., Gersh B. J. (2014). Cell therapy for cardiac repair—lessons from clinical trials. PubMed DOI
Bejerano T., Etzion S., Elyagon S., Etzion Y., Cohen S. (2018). Nanoparticle delivery of miRNA-21 mimic to cardiac macrophages improves myocardial remodeling after myocardial infarction. PubMed DOI
Bergmann O., Bhardwaj R. D., Bernard S., Zdunek S., Barnabé-Heider F., Walsh S., et al. (2009). Evidence for cardiomyocyte renewal in humans. PubMed DOI PMC
Bobo D., Robinson K. J., Islam J., Thurecht K. J., Corrie S. R. (2016). Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. PubMed DOI
Bonauer A., Carmona G., Iwasaki M., Mione M., Koyanagi M., Fischer A., et al. (2009). MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. PubMed DOI
Boon R. A., Iekushi K., Lechner S., Seeger T., Fischer A., Heydt S., et al. (2013). MicroRNA-34a regulates cardiac ageing and function. PubMed DOI
Boon R. A., Vickers K. C. (2013). Intercellular transport of microRNAs. PubMed DOI PMC
Boopathy G. T. K., Hong W. (2019). Role of hippo pathway-YAP/TAZ signaling in angiogenesis. PubMed DOI PMC
Borow K. M., Yaroshinsky A., Greenberg B., Perin E. C. (2019). Phase 3 DREAM-HF trial of mesenchymal precursor cells in chronic heart failure. PubMed DOI PMC
Botting K., Wang K., Padhee M., McMillen I., Summers-Pearce B., Rattanatray L., et al. (2012). Early origins of heart disease: low birth weight and determinants of cardiomyocyte endowment. PubMed DOI
Boverhof D. R., Bramante C. M., Butala J. H., Clancy S. F., Lafranconi M., West J., et al. (2015). Comparative assessment of nanomaterial definitions and safety evaluation considerations. PubMed DOI
Braunwald E. (2017). Cardiomyopathies. PubMed
Briceno N., Schuster A., Lumley M., Perera D. (2016). Ischaemic cardiomyopathy: pathophysiology, assessment and the role of revascularisation. PubMed DOI
Bulbake U., Doppalapudi S., Kommineni N., Khan W. (2017). Liposomal formulations in clinical use: an updated review. PubMed DOI PMC
Burke M. A., Cook S. A., Seidman J. G., Seidman C. E. (2016). Clinical and mechanistic insights into the genetics of cardiomyopathy. PubMed DOI PMC
Butler J., Epstein S. E., Greene S. J., Quyyumi A. A., Sikora S., Kim R. J., et al. (2017). Intravenous allogeneic mesenchymal stem cells for nonischemic cardiomyopathy safety and efficacy results of a phase II-A randomized trial. PubMed DOI
Cahill T. J., Ashrafian H., Watkins H. (2013). Genetic cardiomyopathies causing heart failure. PubMed DOI
Calcagno V., Vecchione R., Quagliariello V., Marzola P., Busato A., Giustetto P., et al. (2019). Oil core–PEG shell nanocarriers for in vivo MRI imaging. PubMed DOI
Callis T. E., Pandya K., Seok H. Y., Tang R.-H., Tatsuguchi M., Huang Z.-P., et al. (2009). MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. PubMed DOI PMC
Cannon C. P., Blazing M. A., Giugliano R. P., McCagg A., White J. A., Theroux P., et al. (2015). Ezetimibe added to statin therapy after acute coronary syndromes. PubMed
Cao N., Huang Y., Zheng J., Spencer C. I., Zhang Y., Fu J.-D., et al. (2016). Conversion of human fibroblasts into functional cardiomyocytes by small molecules. PubMed DOI
Carè A., Catalucci D., Felicetti F., Bonci D., Addario A., Gallo P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. PubMed
Carroll K. J., Olson E. N. (2017). Considerations for cardiac CRISPR. PubMed DOI PMC
Chamberlain K., Riyad J. M., Weber T. (2017). Cardiac gene therapy with adeno-associated virus-based vectors. PubMed PMC
Chan K., Harper A. R., Ashrafian H., Yavari A. (2018). Cardiomyopathies.
