Cellular Mechanotransduction: From Tension to Function
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
30026699
PubMed Central
PMC6041413
DOI
10.3389/fphys.2018.00824
Knihovny.cz E-zdroje
- Klíčová slova
- focal adhesion, mechanobiology, mechanosensor, mechanotransduction, nucleoskeleton,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Living cells are constantly exposed to mechanical stimuli arising from the surrounding extracellular matrix (ECM) or from neighboring cells. The intracellular molecular processes through which such physical cues are transformed into a biological response are collectively dubbed as mechanotransduction and are of fundamental importance to help the cell timely adapt to the continuous dynamic modifications of the microenvironment. Local changes in ECM composition and mechanics are driven by a feed forward interplay between the cell and the matrix itself, with the first depositing ECM proteins that in turn will impact on the surrounding cells. As such, these changes occur regularly during tissue development and are a hallmark of the pathologies of aging. Only lately, though, the importance of mechanical cues in controlling cell function (e.g., proliferation, differentiation, migration) has been acknowledged. Here we provide a critical review of the recent insights into the molecular basis of cellular mechanotransduction, by analyzing how mechanical stimuli get transformed into a given biological response through the activation of a peculiar genetic program. Specifically, by recapitulating the processes involved in the interpretation of ECM remodeling by Focal Adhesions at cell-matrix interphase, we revise the role of cytoskeleton tension as the second messenger of the mechanotransduction process and the action of mechano-responsive shuttling proteins converging on stage and cell-specific transcription factors. Finally, we give few paradigmatic examples highlighting the emerging role of malfunctions in cell mechanosensing apparatus in the onset and progression of pathologies.
Competence Center for Mechanobiology in Regenerative Medicine INTERREG ATCZ133 Brno Czechia
Department of Biology Faculty of Medicine Masaryk University Brno Czechia
Department of Biomaterials Science Institute of Dentistry University of Turku Turku Finland
Zobrazit více v PubMed
Akhtar A., Gasser S. M. (2007). The nuclear envelope and transcriptional control. Nat. Rev. Genet. 8 507–517. 10.1038/nrg2122 PubMed DOI
Amano M., Ito M., Fukata Y., Chihara K., Nakano T., Matsuura Y., et al. (1996). Phosphorylation and activation of Myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271 20246–20249. 10.1074/jbc.271.34.20246 PubMed DOI
Arnal I., Wade R. H. (1995). How does taxol stabilize microtubules? Curr. Biol. 5 900–908. 10.1016/S0960-9822(95)00180-1 PubMed DOI
Bae Y. H., Mui K. L., Hsu B. Y., Liu S. L., Cretu A., Razinia Z., et al. (2014). A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling. Sci. Signal. 7:ra57. 10.1126/scisignal.2004838 PubMed DOI PMC
Bell S., Terentjev E. M. (2017). Focal adhesion kinase: the reversible molecular mechanosensor. Biophys. J. 112 2439–2450. 10.1016/j.bpj.2017.04.048 PubMed DOI PMC
Berginski M. E., Vitriol E. A., Hahn K. M., Gomez S. M. (2011). High-resolution quantification of focal adhesion spatiotemporal dynamics in living cells. PLoS One 6:e22025. 10.1371/journal.pone.0022025 PubMed DOI PMC
Bertrand A. T., Ziaei S., Ehret C., Duchemin H., Mamchaoui K., Bigot A., et al. (2014). Cellular microenvironments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors. J. Cell Sci. 127(Pt 13), 2873–2884. 10.1242/jcs.144907 PubMed DOI
Bhana B., Iyer R. K., Chen W. L. K., Zhao R., Sider K. L., Likhitpanichkul M., et al. (2010). Influence of substrate stiffness on the phenotype of heart cells. Biotechnol. Bioeng. 105 1148–1160. 10.1002/bit.22647 PubMed DOI
Bollati M., Barbiroli A., Favalli V., Arbustini E., Charron P., Bolognesi M. (2012). Structures of the lamin A/C R335W and E347K mutants: implications for dilated cardiolaminopathies. Biochem. Biophys. Res. Commun. 418 217–221. 10.1016/j.bbrc.2011.12.136 PubMed DOI
Booth-Gauthier E. A., Alcoser T. A., Yang G., Dahl K. N. (2012). Force-induced changes in subnuclear movement and rheology. Biophys. J. 103 2423–2431. 10.1016/j.bpj.2012.10.039 PubMed DOI PMC
Brayson D., Shanahan C. M. (2017). Current insights into LMNA cardiomyopathies: Existing models and missing LINCs. Nucleus 8 17–33. 10.1080/19491034.2016.1260798 PubMed DOI PMC
Brown R. A., Prajapati R., McGrouther D. A., Yannas I. V., Eastwood M. (1998). Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates. J. Cell. Physiol. 175 323–332. 10.1002/(SICI)1097-4652(199806)175:3<323::AID-JCP10>3.0.CO;2-6 PubMed DOI
Brown S. S., Spudich J. A. (1981). Mechanism of action of cytochalasin: evidence that it binds to actin filament ends. J. Cell Biol. 88 487–491. 10.1083/jcb.88.3.487 PubMed DOI PMC
Bubb M. R., Senderowicz A. M. J., Sausville E. A., Duncan K. L. K., Korn E. D. (1994). Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J. Biol. Chem. 269 14869–14871. PubMed
Bubb M. R., Spector I., Beyer B. B., Fosen K. M. (2000). Effects of Jasplakinolide on the kinetics of actin polymerization an explanation for certain in vivo observations. J. Biol. Chem. 275 5163–5170. 10.1074/jbc.275.7.5163 PubMed DOI
Bugyi B., Carlier M.-F. (2010). Control of actin filament treadmilling in cell motility. Annu. Rev. Biophys. 39 449–470. 10.1146/annurev-biophys-051309-103849 PubMed DOI
Burke B., Roux K. J. (2009). Nuclei take a position: managing nuclear location. Dev. Cell 17 587–597. 10.1016/j.devcel.2009.10.018 PubMed DOI
Burridge K., Chrzanowska-Wodnicka M. (1996). Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 12 463–519. 10.1146/annurev.cellbio.12.1.463 PubMed DOI
Buxboim A., Swift J., Irianto J., Spinler K. R., Dingal P. C. D. P., Athirasala A., et al. (2014). Matrix elasticity regulates lamin-A,C phosphorylation and turnover with feedback to actomyosin. Curr. Biol. 24 1909–1917. 10.1016/j.cub.2014.07.001 PubMed DOI PMC
Cai Y., Rossier O., Gauthier N. C., Biais N., Fardin M.-A., Zhang X., et al. (2010). Cytoskeletal coherence requires myosin-IIA contractility. J. Cell Sci. 123 413–423. 10.1242/jcs.058297 PubMed DOI PMC
Calvo F., Ege N., Grande-Garcia A., Hooper S., Jenkins R. P., Chaudhry S. I., et al. (2013). Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15 637–646. 10.1038/ncb2756 PubMed DOI PMC
Camozzi D., Capanni C., Cenni V., Mattioli E., Columbaro M., Squarzoni S., et al. (2014). Diverse lamin-dependent mechanisms interact to control chromatin dynamics, focus on laminopathies. Nucleus 5 427–440. 10.4161/nucl.36289 PubMed DOI PMC
Capell B. C., Collins F. S. (2006). Human laminopathies: nuclei gone genetically awry. Nat. Rev. Genet. 7 940–952. 10.1038/nrg1906 PubMed DOI
Carisey A., Tsang R., Greiner A. M., Nijenhuis N., Heath N., Nazgiewicz A., et al. (2013). Vinculin regulates the recruitment and release of core focal adhesion proteins in a force-dependent manner. Curr. Biol. 23 271–281. 10.1016/j.cub.2013.01.009 PubMed DOI PMC
Cattaruzza M., Lattrich C., Hecker M. (2004). Focal adhesion protein zyxin is a mechanosensitive modulator of gene expression in vascular smooth muscle cells. Hypertension 43 726–730. 10.1161/01.HYP.0000119189.82659.52 PubMed DOI
Cavalcanti-Adam E. A., Volberg T., Micoulet A., Kessler H., Geiger B., Spatz J. P. (2007). Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J. 92 2964–2974. 10.1529/biophysj.106.089730 PubMed DOI PMC
Chambliss A. B., Khatau S. B., Erdenberger N., Robinson D. K., Hodzic D., Longmore G. D., et al. (2013). The LINC-anchored actin cap connects the extracellular milieu to the nucleus for ultrafast mechanotransduction. Sci. Rep. 3:1087. 10.1038/srep01087 PubMed DOI PMC
Chang J., Xie M., Shah V. R., Schneider M. D., Entman M. L., Wei L., et al. (2006). Activation of Rho-associated coiled-coil protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proc. Natl. Acad. Sci. U.S.A. 103 14495–14500. 10.1073/pnas.0601911103 PubMed DOI PMC
Chang T. T., Thakar D., Weaver V. M. (2017). Force-dependent breaching of the basement membrane. Matrix Biol. 5 178–189. 10.1016/j.matbio.2016.12.005 PubMed DOI PMC
Chen C. Y., Chi Y. H., Mutalif R. A., Starost M. F., Myers T. G., Anderson S. A., et al. (2012). Accumulation of the inner nuclear envelope protein Sun1 is pathogenic in progeric and dystrophic laminopathies. Cell 149 565–577. 10.1016/j.cell.2012.01.059 PubMed DOI PMC
Chen T. J., Wu C. C., Tang M. J., Huang J. S., Su F. C. (2010). Complexity of the tensegrity structure for dynamic energy and force distribution of cytoskeleton during cell spreading. PLoS One 5:e14392. 10.1371/journal.pone.0014392 PubMed DOI PMC
Chen W., Lou J., Evans E. A., Zhu C. (2012). Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells. J. Cell Biol. 199 497–512. 10.1083/jcb.201201091 PubMed DOI PMC
Chen Z.-J., Wang W.-P., Chen Y.-C., Wang J.-Y., Lin W.-H., Tai L.-A., et al. (2014). Dysregulated interactions between lamin A and SUN1 induce abnormalities in the nuclear envelope and endoplasmic reticulum in progeric laminopathies. J. Cell Sci. 127 1792–1804. 10.1242/jcs.139683 PubMed DOI
Cho S., Irianto J., Discher D. E. (2017). Mechanosensing by the nucleus: from pathways to scaling relationships. J. Cell Biol. 216 305–315. 10.1083/jcb.201610042 PubMed DOI PMC
Chorev D. S., Volberg T., Livne A., Eisenstein M., Martins B., Kam Z., et al. (2018). Conformational states during vinculin unlocking differentially regulate focal adhesion properties. Sci. Rep 8:2693. 10.1038/s41598-018-21006-8 PubMed DOI PMC
Ciobanasu C., Wang H., Henriot V., Mathieu C., Fente A., Csillag S., et al. (2018). Integrin-bound talin head inhibits actin filament barbed-end elongation. J. Biol. Chem. 293 2586–2596. 10.1074/jbc.M117.808204 PubMed DOI PMC
Colombelli J., Besser A., Kress H., Reynaud E. G., Girard P., Caussinus E., et al. (2009). Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization. J. Cell Sci. 122 1928–1928. 10.1242/jcs.054577 PubMed DOI
Comisar W., Mooney D., Linderman J. (2012). Integrin organization?: linking adhesion ligand nanapatterns with altered cell responses. J. Theor. Biol. 274 120–130. 10.1016/j.jtbi.2011.01.007.Integrin PubMed DOI PMC
Cramer L. P., Siebert M., Mitchison T. J. (1997). Identification of novel graded polarity actin filament bundles in locomoting heart fibroblasts: Implications for the generation of motile force. J. Cell Biol. 136 1287–1305. 10.1083/jcb.136.6.1287 PubMed DOI PMC
Crisp M., Liu Q., Roux K., Rattner J. B., Shanahan C., Burke B., et al. (2006). Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172 41–53. 10.1083/jcb.200509124 PubMed DOI PMC
Dahl K. N., Kalinowski A. (2011). Nucleoskeleton mechanics at a glance. J. Cell Sci. 124 675–678. 10.1242/jcs.069096 PubMed DOI PMC
Dahl K. N., Ribeiro A. J. S., Lammerding J. (2008). Nuclear shape, mechanics, and mechanotransduction. Circ. Res. 102 1307–1318. 10.1161/CIRCRESAHA.108.173989 PubMed DOI PMC
Darenfed H., Dayanandan B., Zhang T., Hsieh S. H.-K., Fournier A. E., Mandato C. A. (2007). Molecular characterization of the effects of Y-27632. Cell Motil. Cytoskeleton 64 97–109. 10.1002/cm.20168 PubMed DOI
De Sandre-Giovannoli A., Chaouch M., Kozlov S., Vallat J.-M., Tazir M., Kassouri N., et al. (2002). Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (charcot-marie-tooth disorder type 2) and mouse. Am. J. Hum. Genet. 70 726–736. 10.1086/339274 PubMed DOI PMC
del Rio A., Perez-Jimenez R., Liu R., Roca-Cusachs P., Fernandez J. M., Sheetz M. P. (2009). Stretching single talin rod molecules activates vinculin binding. Science 323 638–641. 10.1126/science.1162912 PubMed DOI PMC
Discher D. E. (2005). Tissue cells feel and respon to the stiffness of their substrate. Science 310 1139–1143. 10.1126/science.1116995 PubMed DOI
Doe C., Bentley R., Behm D. J., Lafferty R., Stavenger R., Jung D., et al. (2007). Novel Rho kinase inhibitors with anti-inflammatory and vasodilatory activities. J. Pharmacol. Exp. Ther. 320 89–98. 10.1124/jpet.106.110635 PubMed DOI
Dong J.-M., Lau L.-S., Ng Y.-W., Lim L., Manser E. (2009). Paxillin nuclear-cytoplasmic localization is regulated by phosphorylation of the LD 4 motif: evidence that nuclear paxillin promotes cell proliferation. Biochem. J. 418 173–184. 10.1042/BJ20080170 PubMed DOI
Dorner D., Gotzmann J., Foisner R. (2007). Nucleoplasmic lamins and their interaction partners, LAP2α, Rb, and BAF, in transcriptional regulation. FEBS J. 274 1362–1373. 10.1111/j.1742-4658.2007.05695.x PubMed DOI
dos Santos P. B., Zanetti J. S., Ribeiro-Silva A., Beltrão E. I. C. (2012). Beta 1 integrin predicts survival in breast cancer: a clinicopathological and immunohistochemical study. Diagn. Pathol. 7:104. 10.1186/1746-1596-7-104 PubMed DOI PMC
Driscoll T. P., Cosgrove B. D., Heo S. J., Shurden Z. E., Mauck R. L. (2015). Cytoskeletal to nuclear strain transfer regulates YAP signaling in mesenchymal stem cells. Biophys. J. 108 2783–2793. 10.1016/j.bpj.2015.05.010 PubMed DOI PMC
Dumbauld D. W., Lee T. T., Singh A., Scrimgeour J., Gersbach C. A., Zamir E. A., et al. (2013). How vinculin regulates force transmission. Proc. Natl. Acad. Sci. U.S.A. 110 9788–9793. 10.1073/pnas.1216209110 PubMed DOI PMC
Dupont S., Morsut L., Aragona M., Enzo E., Giulitti S., Cordenonsi M., et al. (2011). Role of YAP/TAZ in mechanotransduction. Nature 474 179–184. 10.1038/nature10137 PubMed DOI
Elosegui-Artola A., Andreu I., Beedle A. E. M., Lezamiz A., Uroz M., Kosmalska A. J., et al. (2017). Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171 1397.e14–1410.e14. 10.1016/j.cell.2017.10.008 PubMed DOI
Emery A. E., Dreifuss F. E. (1966). Unusual type of benign x-linked muscular dystrophy. J. Neurol. Neurosurg. Psychiatry 29 338–342. 10.1136/jnnp.29.4.338 PubMed DOI PMC
Engler A. J., Carag-Krieger C., Johnson C. P., Raab M., Tang H.-Y., Speicher D. W., et al. (2008). Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J. Cell Sci. 121 3794–3802. 10.1242/jcs.029678 PubMed DOI PMC
Engler A. J., Griffin M. A., Sen S., Bönnemann C. G., Sweeney H. L., Discher D. E. (2004). Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166 877–887. 10.1083/jcb.200405004 PubMed DOI PMC
Engler A. J., Sen S., Sweeney H. L., Discher D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell 126 677–689. 10.1016/j.cell.2006.06.044 PubMed DOI
Estes J. E., Selden L. A., Gershman L. C. (1981). Mechanism of action of phalloidin on the polymerization of muscle actin. Biochemistry 20 708–712. 10.1021/bi00507a006 PubMed DOI