Chandarana M., Curtis A., Hoskins C. J. A. N. (2018). The use of nanotechnology in cardiovascular disease. DOI
Chen C., Seeger T., Termglinchan V., Karakikes I. (2017). Recent advances in cardiac gene therapy strategies targeting advanced heart failure. DOI
Chen Y.-A., Lu C.-Y., Cheng T.-Y., Pan S.-H., Chen H.-F., Chang N.-S. (2019). WW domain-containing proteins YAP and TAZ in the hippo pathway as key regulators in stemness maintenance, tissue homeostasis, and tumorigenesis. PubMed DOI PMC
Cheng B., Toh E. K. W., Chen K.-H., Chang Y.-C., Hu C.-M. J., Wu H.-C., et al. (2016). Biomimicking platelet–monocyte interactions as a novel targeting strategy for heart healing. PubMed DOI
Chenthamara D., Subramaniam S., Ramakrishnan S. G., Krishnaswamy S., Essa M. M., Lin F.-H., et al. (2019). Therapeutic efficacy of nanoparticles and routes of administration. PubMed PMC
Chiavacci E., Dolfi L., Verduci L., Meghini F., Gestri G., Evangelista A. M. M., et al. (2012). MicroRNA 218 mediates the effects of Tbx5a over-expression on zebrafish heart development. PubMed DOI PMC
Chow A., Stuckey D. J., Kidher E., Rocco M., Jabbour R. J., Mansfield C. A., et al. (2017). Human induced pluripotent stem cell-derived cardiomyocyte encapsulating bioactive hydrogels improve rat heart function post myocardial infarction. PubMed DOI PMC
Cianflone E., Aquila I., Scalise M., Marotta P., Torella M., Nadal-Ginard B., et al. (2018). Molecular basis of functional myogenic specification of Bona Fide multipotent adult cardiac stem cells. PubMed DOI PMC
Clippinger S. R., Cloonan P. E., Greenberg L., Ernst M., Stump W. T., Greenberg M. J. (2019). Disrupted mechanobiology links the molecular and cellular phenotypes in familial dilated cardiomyopathy. PubMed DOI PMC
Colegrave M., Peckham M. (2014). Structural implications of β-cardiac myosin heavy chain mutations in human disease. PubMed DOI
Conde J., Dias J. T., Grazú V., Moros M., Baptista P. V., de la Fuente J. M. (2014). Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. PubMed DOI PMC
Croissant J. G., Fatieiev Y., Khashab N. M. (2017). Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. PubMed DOI
Danhier F. (2016). To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? PubMed DOI
Davis M. E., Chen Z. G., Shin D. M. (2008). Nanoparticle therapeutics: an emerging treatment modality for cancer. PubMed DOI
Dhulipala V., Bezwada P., Gottimukkula R., Abboud J. (2018). Stress-induced cardiomyopathy: as a diagnosis that is time sensitive and anticipative in certain individuals. PubMed PMC
Dib N., Khawaja H., Varner S., McCarthy M., Campbell A. (2011). Cell therapy for cardiovascular disease: a comparison of methods of delivery. PubMed DOI PMC
Din F. U., Aman W., Ullah I., Qureshi O. S., Mustapha O., Shafique S., et al. (2017). Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. PubMed DOI PMC
Dirkx E., Gladka M. M., Philippen L. E., Armand A.-S., Kinet V., Leptidis S., et al. (2013). Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. PubMed DOI
Dolan E. B., Hofmann B., de Vaal M. H., Bellavia G., Straino S., Kovarova L., et al. (2019). A bioresorbable biomaterial carrier and passive stabilization device to improve heart function post-myocardial infarction. PubMed DOI
Doudna J. A., Charpentier E. (2014). The new frontier of genome engineering with CRISPR-Cas9. PubMed DOI
Dvir T., Bauer M., Schroeder A., Tsui J. H., Anderson D. G., Langer R., et al. (2011). Nanoparticles targeting the infarcted heart. PubMed DOI PMC
El-Say K. M., El-Sawy H. S. (2017). Polymeric nanoparticles: promising platform for drug delivery. PubMed DOI
Engel J. L., Ardehali R. (2018). Direct cardiac reprogramming: progress and promise. PubMed PMC
England J., Granados-Riveron J., Polo-Parada L., Kuriakose D., Moore C., Brook J. D., et al. (2017). Tropomyosin 1: multiple roles in the developing heart and in the formation of congenital heart defects. PubMed DOI PMC
Epstein S. E., Kornowski R., Fuchs S., Dvorak H. F. (2001). Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects. PubMed DOI