Even-Ram S., Doyle A. D., Conti M. A., Matsumoto K., Adelstein R. S., Yamada K. M. (2007). Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nat. Cell Biol. 9 299–309. 10.1038/ncb1540 PubMed DOI
Fabry B., Klemm A. H., Kienle S., Schäffer T. E., Goldmann W. H. (2011). Focal adhesion kinase stabilizes the cytoskeleton. Biophys. J. 101 2131–2138. 10.1016/j.bpj.2011.09.043 PubMed DOI PMC
Fabry B., Maksym G. N., Butler J. P., Glogauer M., Navajas D., Fredberg J. J. (2001). Scaling the microrheology of living cells. Phys. Rev. Lett. 87:148102. 10.1103/PhysRevLett.87.148102 PubMed DOI
Fan R., Kim N.-G., Gumbiner B. M. (2013). Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc. Natl. Acad. Sci. U.S.A. 110 2569–2574. 10.1073/pnas.1216462110 PubMed DOI PMC
Fedorchak G. R., Kaminski A., Lammerding J. (2014). Cellular mechanosensing: Getting to the nucleus of it all. Prog. Biophys. Mol. Biol. 115 76–92. 10.1016/j.pbiomolbio.2014.06.009 PubMed DOI PMC
Fidziańska A., Hausmanowa-Petrusewicz I. (2003). Architectural abnormalities in muscle nuclei. Ultrastructural differences between X-linked and autosomal dominant forms of EDMD. J. Neurol. Sci. 210 47–51. 10.1016/S0022-510X(03)00012-1 PubMed DOI
Filippi M.-D. (2016). Chapter two - mechanism of diapedesis: importance of the transcellular route. Adv. Immunol. 129 25–53. 10.1016/bs.ai.2015.09.001 PubMed DOI PMC
Fink J., Carpi N., Betz T., Bétard A., Chebah M., Azioune A., et al. (2011). External forces control mitotic spindle positioning. Nat. Cell Biol. 13 771–778. 10.1038/ncb2269 PubMed DOI
Flatau G., Lemichez E., Gauthier M., Chardin P., Paris S., Florentini C., et al. (1997). Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387 729–733. 10.1038/42743 PubMed DOI
Fletcher D. A., Mullins R. D. (2010). Cell mechanics and the cytoskeleton. Nature 463 485–492. 10.1038/nature08908 PubMed DOI PMC
Folker E. S., Ostlund C., Luxton G. W. G., Worman H. J., Gundersen G. G. (2011). Lamin A variants that cause striated muscle disease are defective in anchoring transmembrane actin-associated nuclear lines for nuclear movement. Proc. Natl. Acad. Sci. U.S.A. 108 131–136. 10.1073/pnas.1000824108 PubMed DOI PMC
Forte G., Carotenuto F., Pagliari F., Pagliari S., Cossa P., Fiaccavento R., et al. (2008). Criticality of the biological and physical stimuli array inducing resident cardiac stem cell determination. Stem Cells 26 2093–2103. 10.1634/stemcells.2008-0061 PubMed DOI
Forte G., Pagliari S., Ebara M., Uto K., Tam J. K., Romanazzo S., et al. (2012). Substrate stiffness modulates gene expression and phenotype in neonatal cardiomyocytes in vitro. Tissue Eng. Part A 18 1837–1848. 10.1089/ten.tea.2011.0707 PubMed DOI
Fridolfsson H. N., Starr D. A. (2010). Kinesin-1 and dynein at the nuclear envelope mediate the bidirectional migrations of nuclei. J. Cell Biol. 191 115–128. 10.1083/jcb.201004118 PubMed DOI PMC
Fujiwara S., Ohashi K., Mashiko T., Kondo H., Mizuno K. (2016). Interplay between Solo and keratin filaments is crucial for mechanical force-induced stress fiber reinforcement. Mol. Biol. Cell 27 954–966. 10.1091/mbc.E15-06-0417 PubMed DOI PMC
Fukata Y., Kaibuchi K., Amano M., Kaibuchi K. (2001). Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol. Sci. 22 32–39. 10.1016/S0165-6147(00)01596-0 PubMed DOI
Galbraith C. G., Yamada K. M., Galbraith J. A. (2007). Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science 315 992–995. 10.1126/science.1137904 PubMed DOI
Giannone G. (2015). Super-resolution links vinculin localization to function in focal adhesions. Nat. Cell Biol. 17 845–847. 10.1038/ncb3196 PubMed DOI
Gimpel P., Lee Y. L., Sobota R. M., Calvi A., Koullourou V., Patel R., et al. (2017). Nesprin-1α-dependent microtubule nucleation from the nuclear envelope via Akap450 is necessary for nuclear positioning in muscle cells. Curr. Biol. 27 2999.e9–3009.e9. 10.1016/j.cub.2017.08.031 PubMed DOI PMC
Gingras A. R., Ziegler W. H., Bobkov A. A., Joyce M. G., Fasci D., Himmel M., et al. (2009). Structural determinants of integrin binding to the talin rod. J. Biol. Chem. 284 8866–8876. 10.1074/jbc.M805937200 PubMed DOI PMC
Gingras A. R., Ziegler W. H., Frank R., Barsukov I. L., Roberts G. C. K., Critchley D. R., et al. (2005). Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod. J. Biol. Chem. 280 37217–37224. 10.1074/jbc.M508060200 PubMed DOI
Goffin J. M., Pittet P., Csucs G., Lussi J. W., Meister J. J., Hinz B. (2006). Focal adhesion size controls tension-dependent recruitment of α-smooth muscle actin to stress fibers. J. Cell Biol. 172 259–268. 10.1083/jcb.200506179 PubMed DOI PMC
Goldman R. D., Shumaker D. K., Erdos M. R., Eriksson M., Goldman A. E., Gordon L. B., et al. (2004). Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc. Natl. Acad. Sci. U.S.A. 101 8963–8968. 10.1073/pnas.0402943101 PubMed DOI PMC
Golji J., Mofrad M. R. K. (2014). The talin dimer structure orientation is mechanically regulated. Biophys. J. 107 1802–1809. 10.1016/j.bpj.2014.08.038 PubMed DOI PMC
Gottardi C. J., Arpin M., Fanning A. S., Louvard D. (1996). The junction-associated protein, zonula occludens-1, localizes to the nucleus before the maturation and during the remodeling of cell-cell contacts. Proc. Natl. Acad. Sci. U.S.A. 93 10779–10784. 10.1073/pnas.93.20.10779 PubMed DOI PMC
Graf K., Neuss M., Stawowy P., Hsueh W. A., Fleck E., Law R. E. (2000). Angiotensin II and v 3 integrin expression in rat neonatal cardiac fibroblasts. Hypertension 35 978–984. 10.1161/01.HYP.35.4.978 PubMed DOI
Grannas K., Arngården L., Lönn P., Mazurkiewicz M., Blokzijl A., Zieba A., et al. (2015). Crosstalk between hippo and TGFβ: subcellular localization of YAP/TAZ/Smad Complexes. J. Mol. Biol. 427 3407–3415. 10.1016/j.jmb.2015.04.015 PubMed DOI
Gruenbaum Y., Medalia O. (2015). Lamins: the structure and protein complexes. Curr. Opin. Cell Biol. 32 7–12. 10.1016/j.ceb.2014.09.009 PubMed DOI
Guilak F. (1995). Compression-induced changes in the shape and volume of the chondrocyte nucleus. J. Biomech. 28 1529–1541. 10.1016/0021-9290(95)00100-x PubMed DOI
Guilak F., Tedrow J. R., Burgkart R. (2000). Viscoelastic properties of the cell nucleus. Biochem. Biophys. Res. Commun. 269 781–786. 10.1006/bbrc.2000.2360 PubMed DOI
Guilluy C., Osborne L. D., Van Landeghem L., Sharek L., Superfine R., Garcia-Mata R., et al. (2014). Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat. Cell Biol. 16 376–381. 10.1038/ncb2927 PubMed DOI PMC
Gumbiner B. (1995). Signal transduction by B-catenin. Curr. Opin. Cell Biol. 7 634–640. 10.1016/0955-0674(95)80104-9 PubMed DOI
Haining A. W. M., Von Essen M., Attwood S. J., Hytönen V. P., Del Río Hernández A. (2016). All subdomains of the talin rod are mechanically vulnerable and may contribute to cellular mechanosensing. ACS Nano 10 6648–6658. 10.1021/acsnano.6b01658 PubMed DOI PMC
Handorf A. M., Zhou Y., Halanski M. A., Li W. J. (2015). Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 11 1–15. 10.1080/15476278.2015.1019687 PubMed DOI PMC
Hansen C. G., Moroishi T., Guan K. L. (2015). YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol. 25 499–513. 10.1016/j.tcb.2015.05.002 PubMed DOI PMC
Haque F., Lloyd D. J., Smallwood D. T., Dent C. L., Shanahan C. M., Fry A. M., et al. (2006). SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol. Cell. Biol. 26 3738–3751. 10.1128/MCB.26.10.3738-3751.2006 PubMed DOI PMC