Ergir E., Bachmann B., Redl H., Forte G., Ertl P. (2018). Small Force, big impact: next generation organ-on-a-chip systems incorporating biomechanical cues. PubMed DOI PMC
Eschenhagen T., Bolli R., Braun T., Field L. J., Fleischmann B. K., Frisén J., et al. (2017). Cardiomyocyte regeneration. PubMed PMC
Eulalio A., Mano M., Ferro M. D., Zentilin L., Sinagra G., Zacchigna S., et al. (2012). Functional screening identifies miRNAs inducing cardiac regeneration. PubMed DOI
Fadeel B. (2019). Hide and seek: nanomaterial interactions with the immune system. PubMed DOI PMC
Feringa H. H. H., van Waning V. H., Bax J. J., Elhendy A., Boersma E., Schouten O., et al. (2006). Cardioprotective medication is associated with improved survival in patients with peripheral arterial disease. PubMed DOI
Ferrari R., Sponchioni M., Morbidelli M., Moscatelli D. (2018). Polymer nanoparticles for the intravenous delivery of anticancer drugs: the checkpoints on the road from the synthesis to clinical translation. PubMed DOI
Ferreira M. P. A., Talman V., Torrieri G., Liu D., Marques G., Moslova K., et al. (2018). Dual-drug delivery using dextran-functionalized nanoparticles targeting cardiac fibroblasts for cellular reprogramming. DOI
Fish J. E., Santoro M. M., Morton S. U., Yu S., Yeh R.-F., Wythe J. D., et al. (2008). miR-126 regulates angiogenic signaling and vascular integrity. PubMed DOI PMC
Fitamant J., Kottakis F., Benhamouche S., Tian H. S., Chuvin N., Parachoniak C. A., et al. (2015). YAP inhibition restores hepatocyte differentiation in advanced HCC, leading to tumor regression. PubMed DOI PMC
Foglia M. J., Poss K. D. (2016). Building and re-building the heart by cardiomyocyte proliferation. PubMed DOI PMC
Fortuni B., Inose T., Ricci M., Fujita Y., Van Zundert I., Masuhara A., et al. (2019). Polymeric engineering of nanoparticles for highly efficient multifunctional drug delivery systems. PubMed PMC
Fu Y., Huang C., Xu X., Gu H., Ye Y., Jiang C., et al. (2015). Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. PubMed DOI PMC
Fuchs S. Y., Spiegelman V. S., Suresh Kumar K. G. (2004). The many faces of β-TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer. PubMed DOI
Gabisonia K., Prosdocimo G., Aquaro G. D., Carlucci L., Zentilin L., Secco I., et al. (2019). MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. PubMed DOI PMC
Gao F., Kataoka M., Liu N., Liang T., Huang Z.-P., Gu F., et al. (2019). Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction. PubMed PMC
Gavira J. J., Nasarre E., Abizanda G., Perez-Ilzarbe M., de Martino-Rodriguez A., de Jalon J. A. G., et al. (2010). Repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction. PubMed DOI
Giacca M., Zacchigna S. (2015). Harnsessing the microRNA pathway for cardiac regeneration. PubMed DOI
Giner-Casares J. J., Henriksen-Lacey M., Coronado-Puchau M., Liz-Marzán L. M. (2016). Inorganic nanoparticles for biomedicine: where materials scientists meet medical research. DOI
Golombek S. K., May J.-N., Theek B., Appold L., Drude N., Kiessling F., et al. (2018). Tumor targeting via EPR: strategies to enhance patient responses. PubMed DOI PMC
Guo X., Fan C., Tian L., Liu Y., Wang H., Zhao S., et al. (2017). The clinical features, outcomes and genetic characteristics of hypertrophic cardiomyopathy patients with severe right ventricular hypertrophy. PubMed DOI PMC
Harel-Adar T., Mordechai T. B., Amsalem Y., Feinberg M. S., Leor J., Cohen S. (2011). Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. PubMed DOI PMC
Hashimoto H., Olson E. N., Bassel-Duby R. (2018). Therapeutic approaches for cardiac regeneration and repair. PubMed DOI PMC
Hashmi S., Ahmad H. R. (2019). Molecular switch model for cardiomyocyte proliferation. PubMed DOI PMC
Hastings C. L., Roche E. T., Ruiz-Hernandez E., Schenke-Layland K., Walsh C. J., Duffy G. P. (2015). Drug and cell delivery for cardiac regeneration. PubMed DOI
Heallen T., Morikawa Y., Leach J., Tao G., Willerson J. T., Johnson R. L., et al. (2013). Hippo signaling impedes adult heart regeneration. PubMed DOI PMC
Heallen T., Zhang M., Wang J., Bonilla-Claudio M., Klysik E., Johnson R. L., et al. (2011). Hippo pathway inhibits wnt signaling to restrain cardiomyocyte proliferation and heart size. PubMed DOI PMC
Heart Protection Study Collaborative and Group. (2002). MRC/BHF heart protection study of cholesterol lowering with simvastatin in 20 536 high-risk individuals: a randomised placebocontrolled trial. PubMed DOI
Heath J. R. (2015). Nanotechnologies for biomedical science and translational medicine. PubMed DOI PMC
Henry T. D., Annex B. H., McKendall G. R., Azrin M. A., Lopez J. J., Giordano F. J., et al. (2003). The VIVA trial. PubMed
Henry T. D., Rocha-Singh K., Isner J. M., Kereiakes D. J., Giordano F. J., Simons M., et al. (2001). Intracoronary administration of recombinant human vascular endothelial growth factor to patients with coronary artery disease. PubMed DOI
Hershberger R. E., Hedges D. J., Morales A. (2013). Dilated cardiomyopathy: the complexity of a diverse genetic architecture. PubMed DOI
Hershberger R. E., Pinto J. R., Parks S. B., Kushner J. D., Li D., Ludwigsen S., et al. (2009). Clinical and functional characterization of TNNT2 mutations identified in patients with dilated cardiomyopathy. PubMed DOI PMC
Huang W., Feng Y., Liang J., Yu H., Wang C., Wang B., et al. (2018). Loss of microRNA-128 promotes cardiomyocyte proliferation and heart regeneration. PubMed PMC
Ieda M., Fu J.-D., Delgado-Olguin P., Vedantham V., Hayashi Y., Bruneau B. G., et al. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. PubMed DOI PMC
Ikeda S., Mizushima W., Sciarretta S., Abdellatif M., Zhai P., Mukai R., et al. (2019). Hippo deficiency leads to cardiac dysfunction accompanied by cardiomyocyte dedifferentiation during pressure overload. PubMed DOI PMC
Isomi M., Sadahiro T., Ieda M. (2019). Progress and challenge of cardiac regeneration to treat heart failure. PubMed DOI
Jabir N. R., Tabrez S., Ashraf G. M., Shakil S., Damanhouri G. A., Kamal M. A. (2012). Nanotechnology-based approaches in anticancer research. PubMed PMC
Jain P., Arava S., Seth S., Lalwani S., Ray R. (2017). Histological and morphometric analysis of dilated cardiomyopathy with special reference to collagen IV expression. PubMed
Jayawardena T. M., Egemnazarov B., Finch E. A., Zhang L., Payne J. A., Pandya K., et al. (2012). MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. PubMed DOI PMC
Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. PubMed DOI PMC
Juul A., Scheike T., Davidsen M., Gyllenborg J., Jørgensen T. (2002). Low serum insulin-like growth factor I is associated with increased risk of ischemic heart disease. PubMed DOI
Kakimoto Y., Tanaka M., Kamiguchi H., Hayashi H., Ochiai E., Osawa M. (2016). MicroRNA deep sequencing reveals chamber-specific miR-208 family expression patterns in the human heart. PubMed DOI
Kalepu S., Nekkanti V. (2015). Insoluble drug delivery strategies: review of recent advances and business prospects. PubMed DOI PMC
Kalyane D., Raval N., Maheshwari R., Tambe V., Kalia K., Tekade R. K. (2019). Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. PubMed DOI
Katsuki S., Matoba T., Nakashiro S., Sato K., Koga J-i, Nakano K., et al. (2014). Nanoparticle-mediated delivery of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes. PubMed DOI
Kee P. H., Danila D. (2018). CT imaging of myocardial scar burden with CNA35-conjugated gold nanoparticles. PubMed DOI
Kulaberoglu Y., Lin K., Holder M., Gai Z., Gomez M., Assefa Shifa B., et al. (2017). Stable MOB1 interaction with Hippo/MST is not essential for development and tissue growth control. PubMed PMC
Lee E. J., Baek M., Gusev Y., Brackett D. J., Nuovo G. J., Schmittgen T. D. (2008). Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. PubMed DOI PMC
Lee K., Conboy M., Park H. M., Jiang F., Kim H. J., Dewitt M. A., et al. (2017). Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. PubMed DOI PMC
Lee S. W. L., Paoletti C., Campisi M., Osaki T., Adriani G., Kamm R. D., et al. (2019). MicroRNA delivery through nanoparticles. PubMed DOI PMC