Hartman C. D., Isenberg B. C., Chua S. G., Wong J. Y. (2016). Vascular smooth muscle cell durotaxis depends on extracellular matrix composition. Proc. Natl. Acad. Sci. U.S.A. 113 11190–11195. 10.1073/pnas.1611324113 PubMed DOI PMC
Haskins J. W., Nguyen D. X., Stern D. F. (2014). Neuregulin 1-activated ERBB4 interacts with YAP to induce Hippo pathway target genes and promote cell migration. Sci. Signal. 7:ra116. 10.1126/scisignal.2005770 PubMed DOI PMC
Hayakawa K., Tatsumi H., Sokabe M. (2011). Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament. J. Cell Biol. 195 721–727. 10.1083/jcb.201102039 PubMed DOI PMC
Hayashi K., Iwata M. (2015). Stiffness of cancer cells measured with an AFM indentation method. J. Mech. Behav. Biomed. Mater. 49 105–111. 10.1016/j.jmbbm.2015.04.030 PubMed DOI
Head J., Lee L. L., Field D. J., Lee J. C. (1985). Equilibrium and rapid kinetic studies on interaction. J. Biol. Chem. 20 11060–11066. PubMed
Heessen S., Fornerod M. (2007). The inner nuclear envelope as a transcription factor resting place. EMBO Rep. 8 914–919. 10.1038/sj.embor.7401075 PubMed DOI PMC
Hirata H., Tatsumi H., Lim C. T., Sokabe M. (2014). Force-dependent vinculin binding to talin in live cells: a crucial step in anchoring the actin cytoskeleton to focal adhesions. AJP Cell Physiol. 306 C607–C620. 10.1152/ajpcell.00122.2013 PubMed DOI
Ho C. Y., Jaalouk D. E., Vartiainen M. K., Lammerding J. (2013). Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature 497 507–511. 10.1038/nature12105 PubMed DOI PMC
Ho C. Y., Lammerding J. (2012). Lamins at a glance. J. Cell Sci. 125 2087–2093. 10.1242/jcs.087288 PubMed DOI PMC
Hoffman L. M., Jensen C. C., Chaturvedi A., Yoshigi M., Beckerle M. C. (2012). Stretch-induced actin remodeling requires targeting of zyxin to stress fibers and recruitment of actin regulators. Mol. Biol. Cell 23 1846–1859. 10.1091/mbc.E11-12-1057 PubMed DOI PMC
Holzinger A. (2009). Jasplakinolide: an actin-specific reagent that promotes actin polymerization. Methods Mol. Biol. 586 71–87. 10.1007/978-1-60761-376-3_4 PubMed DOI
Hotulainen P., Lappalainen P. (2006). Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173 383–394. 10.1083/jcb.200511093 PubMed DOI PMC
Huber O., Korn R., McLaughlin J., Ohsugi M., Herrmann B. G., Kemler R. (1996). Nuclear localization of β-catenin by interaction with transcription factor LEF-1. Mech. Dev. 59 3–10. 10.1016/0925-4773(96)00597-7 PubMed DOI
Humphries J. D., Wang P., Streuli C., Geiger B., Humphries M. J., Ballestrem C. (2007). Vinculin controls focal adhesion formation by direct interactions with talin and actin. J. Cell Biol. 179 1043–1057. 10.1083/jcb.200703036 PubMed DOI PMC
Ibarra A., Hetzer M. W. (2015). Nuclear pore proteins and the control of genome functions. Genes Dev. 29 337–349. 10.1101/gad.256495.114 PubMed DOI PMC
Ishizaki T., Uehata M., Tamechika I., Keel J., Nonomura K., Maekawa M., et al. (2000). Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol. Pharmacol. 57 976–983. PubMed
Ivorra C., Kubicek M., González J. M., Sanz-González S. M., Álvarez-Barrientos A., O’Connor J. E., et al. (2006). A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C. Genes Dev. 20 307–320. 10.1101/gad.349506 PubMed DOI PMC
Iyer K. V., Pulford S., Mogilner A., Shivashankar G. V. (2012). Mechanical activation of cells induces chromatin remodeling preceding MKL nuclear transport. Biophys. J. 103 1416–1428. 10.1016/j.bpj.2012.08.041 PubMed DOI PMC
Jaalouk D. E., Lammerding J. (2009). Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10 63–73. 10.1038/nrm2597 PubMed DOI PMC
Janoštiak R., Pataki A. C., Brábek J., Rösel D. (2014). Mechanosensors in integrin signaling: the emerging role of p130Cas. Eur. J. Cell Biol. 93 445–454. 10.1016/j.ejcb.2014.07.002 PubMed DOI
Jin J. K., Tien P. C., Cheng C. J., Song J. H., Huang C., Lin S. H., et al. (2015). Talin1 phosphorylation activates β1 integrins: a novel mechanism to promote prostate cancer bone metastasis. Oncogene 34 1811–1821. 10.1038/onc.2014.116 PubMed DOI PMC
Jiu Y., Lehtimäki J., Tojkander S., Cheng F., Jäälinoja H., Liu X., et al. (2015). Bidirectional interplay between vimentin intermediate filaments and contractile actin stress fibers. Cell Rep. 11 1511–1518. 10.1016/j.celrep.2015.05.008 PubMed DOI
Jiu Y., Peränen J., Schaible N., Cheng F., Eriksson J. E., Krishnan R., et al. (2017). Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA. J. Cell Sci. 130 892–902. 10.1242/jcs.196881 PubMed DOI PMC
Jung O., Choi S., Jang S.-B., Lee S.-A., Lim S.-T., Choi Y.-J., et al. (2012). Tetraspan TM4SF5-dependent direct activation of FAK and metastatic potential of hepatocarcinoma cells. J. Cell Sci. 125 5960–5973. 10.1242/jcs.100586 PubMed DOI PMC
Kadrmas J. L., Beckerle M. C. (2004). The LIM domain: from the cytoskeleton to the nucleus. Nat. Rev. Mol. Cell Biol. 5 920–931. 10.1038/nrm1499 PubMed DOI
Kajikawa M., Noma K., Tatsuya M., Mikami S., Iwamoto Y., Iwamoto A., et al. (2014). Rho-associated kinase activity is a predictor of cardiovascular outcomes. Hypertension 63 856–864. 10.1161/HYPERTENSIONAHA.113.02296 PubMed DOI PMC
Kataoka C., Egashira K., Inoue S., Takemoto M., Ni W. (2002). Important role of rho-kinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long-term blockade of nitric oxide synthesis in rats. Sci. Technol. 39 245–250. 10.1161/hy0202.103271 PubMed DOI
Kawano H., Cody R. J., Graf K., Goetze S., Kawano Y., Schnee J., et al. (2000). Angiotensin II enhances integrin and alpha-actinin expression in adult rat cardiac fibroblasts. Hypertension 35 273–279. 10.1161/01.HYP.35.1.273 PubMed DOI
Khatau S. B., Hale C. M., Stewart-Hutchinson P. J., Patel M. S., Stewart C. L., Searson P. C., et al. (2009). A perinuclear actin cap regulates nuclear shape. Proc. Natl. Acad. Sci. U.S.A. 106 19017–19022. 10.1073/pnas.0908686106 PubMed DOI PMC
Kim D. H., Khatau S. B., Feng Y., Walcott S., Sun S. X., Longmore G. D., et al. (2012). Actin cap associated focal adhesions and their distinct role in cellular mechanosensing. Sci. Rep. 2:555. 10.1038/srep00555 PubMed DOI PMC
Kim D. H., Wirtz D. (2015). Cytoskeletal tension induces the polarized architecture of the nucleus. Biomaterials 48 161–172. 10.1016/j.biomaterials.2015.01.023 PubMed DOI PMC
Kim H. E., Dalal S. S., Young E., Legato M. J., Weisfeldt M. L., D’Armiento J. (2000). Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J. Clin. Invest. 106 857–866. 10.1172/JCI8040 PubMed DOI PMC
Kim N.-G., Koh E., Chen X., Gumbiner B. M. (2011). E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc. Natl. Acad. Sci. U.S.A. 108 11930–11935. 10.1073/pnas.1103345108 PubMed DOI PMC
Klaas M., Kangur T., Viil J., Mäemets-Allas K., Minajeva A., Vadi K., et al. (2016). The alterations in the extracellular matrix composition guide the repair of damaged liver tissue. Sci. Rep. 6:27398. 10.1038/srep27398 PubMed DOI PMC
Klenchin V. A., King R., Tanaka J., Marriott G., Rayment I. (2005). Structural basis of swinholide a binding to actin. Chem. Biol. 12 287–291. 10.1016/j.chembiol.2005.02.011 PubMed DOI
Komuro A., Nagai M., Navin N. E., Sudol M. (2003). WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J. Biol. Chem. 278 33334–33341. 10.1074/jbc.M305597200 PubMed DOI
Kovács M., Wang F., Hu A., Zhang Y., Sellers J. R. (2003). Functional divergence of human cytoplasmic myosin II. Kinetic characterization of the non-muscle IIA isoform. J. Biol. Chem. 278 38132–38140. 10.1074/jbc.M305453200 PubMed DOI
Krendel M., Zenke F. T., Bokoch G. M. (2002). Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat. Cell Biol. 4 294–301. 10.1038/ncb773 PubMed DOI
Krull S., Dörries J., Boysen B., Reidenbach S., Magnius L., Norder H., et al. (2010). Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J. 29 1659–1673. 10.1038/emboj.2010.54 PubMed DOI PMC
Lachowski D., Cortes E., Robinson B., Rice A., Rombouts K., Del Río Hernández A. E. (2018). FAK controls the mechanical activation of YAP, a transcriptional regulator required for durotaxis. FASEB J. 32 1099–1107. 10.1096/fj.201700721R PubMed DOI
Lammerding J., Schulze P. C., Takahashi T., Kozlov S., Sullivan T., Kamm R. D., et al. (2004). Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113 370–378. 10.1172/JCI200419670 PubMed DOI PMC
Last J. A., Pan T., Ding Y., Reilly C. M., Keller K., Acott T. S., et al. (2011). Elastic modulus determination of normal and glaucomatous human trabecular meshwork. Investig. Ophthalmol. Vis. Sci. 52 2147–2152. 10.1167/iovs.10-6342 PubMed DOI PMC
Lauriol J., Keith K., Jaffré F., Couvillon A., Saci A., Goonasekera S. A., et al. (2014). RhoA signaling in cardiomyocytes protects against stress-induced heart failure but facilitates cardiac fibrosis. Sci. Signal. 7:ra100. 10.1126/scisignal.2005262 PubMed DOI PMC
Lee S., Kumar S. (2016). Actomyosin stress fiber mechanosensing in 2D and 3D. F1000Res. 5:2261. 10.12688/f1000research.8800.1 PubMed DOI PMC
Lessey E. C., Guilluy C., Burridge K. (2012). From mechanical force to RhoA activation. Biochemistry 51 7420–7432. 10.1021/bi300758e PubMed DOI PMC
Lewis J. M., Baskaran R., Taagepera S., Schwartz M. A., Wang J. Y. (1996). Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmic-nuclear transport. Proc. Natl. Acad. Sci. U.S.A. 93 15174–15179. 10.1073/pnas.93.26.15174 PubMed DOI PMC
Li Q., Kumar A., Makhija E., Shivashankar G. V. (2014). The regulation of dynamic mechanical coupling between actin cytoskeleton and nucleus by matrix geometry. Biomaterials 35 961–969. 10.1016/j.biomaterials.2013.10.037 PubMed DOI
Li R., Wu Y., Manso A. M., Gu Y., Liao P., Israeli S., et al. (2012). β1 integrin gene excision in the adult murine cardiac myocyte causes defective mechanical and signaling responses. Am. J. Pathol. 180 952–962. 10.1016/j.ajpath.2011.12.007 PubMed DOI PMC
Liu M., Öberg K., Zhou Y. (2007). Expression and function of vinculin in neuroendocrine tumors. Tumor Biol. 28 196–204. 10.1159/000107415 PubMed DOI
Liu Q., Pante N., Misteli T., Elsagga M., Crisp M., Hodzic D., et al. (2007). Functional association of Sun1 with nuclear pore complexes. J. Cell Biol. 178 785–798. 10.1083/jcb.200704108 PubMed DOI PMC
Liu Y. J., Le Berre M., Lautenschlaeger F., Maiuri P., Callan-Jones A., Heuzé M., et al. (2015). Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160 659–672. 10.1016/j.cell.2015.01.007 PubMed DOI
Lombardi M. L., Lammerding J. (2011). Keeping the LINC: the importance of nucleocytoskeletal coupling in intracellular force transmission and cellular function. Biochem. Soc. Trans. 39 1729–1734. 10.1042/BST20110686 PubMed DOI PMC
Luis Alonso J., Goldmann W. H. (2016). Cellular mechanotransduction. AIMS Biophys. 3 50–62. 10.3934/biophy.2016.1.50 DOI
Luxton G. W. G., Gomes E. R., Folker E. S., Vintinner E., Gundersen G. G. (2010). Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329 956–959. 10.1126/science.1189072 PubMed DOI PMC
Maggi L., Carboni N., Bernasconi P. (2016). Skeletal muscle laminopathies: a review of clinical and molecular features. Cells 5:E33. 10.3390/cells5030033 PubMed DOI PMC
Maki K., Nakao N., Adachi T. (2017). Nano-mechanical characterization of tension-sensitive helix bundles in talin rod. Biochem. Biophys. Res. Commun. 484 372–377. 10.1016/j.bbrc.2017.01.127 PubMed DOI
Mallat Z., Gojova A., Sauzeau V., Brun V., Silvestre J. S., Esposito B., et al. (2003). Rho-associated protein kinase contributes to early atherosclerotic lesion formation in mice. Circ. Res. 93 884–888. 10.1161/01.RES.0000099062.55042.9A PubMed DOI
Markiewicz E., Tilgner K., Barker N., Van De Wetering M., Clevers H., Dorobek M., et al. (2006). The inner nuclear membrane protein Emerin regulates β-catenin activity by restricting its accumulation in the nucleus. EMBO J. 25 3275–3285. 10.1038/sj.emboj.7601230 PubMed DOI PMC
Martinac B. (2014). The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity. Biochim. Biophys. Acta 1838 682–691. 10.1016/j.bbamem.2013.07.015 PubMed DOI
McBeath R., Pirone D. M., Nelson C. M., Bhadriraju K., Chen C. S. (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6 483–495. 10.1016/S1534-5807(04)00075-9 PubMed DOI
McGough A., Pope B., Chiu W., Weeds A. (1997). Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J. Cell Biol. 138 771–781. 10.1083/jcb.138.4.771 PubMed DOI PMC
Meacci G., Wolfenson H., Liu S., Stachowiak M. R., Iskratsch T., Mathur A., et al. (2016). α-Actinin links extracellular matrix rigidity-sensing contractile units with periodic cell-edge retractions. Mol. Biol. Cell 27 3471–3479. 10.1091/mbc.E16-02-0107 PubMed DOI PMC
Meinke P., Mattioli E., Haque F., Antoku S., Columbaro M., Straatman K. R., et al. (2014). Muscular dystrophy-associated SUN1 and SUN2 variants disrupt nuclear-cytoskeletal connections and myonuclear organization. PLoS Genet. 10:e1004605. 10.1371/journal.pgen.1004605 PubMed DOI PMC
Méjat A., Misteli T. (2010). LINC complexes in health and disease. Nucleus 1 40–52. 10.4161/nucl.1.1.10530 PubMed DOI PMC
Michael K. E., Dumbauld D. W., Burns K. L., Hanks S. K., Garcia A. J. (2009). Focal adhesion kinase modulates cell adhesion strengthening via integrin activation. Mol. Biol. Cell 20 2508–2519. 10.1091/mbc.E08-01-0076 PubMed DOI PMC
Mierke C. T., Kollmannsberger P., Zitterbart D. P., Smith J., Fabry B., Goldmann W. H. (2008). Mechano-coupling and regulation of contractility by the vinculin tail domain. Biophys. J. 94 661–670. 10.1529/biophysj.107.108472 PubMed DOI PMC
Milloud R., Destaing O., de Mets R., Bourrin-Reynard I., Oddou C., Delon A., et al. (2017). αvβ3 integrins negatively regulate cellular forces by phosphorylation of its distal NPXY site. Biol. Cell 109 127–137. 10.1111/boc.201600041 PubMed DOI
Miralles F., Posern G., Zaromytidou A. I., Treisman R. (2003). Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113 329–342. 10.1016/S0092-8674(03)00278-2 PubMed DOI
Mo J. S., Yu F. X., Gong R., Brown J. H., Guan K. L. (2012). Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes Dev. 26 2138–2143. 10.1101/gad.197582.112 PubMed DOI PMC
Morikawa Y., Zhang M., Heallen T., Leach J., Tao G., Xiao Y., et al. (2015). Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice. Sci. Signal. 8:ra41. 10.1126/scisignal.2005781 PubMed DOI PMC
Morton W. M., Ayscough K. R., Mclaughlin P. J. (2000). Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nat. Cell Biol. 2 376–378. 10.1038/35014075 PubMed DOI
Mosqueira D., Pagliari S., Uto K., Ebara M., Romanazzo S., Escobedo-Lucea C., et al. (2014). Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure. ACS Nano 8 2033–2047. 10.1021/nn4058984 PubMed DOI