Liu J., Chang J., Jiang Y., Meng X., Sun T., Mao L., et al. (2019). Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles. PubMed DOI PMC
Liu N., Bezprozvannaya S., Williams A. H., Qi X., Richardson J. A., Bassel-Duby R., et al. (2008). microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. PubMed DOI PMC
Liu N., Williams A. H., Kim Y., McAnally J., Bezprozvannaya S., Sutherland L. B., et al. (2007). An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. PubMed DOI PMC
Lopes L. R., Syrris P., Guttmann O. P., O’Mahony C., Tang H. C., Dalageorgou C., et al. (2015). Novel genotype-phenotype associations demonstrated by high-throughput sequencing in patients with hypertrophic cardiomyopathy. PubMed DOI PMC
Loyer X., Potteaux S., Vion A.-C., Guérin C. L., Boulkroun S., Rautou P.-E., et al. (2014). Inhibition of MicroRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. PubMed DOI
Lu L., Liu M., Sun R., Zheng Y., Zhang P. J. C. B. (2015). Biophysics. PubMed
Lundy D. J., Chen K.-H., Toh E. K. W., Hsieh P. C. H. (2016). Distribution of systemically administered nanoparticles reveals a size-dependent effect immediately following cardiac ischaemia-reperfusion injury. PubMed PMC
Madonna R., Van Laake L. W., Davidson S. M., Engel F. B., Hausenloy D. J., Lecour S., et al. (2016). Position paper of the european society of cardiology working group cellular biology of the heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. PubMed DOI PMC
Marian A. J., Braunwald E. (2017). Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. PubMed DOI PMC
Marino F., Scalise M., Cianflone E., Mancuso T., Aquila I., Agosti V., et al. (2019). Role of c-kit in myocardial regeneration and aging. PubMed DOI PMC
Martino F., Perestrelo A. R., Vinarskı V., Pagliari S., Forte G. (2018). Cellular mechanotransduction: from tension to function. PubMed DOI PMC
Mazzarotto F., Girolami F., Boschi B., Barlocco F., Tomberli A., Baldini K., et al. (2019). Defining the diagnostic effectiveness of genes for inclusion in panels: the experience of two decades of genetic testing for hypertrophic cardiomyopathy at a single center. PubMed DOI PMC
Menasché P. (2018). Cell therapy trials for heart regeneration — lessons learned and future directions. PubMed DOI
Meng Z., Moroishi T., Guan K.-L. (2016). Mechanisms of hippo pathway regulation. PubMed DOI PMC
Miragoli M., Ceriotti P., Iafisco M., Vacchiano M., Salvarani N., Alogna A., et al. (2018). Inhalation of peptide-loaded nanoparticles improves heart failure. PubMed DOI
Mitrut R., Stepan A. E., Pirici D. (2018). Histopathological aspects of the myocardium in dilated cardiomyopathy. PubMed DOI PMC
Miyagawa S., Domae K., Yoshikawa Y., Fukushima S., Nakamura T., Saito A., et al. (2017). Phase I clinical trial of autologous stem cell-sheet transplantation therapy for treating cardiomyopathy. PubMed PMC
Miyasaka K. Y., Kida Y. S., Banjo T., Ueki Y., Nagayama K., Matsumoto T., et al. (2011). Heartbeat regulates cardiogenesis by suppressing retinoic acid signaling via expression of miR-143. PubMed DOI
Mohamed T. M. A., Ang Y. S., Radzinsky E., Zhou P., Huang Y., Elfenbein A., et al. (2018). Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. PubMed PMC
Morton S. U., Scherz P. J., Cordes K. R., Ivey K. N., Stainier D. Y. R., Srivastava D. (2008). microRNA-138 modulates cardiac patterning during embryonic development. PubMed DOI PMC
Muchtar E., Blauwet L. A., Gertz M. A. (2017). Restrictive cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. PubMed DOI
Müller P., Lemcke H., David R. (2018). Stem cell therapy in heart diseases – Cell types, mechanisms and improvement strategies. PubMed DOI
Nam Y.-J., Song K., Luo X., Daniel E., Lambeth K., West K., et al. (2013). Reprogramming of human fibroblasts toward a cardiac fate. PubMed DOI PMC
Nardone G., Oliver-De, La Cruz J., Vrbsky J., Martini C., Pribyl J., et al. (2017). YAP regulates cell mechanics by controlling focal adhesion assembly. PubMed PMC