Nardone G., Oliver-De La Cruz J., Vrbsky J., Martini C., Pribyl J., Skládal P., et al. (2017). YAP regulates cell mechanics by controlling focal adhesion assembly. Nat. Commun. 8:15321. 10.1038/ncomms15321 PubMed DOI PMC
Natarajan V., Berglund E. J., Chen D. X., Kidambi S. (2015). Substrate elasticity regulates primary hepatocyte functions. RSC Adv. 5:80956 10.1039/C5RA15208A PubMed DOI PMC
Naumanen P., Lappalainen P., Hotulainen P. (2008). Mechanisms of actin stress fibre assembly. J. Microsc. 231 446–454. 10.1111/j.1365-2818.2008.02057.x PubMed DOI
Navarro C. L., Cau P., Lévy N. (2006). Molecular bases of progeroid syndromes. Hum. Mol. Genet. 15Spec No 2:R151–R161. 10.1093/hmg/ddl214 PubMed DOI
Neelam S., Chancellor T. J., Li Y., Nickerson J. A., Roux K. J., Dickinson R. B., et al. (2015). Direct force probe reveals the mechanics of nuclear homeostasis in the mammalian cell. Proc. Natl. Acad. Sci. U.S.A. 112 5720–5725. 10.1073/pnas.1502111112 PubMed DOI PMC
Neumann J., Gottschalk K. E. (2016). The integrin-talin complex under force. Protein Eng. Des. Sel. 29 503–512. 10.1093/protein/gzw031 PubMed DOI
Nguyen A. T., Sathe S. R., Yim E. K. F. (2016). From nano to micro: topographical scale and its impact on cell adhesion, morphology and contact guidance. J. Phys. Condens. Matter. 28:183001. 10.1088/0953-8984/28/18/183001 PubMed DOI
Nikolova V., Leimena C., McMahon A. C., Tan J. C., Chandar S., Jogia D., et al. (2004). Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J. Clin. Invest. 113 357–369. 10.1172/JCI200419448 PubMed DOI PMC
Nikolova-Krstevski V., Leimena C., Xiao X. H., Kesteven S., Tan J. C., Yeo L. S., et al. (2011). Nesprin-1 and actin contribute to nuclear and cytoskeletal defects in lamin A/C-deficient cardiomyopathy. J. Mol. Cell. Cardiol. 50 479–486. 10.1016/j.yjmcc.2010.12.001 PubMed DOI
Nix D. A., Beckerle M. C. (1997). Nuclear-cytoplasmic shuttling of the focal contact protein, zyxin: a potential mechanism for communication between sites of cell adhesion and the nucleus. J. Cell Biol. 138 1139–1147. 10.1083/jcb.138.5.1139 PubMed DOI PMC
Oka T., Sudol M. (2009). Nuclear localization and pro-apoptotic signaling of YAP2 require intact PDZ-binding motif. Genes Cells 14 607–615. 10.1111/j.1365-2443.2009.01292.x PubMed DOI
Olson E. N., Nordheim A. (2010). Linking actin dynamics and gene transcription to drive cellular motile functions. Nat. Rev. Mol. Cell Biol. 11 353–365. 10.1038/nrm2890 PubMed DOI PMC
Oria R., Wiegand T., Escribano J., Elosegui-Artola A., Uriarte J. J., Moreno-Pulido C., et al. (2017). Force loading explains spatial sensing of ligands by cells. Nature 552 219–224. 10.1038/nature24662 PubMed DOI
Orsulic S., Peifer M. (1996). An in vivo structure-function study of Armadillo, the β-catenin homologue, reveals both separate and overlapping regions of the protein required for cell adhesion and for wingless signaling. J. Cell Biol. 134 1283–1300. 10.1083/jcb.134.5.1283 PubMed DOI PMC
Osmanagic-Myers S., Dechat T., Foisner R. (2015). Lamins at the crossroads of mechanosignaling. Genes Dev. 29 225–237. 10.1101/gad.255968.114 PubMed DOI PMC
Palazzo A. F., Cook T. A., Alberts A. S., Gundersen G. G. (2001). mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat. Cell Biol. 3 723–729. 10.1038/35087035 PubMed DOI
Park J., Bauer S., Von Der Mark K., Schmuki P. (2007). Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett. 7 1686–1691. 10.1021/nl070678d PubMed DOI
Parker M. W., Rossi D., Peterson M., Smith K., Sikström K., White E. S., et al. (2014). Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J. Clin. Invest. 124 1622–1635. 10.1172/JCI71386 PubMed DOI PMC
Pasapera A. M., Schneider I. C., Rericha E., Schlaepfer D. D., Waterman C. M. (2010). Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J. Cell Biol. 188 877–890. 10.1083/jcb.200906012 PubMed DOI PMC
Paul C. D., Hung W., Wirtz D. (2017). Engineered models of confined cell migration. Annu. Rev. Biomed. Eng. 18 159–180. 10.1146/annurev-bioeng-071114-040654.Engineered PubMed DOI PMC
Pellegrin S., Mellor H. (2007). Actin stress fibres. J. Cell Sci. 120 3491–3499. 10.1242/jcs.018473 PubMed DOI
Peter A. K., Cheng H., Ross R. S., Knowlton K. U., Chen J. (2011). The costamere bridges sarcomeres to the sarcolemma in striated muscle. Prog. Pediatr. Cardiol. 31 83–88. 10.1016/j.ppedcard.2011.02.003 PubMed DOI PMC
Peterson L. J., Rajfur Z., Maddox A. S., Freel C. D., Chen Y., Edlund M., et al. (2004). Simultaneous stretching and contraction of stress fibers in vivo. Mol. Biol. Cell 15 3497–3508. 10.1091/mbc.E03 PubMed DOI PMC
Phrommintikul A., Tran L., Kompa A., Wang B., Adrahtas A., Cantwell D., et al. (2008). Effects of a Rho kinase inhibitor on pressure overload induced cardiac hypertrophy and associated diastolic dysfunction. Am. J. Physiol. Heart Circ. Physiol. 294 H1804–H1814. 10.1152/ajpheart.01078.2007 PubMed DOI
Plessner M., Melak M., Chinchilla P., Baarlink C., Grosse R. (2015). Nuclear f actin phalloidin nuclear F-actin formation and reorganization upon cell spreading. J. Biol. Chem. 290 11209–11216. 10.1074/jbc.M114.627166 PubMed DOI PMC
Pollard T. D., Cooper J. A. (2009). Actin, a central player in cell shape and movement. Science 326 1208–1212. 10.1126/science.1175862 PubMed DOI PMC
Poudel I., Menter D. E., Lim J. Y. (2012). Directing cell function and fate via micropatterning: role of cell patterning size, shape, and interconnectivity. Biomed. Eng. Lett. 2 38–45. 10.1007/s13534-012-0045-z DOI
Prokocimer M., Davidovich M., Nissim-Rafinia M., Wiesel-Motiuk N., Bar D. Z., Barkan R., et al. (2009). Nuclear lamins: key regulators of nuclear structure and activities. J. Cell. Mol. Med. 13 1059–1085. 10.1111/j.1582-4934.2008.00676.x PubMed DOI PMC
Qin R., Schmid H., Münzberg C., Maass U., Krndija D., Adler G., et al. (2015). Phosphorylation and turnover of paxillin in focal contacts is controlled by force and defines the dynamic state of the adhesion site. Cytoskeleton 72 101–112. 10.1002/cm.21209 PubMed DOI
Rahikainen R., Von Essen M., Schaefer M., Qi L., Azizi L., Kelly C., et al. (2017). Mechanical stability of talin rod controls cell migration and substrate sensing. Sci. Rep. 7:3571. 10.1038/s41598-017-03335-2 PubMed DOI PMC
Rao S., Krauss N. E., Heerding J. M., Swindell C. S., Ringel I., Orr G. A., et al. (1994). 3’-(p-Azidobenzamido)taxol photolabels the N-terminal 31 amino acids of β-tubulin. J. Biol. Chem. 269 3132–3134. PubMed
Razinia Z., Castagnino P., Xu T., Vázquez-Salgado A., Puré E., Assoian R. K. (2017). Stiffness-dependent motility and proliferation uncoupled by deletion of CD44. Sci. Rep. 7:16499. 10.1038/s41598-017-16486-z PubMed DOI PMC
Reid S. E., Kay E. J., Neilson L. J., Henze A.-T., Serneels J., McGhee E. J., et al. (2017). Tumor matrix stiffness promotes metastatic cancer cell interaction with endothelium. EMBO J. 36 2373–2389. 10.15252/embj.201694912 PubMed DOI PMC
Roca-Cusachs P., del Rio A., Puklin-Faucher E., Gauthier N. C., Biais N., Sheetz M. P. (2013). Integrin-dependent force transmission to the extracellular matrix by -actinin triggers adhesion maturation. Proc. Natl. Acad. Sci. U.S.A. 110 E1361–E1370. 10.1073/pnas.1220723110 PubMed DOI PMC
Rubashkin M. G., Cassereau L., Bainer R., DuFort C. C., Yui Y., Ou G., et al. (2014). Force engages vinculin and promotes tumor progression by enhancing PI3K activation of phosphatidylinositol (3,4,5)-triphosphate. Cancer Res. 74 4597–4611. 10.1158/0008-5472.CAN-13-3698 PubMed DOI PMC
Saha K., Keung A. J., Irwin E. F., Li Y., Little L., Schaffer D. V., et al. (2008). Substrate modulus directs neural stem cell behavior. Biophys. J. 95 4426–4438. 10.1529/biophysj.108.132217 PubMed DOI PMC
Saito S. Y., Watabe S., Ozaki H., Fusetani N., Karaki H. (1994). Mycalolide B, a novel actin depolymerizing agent. J. Biol. Chem. 269 29710–29714. PubMed
Saitoh M., Ishikawa T., Matsushima S., Naka M., Hidaka H. (1987). Selective inhibition of catalytic activity of smooth muscle myosin light chain kinase. J. Biol. Chem. 262 7796–7801. PubMed
Sakamoto S., Kyprianou N. (2010). Targeting anoikis resistance in prostate cancer metastasis. Mol. Aspects Med. 31 205–214. 10.1016/j.mam.2010.02.001 PubMed DOI PMC
Sakamoto S., McCann R. O., Dhir R., Kyprianou N. (2010). Talin1 promotes tumor invasion and metastasis via focal adhesion signaling and anoikis resistance. Cancer Res. 70 1885–1895. 10.1158/0008-5472.CAN-09-2833 PubMed DOI PMC
Sathe A. R., Shivashankar G. V., Sheetz M. P. (2016). Nuclear transport of paxillin depends on focal adhesion dynamics and FAT domains. J. Cell Sci. 129 1981–1988. 10.1242/jcs.172643 PubMed DOI PMC
Sawada Y., Tamada M., Dubin-Thaler B. J., Cherniavskaya O., Sakai R., Tanaka S., et al. (2006). Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127 1015–1026. 10.1016/j.cell.2006.09.044 PubMed DOI PMC
Scaffidi P., Misteli T. (2006). Lamin A – dependent nuclear defects in human aging. Environ. Heal. 312 1059–1063. 10.1126/science.1127168 PubMed DOI PMC
Scaffidi P., Misteli T. (2008). Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat. Cell Biol. 10 452–459. 10.1038/ncb1708 PubMed DOI PMC
Schiller H. B., Fässler R. (2013). Mechanosensitivity and compositional dynamics of cell-matrix adhesions. EMBO Rep. 14 509–519. 10.1038/embor.2013.49 PubMed DOI PMC
Schiller H. B., Hermann M. R., Polleux J., Vignaud T., Zanivan S., Friedel C. C., et al. (2013). β 1 - And α v -class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments. Nat. Cell Biol. 15 625–636. 10.1038/ncb2747 PubMed DOI
Schreiber K. H., Kennedy B. K. (2013). When lamins go bad: Nuclear structure and disease. Cell 152 1365–1375. 10.1016/j.cell.2013.02.015 PubMed DOI PMC
Seetharaman S., Etienne-Manneville S. (2018). Integrin diversity brings specificity in mechanotransduction. Biol. Cell 110 49–64. 10.1111/boc.201700060 PubMed DOI
Seo C. H., Furukawa K., Montagne K., Jeong H., Ushida T. (2011). The effect of substrate microtopography on focal adhesion maturation and actin organization via the RhoA/ROCK pathway. Biomaterials 32 9568–9575. 10.1016/j.biomaterials.2011.08.077 PubMed DOI
Shi J., Takahashi S., Jin X. H., Li Y. Q., Ito Y., Mori Y., et al. (2007). Myosin light chain kinase-independent inhibition by ML-9 of murine TRPC6 channels expressed in HEK293 cells. Br. J. Pharmacol. 152 122–131. 10.1038/sj.bjp.0707368 PubMed DOI PMC
Shiu J. Y., Aires L., Lin Z., Vogel V. (2018). Nanopillar force measurements reveal actin-cap-mediated YAP mechanotransduction. Nat. Cell Biol. 20 262–271. 10.1038/s41556-017-0030-y PubMed DOI
Shkumatov A., Thompson M., Choi K. M., Sicard D., Baek K., Kim D. H., et al. (2015). Matrix stiffness-modulated proliferation and secretory function of the airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 308 L1125–L1135. 10.1152/ajplung.00154.2014 PubMed DOI PMC
Skoufias D. A., Wilson L. (1992). Mechanism of inhibition of microtubule polymerization by colchicine: inhibitory potencies of unliganded colchicine and tubulin-colchicine complexes. Biochemistry 31 738–746. 10.1021/bi00118a015 PubMed DOI
Small J. V., Rottner K., Kaverina I., Anderson K. I. (1998). Assembling an actin cytoskeleton for cell attachment and movement. Biochim. Biophys. Acta 1404 271–281. 10.1016/S0167-4889(98)00080-9 PubMed DOI
Smith L., Cho S., Discher D. E. (2017). Title: Mechanosensing of matrix by stem cells: from contractility and matrix heterogeneity to cardiogenesis and muscle stem cells. Semin. Cell Dev. Biol. 71 84–98. 10.1016/j.semcdb.2017.05.025 PubMed DOI PMC
Smith M. A., Blankman E., Deakin N. O., Hoffman L. M., Jensen C. C., Turner C. E., et al. (2013). LIM domains target actin regulators paxillin and zyxin to sites of stress fiber strain. PLoS One 8:e69378. 10.1371/journal.pone.0069378 PubMed DOI PMC
Snider N. T., Omary M. B. (2014). Post-translational modifications of intermediate filament proteins: Mechanisms and functions. Nat. Rev. Mol. Cell Biol. 15 163–177. 10.1038/nrm3753 PubMed DOI PMC
Sörensen P. M., Iacob R. E., Fritzsche M., Engen J. R., Brieher W. M., Charras G., et al. (2012). The natural product cucurbitacin e inhibits depolymerization of actin filaments. ACS Chem. Biol. 7 1502–1508. 10.1021/cb300254s PubMed DOI PMC
Sosa B. A., Rothballer A., Kutay U., Schwartz T. U. (2012). LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins. Cell 149 1035–1047. 10.1016/j.cell.2012.03.046 PubMed DOI PMC
Spinale F. G. (2007). Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol. Rev. 87 1285–1342. 10.1152/physrev.00012.2007 PubMed DOI
Stewart J. A., Gardner J. D., Brower G. L., Janicki J. S. (2014). Temporal changes in integrin-mediated cardiomyocyte adhesion secondary to chronic cardiac volume overload in rats. Am. J. Physiol. Heart Circ. Physiol. 306 H101–H108. 10.1152/ajpheart.00541.2013 PubMed DOI PMC
Straight A. F., Cheung A., Limouze J., Chen I., Westwood N. J., Sellers J. R., et al. (2003). Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 299 1743–1747. 10.1126/science.1081412 PubMed DOI
Strohmeyer N., Bharadwaj M., Costell M., Fässler R., Müller D. J. (2018). Fibronectin-bound α5β1 integrins sense load and signal to reinforce adhesion in less than a second. Nat. Mater. 16 1262–1270. 10.1038/NMAT5023 PubMed DOI
Sullivan T., Escalante-Alcalde D., Bhatt H., Anver M., Bhat N., Nagashima K., et al. (1999). Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147 913–919. 10.1083/jcb.147.5.913 PubMed DOI PMC
Surma M., Wei L., Shi J. (2011). Rho kinase as a therapeutic target in cardiovascular disease. Future Cardiol. 7 657–671. 10.2217/fca.11.51.Rho PubMed DOI PMC
Swift J., Ivanovska I. L., Buxboim A., Harada T., Dingal P. C. D. P., Pinter J., et al. (2013). Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104. 10.1126/science.1240104 PubMed DOI PMC
Tamada M., Sheetz M. P., Sawada Y. (2004). Activation of a signaling cascade by cytoskeleton stretch. Dev. Cell 7 709–718. 10.1016/j.devcel.2004.08.021 PubMed DOI
Tan Y., Tajik A., Chen J., Jia Q., Chowdhury F., Wang L., et al. (2014). Matrix softness regulates plasticity of tumour-repopulating cells via H3K9 demethylation and Sox2 expression. Nat. Commun. 5:4619. 10.1038/ncomms5619 PubMed DOI PMC
Taranum S., Sur I., Müller R., Lu W., Rashmi R. N., Munck M., et al. (2012). Cytoskeletal interactions at the nuclear envelope mediated by Nesprins. Int. J. Cell Biol. 2012:736524. 10.1155/2012/736524 PubMed DOI PMC
Tautzenberger A., Förtsch C., Zwerger C., Dmochewitz L., Kreja L., Ignatius A., et al. (2013). C3 Rho-inhibitor for targeted pharmacological manipulation of osteoclast-like cells. PLoS One 8:e85695. 10.1371/journal.pone.0085695 PubMed DOI PMC