Nef H. M., Möllmann H., Akashi Y. J., Hamm C. W. (2010). Mechanisms of stress (Takotsubo) cardiomyopathy. PubMed
Nguyen M. M., Carlini A. S., Chien M.-P., Sonnenberg S., Luo C., Braden R. L., et al. (2015). Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction. PubMed DOI PMC
Odashima M., Usui S., Takagi H., Hong C., Liu J., Yokota M., et al. (2007). Inhibition of endogenous Mst1 prevents apoptosis and cardiac dysfunction without affecting cardiac hypertrophy after myocardial infarction. PubMed DOI
Oduk Y., Zhu W., Kannappan R., Zhao M., Borovjagin A. V., Oparil S., et al. (2018). VEGF nanoparticles repair the heart after myocardial infarction. PubMed PMC
Patil Y., Panyam J. (2009). Polymeric nanoparticles for siRNA delivery and gene silencing. PubMed DOI PMC
Patra J. K., Das G., Fraceto L. F., Campos E. V. R., Rodriguez-Torres MdP, et al. (2018). Nano based drug delivery systems: recent developments and future prospects. PubMed PMC
Paulis L. E., Geelen T., Kuhlmann M. T., Coolen B. F., Schäfers M., Nicolay K., et al. (2012). Distribution of lipid-based nanoparticles to infarcted myocardium with potential application for MRI-monitored drug delivery. PubMed DOI
Pelaz B., Alexiou C., Alvarez-Puebla R. A., Alves F., Andrews A. M., Ashraf S., et al. (2017). Diverse applications of nanomedicine. PubMed PMC
Penny W. F., Hammond H. K. (2017). Randomized clinical trials of gene transfer for heart failure with reduced ejection fraction. PubMed DOI PMC
Plouffe S. W., Meng Z., Lin K. C., Lin B., Hong A. W., Chun J. V., et al. (2016). Characterization of hippo pathway components by gene inactivation. PubMed DOI PMC
Pollack A., Kontorovich A. R., Fuster V., Dec G. W. (2015). Viral myocarditis—diagnosis, treatment options, and current controversies. PubMed DOI
Popara J., Accomasso L., Vitale E., Gallina C., Roggio D., Iannuzzi A., et al. (2018). Silica nanoparticles actively engage with mesenchymal stem cells in improving acute functional cardiac integration. PubMed DOI
Porrello E. R., Johnson B. A., Aurora A. B., Simpson E., Nam Y.-J., Matkovich S. J., et al. (2011a). miR-15 Family regulates postnatal mitotic arrest of cardiomyocytes. PubMed DOI PMC
Porrello E. R., Mahmoud A. I., Simpson E., Hill J. A., Richardson J. A., Olson E. N., et al. (2011b). Transient regenerative potential of the neonatal mouse heart. PubMed DOI PMC
Psaltis P. J., Carbone A., Nelson A. J., Lau D. H., Jantzen T., Manavis J., et al. (2010). Reparative effects of allogeneic mesenchymal precursor cells delivered transendocardially in experimental nonischemic cardiomyopathy. PubMed DOI
Qin F., Tian J., Zhou D., Chen L. (2013). Mst1 and Mst2 kinases: regulations and diseases. PubMed DOI PMC
Qin X., Chen H., Yang H., Wu H., Zhao X., Wang H., et al. (2018). Photoacoustic imaging of embryonic stem cell-derived cardiomyocytes in living hearts with ultrasensitive semiconducting polymer nanoparticles. PubMed DOI PMC
Raso A., Dirkx E. (2017). Cardiac regenerative medicine: at the crossroad of microRNA function and biotechnology. PubMed DOI PMC
Raval A. N., Cook T. D., Duckers H. J., Johnston P. V., Traverse J. H., Abraham W. T., et al. (2018). The CardiAMP heart failure trial: a randomized controlled pivotal trial of high-dose autologous bone marrow mononuclear cells using the CardiAMP cell therapy system in patients with post–myocardial infarction heart failure: trial rationale and study design. PubMed DOI
Rebouças JdS, Santos-Magalhães N. S., Formiga F. R. (2016). Cardiac regeneration using growth factors: advances and challenges. PubMed PMC
Rikhtegar R., Pezeshkian M., Dolati S., Safaie N., Afrasiabi Rad A., Mahdipour M., et al. (2019). Stem cells as therapy for heart disease: iPSCs, ESCs, CSCs, and skeletal myoblasts. PubMed DOI
Rochette L., Zeller M., Cottin Y., Vergely C. (2015). Growth and differentiation factor 11 (GDF11): functions in the regulation of erythropoiesis and cardiac regeneration. PubMed DOI
Rothbauer M., Rosser J. M., Zirath H., Ertl P. (2019). Tomorrow today: organ-on-a-chip advances towards clinically relevant pharmaceutical and medical in vitro models. PubMed DOI
Sanganalmath S. K., Bolli R. (2013). Cell therapy for heart failure. PubMed PMC
Schafer S., de Marvao A., Adami E., Fiedler L. R., Ng B., Khin E., et al. (2016). Titin-truncating variants affect heart function in disease cohorts and the general population. PubMed DOI PMC
Schultheiss H.-P., Fairweather D., Caforio A. L. P., Escher F., Hershberger R. E., Lipshultz S. E., et al. (2019). Dilated cardiomyopathy. PubMed PMC
Scott R. C., Rosano J. M., Ivanov Z., Wang B., Chong P. L.-G., Issekutz A. C., et al. (2009). Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. PubMed DOI
Senyo S. E., Steinhauser M. L., Pizzimenti C. L., Yang V. K., Cai L., Wang M., et al. (2013). Mammalian heart renewal by pre-existing cardiomyocytes. PubMed DOI PMC
Sercombe L., Veerati T., Moheimani F., Wu S. Y., Sood A. K., Hua S. (2015). Advances and challenges of liposome assisted drug delivery. PubMed DOI PMC
Simons M., Annex B. H., Laham R. J., Kleiman N., Henry T., Dauerman H., et al. (2002). Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2. 105 788–793. 10.1161/hc0802.104407 PubMed DOI
Sioud M. (2005). On the delivery of small interfering RNAs into mammalian cells. PubMed DOI
Sluijter J. P. G., Mil A. V., Vliet P. V., Metz C. H. G. (2010). MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. PubMed DOI
Small E. M., O’Rourke J. R., Moresi V., Sutherland L. B., McAnally J., Gerard R. D., et al. (2010). Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. PubMed DOI PMC
Smith A. J., Lewis F. C., Aquila I., Waring C. D., Nocera A., Agosti V., et al. (2014). Isolation and characterization of resident endogenous c-Kit+ cardiac stem cells from the adult mouse and rat heart. PubMed DOI
Song K., Nam Y.-J., Luo X., Qi X., Tan W., Huang G. N., et al. (2012). Heart repair by reprogramming non-myocytes with cardiac transcription factors. PubMed DOI PMC
Taimeh Z., Loughran J., Birks E. J., Bolli R. (2013). Vascular endothelial growth factor in heart failure. PubMed
Tanai E., Frantz S. (2015). Pathophysiology of heart failure. PubMed
Tang F., Gao R., Jeevan-Raj B., Wyss C. B., Kalathur R. K. R., Piscuoglio S., et al. (2019). LATS1 but not LATS2 represses autophagy by a kinase-independent scaffold function. PubMed PMC
Tao G., Kahr P. C., Morikawa Y., Zhang M., Rahmani M., Heallen T. R., et al. (2016). Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury. PubMed DOI PMC
thebiogrid.org. (2019). Available from: https://thebiogrid.org/115684.
Thum T., Gross C., Fiedler J., Fischer T., Kissler S., Bussen M., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. PubMed DOI
Tian Y., Liu Y., Wang T., Zhou N., Kong J., Chen L., et al. (2015). A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. PubMed PMC
Torrini C., Cubero R. J., Dirkx E., Braga L., Ali H., Prosdocimo G., et al. (2019). Common regulatory pathways mediate activity of microRNAs inducing cardiomyocyte proliferation. PubMed DOI PMC
Traverse J. H., Henry T. D., Dib N., Patel A. N., Pepine C., Schaer G. L., et al. (2019). First-in-man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients. PubMed DOI PMC
Troncoso R., Ibarra C., Vicencio J. M., Jaimovich E., Lavandero S. (2014). New insights into IGF-1 signaling in the heart. PubMed DOI
Tzahor E., Poss K. D. (2017). Cardiac regeneration strategies: staying young at heart. PubMed DOI PMC
U.S. Department of Health & Human Services (2013).
U.S. National Library of Medicine.
U.S. National Library of Medicine.
U.S. National Library of Medicine (2013).
U.S. National Library of Medicine (2014a).
U.S. National Library of Medicine (2014b).
U.S. National Library of Medicine (2019a). A Study of VentriGel in Post-MI Patient. Available online at: ClinicalTrials.gov UNLom
U.S. National Library of Medicine (2019b).
U.S. National Library of Medicine (2019c).
U.S. National Library of Medicine (2019d).
U.S. National Library of Medicine (2020a).
U.S. National Library of Medicine (2020b).
U.S. National Library of Medicine (2020c).