Teixeira A., McKie G., Foley J., Bertics P., Nealey P., Murphy C. (2006). The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. Biomaterials 27 3945–3954. 10.1038/ja.2013.113.Venturicidin PubMed DOI PMC
Teo B. K. K., Wong S. T., Lim C. K., Kung T. Y. S., Yap C. H., Ramagopal Y., et al. (2013). Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase. ACS Nano 7 4785–4798. 10.1021/nn304966z PubMed DOI
Terry D. R., Spector I., Higa T., Bubb M. R. (1997). Misakinolide A is a marine macrolide that caps but does not sever filamentous actin. J. Biol. Chem. 272 7841–7845. 10.1074/jbc.272.12.7841 PubMed DOI
Tojkander S., Gateva G., Lappalainen P. (2012). Actin stress fibers - assembly, dynamics and biological roles. J. Cell Sci. 125 1855–1864. 10.1242/jcs.098087 PubMed DOI
Tse J. R., Engler A. J. (2011). Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS One 6:e15978. 10.1371/journal.pone.0015978 PubMed DOI PMC
Uemura A., Nguyen T. N., Steele A. N., Yamada S. (2011). The LIM domain of zyxin is sufficient for force-induced accumulation of zyxin during cell migration. Biophys. J. 101 1069–1075. 10.1016/j.bpj.2011.08.001 PubMed DOI PMC
Uzer G., Rubin C. T., Rubin J. (2016). Cell mechanosensitivity is enabled by the LINC nuclear complex. Curr. Mol. Biol. Rep. 2 36–47. 10.1007/s40610-016-0032-8 PubMed DOI PMC
Valbuena A., Vera A. M., Oroz J., Menéndez M., Carrión-Vázquez M. (2012). Mechanical properties of β-catenin revealed by single-molecule experiments. Biophys. J. 103 1744–1752. 10.1016/j.bpj.2012.07.051 PubMed DOI PMC
Vincent L. G., Choi Y. S., Alonso-Latorre B., Del Álamo J. C., Engler A. J. (2013). Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength. Biotechnol. J. 8 472–484. 10.1002/biot.201200205 PubMed DOI PMC
Wang N., Tytell J. D., Ingber D. E. (2009). Mechanotransduction at a distance: Mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10 75–82. 10.1038/nrm2594 PubMed DOI
Wang Y., Yu Y., Li G. B., Li S. A., Wu C., Gigant B., et al. (2017). Mechanism of microtubule stabilization by taccalonolide AJ. Nat. Commun. 8:15787. 10.1038/ncomms15787 PubMed DOI PMC
Webster K. D., Ng W. P., Fletcher D. A. (2014). Tensional homeostasis in single fibroblasts. Biophys. J. 107 146–155. 10.1016/j.bpj.2014.04.051 PubMed DOI PMC
Wei S. C., Yang J. (2016). Forcing through tumor metastasis: the interplay between tissue rigidity and epithelial-mesenchymal transition. Trends Cell Biol. 26 111–120. 10.1016/j.tcb.2015.09.009 PubMed DOI PMC
Wiesel N., Mattout A., Melcer S., Melamed-Book N., Herrmann H., Medalia O., et al. (2008). Laminopathic mutations interfere with the assembly, localization, and dynamics of nuclear lamins. Proc. Natl. Acad. Sci. U.S.A. 105 180–185. 10.1073/pnas.0708974105 PubMed DOI PMC
Wiggan O., Shaw A. E., DeLuca J. G., Bamburg J. R. (2012). ADF/cofilin regulates actomyosin assembly through competitive inhibition of myosin II binding to F-actin. Dev. Cell 22 530–543. 10.1016/j.devcel.2011.12.026 PubMed DOI PMC
Wilkinson F. L., Holaska J. M., Zhang Z., Sharma A., Manilal S., Holt I., et al. (2003). Emerin interacts in vitro with the splicing-associated factor, YT521-B. Eur. J. Biochem. 270 2459–2466. 10.1046/j.1432-1033.2003.03617.x PubMed DOI
Worman H. J., Bonne G. (2007). “Laminopathies”: a wide spectrum of human diseases. Exp. Cell Res. 313 2121–2133. 10.1016/j.yexcr.2007.03.028 PubMed DOI PMC
Worman H. J., Fong L. G., Muchir A., Young S. G. (2009). Laminopathies and the long strange trip from basic cell biology to therapy. J. Clin. Invest. 119 1825–1836. 10.1172/JCI37679 PubMed DOI PMC
Xiang S. Y., Vanhoutte D., Del Re D. P., Purcell N. H., Ling H., Banerjee I., et al. (2011). RhoA protects the mouse heart against ischemia/reperfusion injury. J. Clin. Invest. 121 3269–3276. 10.1172/JCI44371 PubMed DOI PMC
Yamaguchi H., Kasa M., Amano M., Kaibuchi K., Hakoshima T. (2006). Molecular mechanism for the regulation of rho-kinase by dimerization and its inhibition by fasudil. Structure 14 589–560. 10.1016/j.str.2005.11.024 PubMed DOI
Yamashita H., Ichikawa T., Matsuyama D., Kimura Y., Ueda K., Craig S. W., et al. (2014). The role of the interaction of the vinculin proline-rich linker region with vinexin in sensing the stiffness of the extracellular matrix. J. Cell Sci. 127 1875–1886. 10.1242/jcs.133645 PubMed DOI
Yao M., Goult B. T., Klapholz B., Hu X., Toseland C. P., Guo Y., et al. (2016). The mechanical response of talin. Nat. Commun. 7:11966. 10.1038/ncomms11966 PubMed DOI PMC
Yeh Y. T., Hur S. S., Chang J., Wang K. C., Chiu J. J., Li Y. S., et al. (2012). Matrix stiffness regulates endothelial cell proliferation through septin 9. PLoS One 7:e46889. 10.1371/journal.pone.0046889 PubMed DOI PMC
Yim E. K. F., Pang S. W., Leong K. W. (2007). Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp. Cell Res. 313 1820–1829. 10.1016/j.yexcr.2007.02.031 PubMed DOI PMC
Yoshigi M., Hoffman L. M., Jensen C. C., Yost H. J., Beckerle M. C. (2005). Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J. Cell Biol. 171 209–215. 10.1083/jcb.200505018 PubMed DOI PMC
Yutao X., Geru W., Xiaojun B., Tao G., Aiqun M. (2006). Mechanical stretch-induced hypertrophy of neonatal rat ventricular myocytes is mediated by β1-integrin-microtubule signaling pathways. Eur. J. Heart Fail. 8 16–22. 10.1016/j.ejheart.2005.05.014 PubMed DOI
Zanconato F., Cordenonsi M., Piccolo S. (2016). YAP/TAZ at the roots of cancer. Cancer Cell 29 783–803. 10.1016/j.ccell.2016.05.005 PubMed DOI PMC
Zanconato F., Forcato M., Battilana G., Azzolin L., Quaranta E., Bodega B., et al. (2015). Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat. Cell Biol. 17 1218–1227. 10.1038/ncb3216 PubMed DOI PMC
Zarkoob H., Bodduluri S., Ponnaluri S. V., Selby J. C., Sander E. A. (2015). Substrate stiffness affects human keratinocyte colony formation. Cell. Mol. Bioeng. 8 32–50. 10.1007/s12195-015-0377-8 PubMed DOI PMC
Zhang J., Guo W.-H., Wang Y.-L. (2014). Microtubules stabilize cell polarity by localizing rear signals. Proc. Natl. Acad. Sci. U.S.A. 111 16383–16388. 10.1073/pnas.1410533111 PubMed DOI PMC
Zhou D. W., Lee T. T., Weng S., Fu J., García A. J. (2017). Effects of substrate stiffness and actomyosin contractility on coupling between force transmission and vinculin–paxillin recruitment at single focal adhesions. Mol. Biol. Cell 28 1901–1911. 10.1091/mbc.E17-02-0116 PubMed DOI PMC
Zhou J., Aponte-Santamaría C., Sturm S., Bullerjahn J. T., Bronowska A., Gräter F. (2015). Mechanism of focal adhesion kinase mechanosensing. PLoS Comput. Biol. 11:e1004593. 10.1371/journal.pcbi.1004593 PubMed DOI PMC
Zigmond S. H. (2004). Formin-induced nucleation of actin filaments. Curr. Opin. Cell Biol. 16 99–105. 10.1016/j.ceb.2003.10.019 PubMed DOI
Zwerger M., Jaalouk D. E., Lombardi M. L., Isermann P., Mauermann M., Dialynas G., et al. (2013). Myopathic lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling. Hum. Mol. Genet. 22 2335–2349. 10.1093/hmg/ddt079 PubMed DOI PMC
Regulation of Cell-Nanoparticle Interactions through Mechanobiology
Mechanics of cell sheets: plectin as an integrator of cytoskeletal networks
YAP Signaling Regulates the Cellular Uptake and Therapeutic Effect of Nanoparticles
Expression of genes regulating cell division in porcine follicular granulosa cells
A primer to traction force microscopy