Unger E. F., Goncalves L., Epstein S. E., Chew E. Y., Trapnell C. B., Cannon R. O., III, et al. (2000). Effects of a single intracoronary injection of basic fibroblast growth factor in stable angina pectoris. PubMed DOI
Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J. J., Lötvall J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. PubMed DOI
van der Meel R., Lammers T., Hennink W. E. (2017). Cancer nanomedicines: oversold or underappreciated? PubMed DOI PMC
van Rooij E., Sutherland L. B., Liu N., Williams A. H., McAnally J., Gerard R. D., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. PubMed DOI PMC
Varelas X. (2014). The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. PubMed DOI
Velzen HGv, Schinkel A. F. L., Baart S. J., Oldenburg R. A., Frohn-Mulder I. M. E., et al. (2018). Outcomes of contemporary family screening in hypertrophic cardiomyopathy. PubMed
Vicinanza C., Aquila I., Scalise M., Cristiano F., Marino F., Cianflone E., et al. (2017). Adult cardiac stem cells are multipotent and robustly myogenic: c-kit expression is necessary but not sufficient for their identification. PubMed DOI PMC
Vikhorev P. G., Vikhoreva N. N. (2018). Cardiomyopathies and related changes in contractility of human heart muscle. PubMed PMC
von Gise A., Lin Z., Schlegelmilch K., Honor L. B., Pan G. M., Buck J. N., et al. (2012). YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. PubMed DOI PMC
Wada R., Muraoka N., Inagawa K., Yamakawa H., Miyamoto K., Sadahiro T., et al. (2013). Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. PubMed PMC
Wahlquist C., Jeong D., Rojas-Muñoz A., Kho C., Lee A., Mitsuyama S., et al. (2014). Inhibition of miR-25 improves cardiac contractility in the failing heart. PubMed DOI PMC
Wang H. P., Zhang W. H., Wang X. F., Zhu J., Zheng Y. Q., Xia Q., et al. (2014). Exposure to AT1 receptor autoantibodies during pregnancy increases susceptibility of the maternal heart to postpartum ischemia-reperfusion injury in rats. PubMed DOI PMC
Wang J., Liu S., Heallen T., Martin J. F. (2018). The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. PubMed DOI
Wang L. V., Hu S. (2012). Photoacoustic tomography: in vivo imaging from organelles to organs. PubMed DOI PMC
Watkins H., Ashrafian H., Redwood C. (2011). Inherited cardiomyopathies. PubMed
Watt K. I., Turner B. J., Hagg A., Zhang X., Davey J. R., Qian H., et al. (2015). The Hippo pathway effector YAP is a critical regulator of skeletal muscle fibre size. PubMed
Weis S. M. (2008). Vascular permeability in cardiovascular disease and cancer. PubMed DOI
Whyte W., Roche E. T., Varela C. E., Mendez K., Islam S., O’Neill H., et al. (2018). Sustained release of targeted cardiac therapy with a replenishable implanted epicardial reservoir. PubMed DOI
World Health Organization (2019).
Xi D., Dong S., Meng X., Lu Q., Meng L., Ye J. (2012). Gold nanoparticles as computerized tomography (CT) contrast agents.
Xiong F., Wang H., Feng Y., Li Y., Hua X., Pang X., et al. (2015). Cardioprotective activity of iron oxide nanoparticles. PubMed PMC
Xu Z., Zhu W., Wang C., Huang L., Zhou Q., Hu J., et al. (2017). Genotype-phenotype relationship in patients with arrhythmogenic right ventricular cardiomyopathy caused by desmosomal gene mutations: a systematic review and meta-analysis. PubMed PMC
Xue X., Shi X., Dong H., You S., Cao H., Wang K., et al. (2018). Delivery of microRNA-1 inhibitor by dendrimer-based nanovector: an early targeting therapy for myocardial infarction in mice. PubMed DOI
Yang H., Qin X., Wang H., Zhao X., Liu Y., Wo H.-T., et al. (2019). An in vivo miRNA delivery system for restoring infarcted myocardium. PubMed DOI PMC
Yildirimer L., Thanh N. T. K., Loizidou M., Seifalian A. M. (2011). Toxicology and clinical potential of nanoparticles. PubMed DOI PMC
Yokoyama R., Ii M., Masuda M., Tabata Y., Hoshiga M., Ishizaka N., et al. (2019). Cardiac regeneration by statin-polymer nanoparticle-loaded adipose-derived stem cell therapy in myocardial infarction. PubMed DOI PMC
Yu M., Wu J., Shi J., Farokhzad O. C. (2016). Nanotechnology for protein delivery: overview and perspectives. PubMed DOI PMC
Zeng X.-H., Zeng X.-J., Li Y.-Y. (2003). Efficacy and safety of berberine for congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. PubMed DOI
Zhang B.-F., Jiang H., Chen J., Hu Q., Yang S., Liu X.-P. (2019). Silica-coated magnetic nanoparticles labeled endothelial progenitor cells alleviate ischemic myocardial injury and improve long-term cardiac function with magnetic field guidance in rats with myocardial infarction. PubMed DOI PMC
Zhang L., Gu F., Chan J., Wang A., Langer R., Farokhzad O. (2008). Nanoparticles in medicine: therapeutic applications and developments. PubMed DOI
Zhang S., Zhao B., Jiang H., Wang B., Ma B. (2007). Cationic lipids and polymers mediated vectors for delivery of siRNA. PubMed DOI
Zhao H., Lin Z. Y., Yildirimer L., Dhinakar A., Zhao X., Wu J. (2016). Polymer-based nanoparticles for protein delivery: design, strategies and applications. PubMed DOI
Zhao Y., Ransom J. F., Li A., Vedantham V., von Drehle M., Muth A. N., et al. (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. PubMed DOI
Zhao Y., Samal E., Srivastava D. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. PubMed DOI
Regulation of Cell-Nanoparticle Interactions through Mechanobiology