Cellular Mechanotransduction: From Tension to Function

. 2018 ; 9 () : 824. [epub] 20180705

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30026699

Living cells are constantly exposed to mechanical stimuli arising from the surrounding extracellular matrix (ECM) or from neighboring cells. The intracellular molecular processes through which such physical cues are transformed into a biological response are collectively dubbed as mechanotransduction and are of fundamental importance to help the cell timely adapt to the continuous dynamic modifications of the microenvironment. Local changes in ECM composition and mechanics are driven by a feed forward interplay between the cell and the matrix itself, with the first depositing ECM proteins that in turn will impact on the surrounding cells. As such, these changes occur regularly during tissue development and are a hallmark of the pathologies of aging. Only lately, though, the importance of mechanical cues in controlling cell function (e.g., proliferation, differentiation, migration) has been acknowledged. Here we provide a critical review of the recent insights into the molecular basis of cellular mechanotransduction, by analyzing how mechanical stimuli get transformed into a given biological response through the activation of a peculiar genetic program. Specifically, by recapitulating the processes involved in the interpretation of ECM remodeling by Focal Adhesions at cell-matrix interphase, we revise the role of cytoskeleton tension as the second messenger of the mechanotransduction process and the action of mechano-responsive shuttling proteins converging on stage and cell-specific transcription factors. Finally, we give few paradigmatic examples highlighting the emerging role of malfunctions in cell mechanosensing apparatus in the onset and progression of pathologies.

Zobrazit více v PubMed

Akhtar A., Gasser S. M. (2007). The nuclear envelope and transcriptional control. Nat. Rev. Genet. 8 507–517. 10.1038/nrg2122 PubMed DOI

Amano M., Ito M., Fukata Y., Chihara K., Nakano T., Matsuura Y., et al. (1996). Phosphorylation and activation of Myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271 20246–20249. 10.1074/jbc.271.34.20246 PubMed DOI

Arnal I., Wade R. H. (1995). How does taxol stabilize microtubules? Curr. Biol. 5 900–908. 10.1016/S0960-9822(95)00180-1 PubMed DOI

Bae Y. H., Mui K. L., Hsu B. Y., Liu S. L., Cretu A., Razinia Z., et al. (2014). A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling. Sci. Signal. 7:ra57. 10.1126/scisignal.2004838 PubMed DOI PMC

Bell S., Terentjev E. M. (2017). Focal adhesion kinase: the reversible molecular mechanosensor. Biophys. J. 112 2439–2450. 10.1016/j.bpj.2017.04.048 PubMed DOI PMC

Berginski M. E., Vitriol E. A., Hahn K. M., Gomez S. M. (2011). High-resolution quantification of focal adhesion spatiotemporal dynamics in living cells. PLoS One 6:e22025. 10.1371/journal.pone.0022025 PubMed DOI PMC

Bertrand A. T., Ziaei S., Ehret C., Duchemin H., Mamchaoui K., Bigot A., et al. (2014). Cellular microenvironments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors. J. Cell Sci. 127(Pt 13), 2873–2884. 10.1242/jcs.144907 PubMed DOI

Bhana B., Iyer R. K., Chen W. L. K., Zhao R., Sider K. L., Likhitpanichkul M., et al. (2010). Influence of substrate stiffness on the phenotype of heart cells. Biotechnol. Bioeng. 105 1148–1160. 10.1002/bit.22647 PubMed DOI

Bollati M., Barbiroli A., Favalli V., Arbustini E., Charron P., Bolognesi M. (2012). Structures of the lamin A/C R335W and E347K mutants: implications for dilated cardiolaminopathies. Biochem. Biophys. Res. Commun. 418 217–221. 10.1016/j.bbrc.2011.12.136 PubMed DOI

Booth-Gauthier E. A., Alcoser T. A., Yang G., Dahl K. N. (2012). Force-induced changes in subnuclear movement and rheology. Biophys. J. 103 2423–2431. 10.1016/j.bpj.2012.10.039 PubMed DOI PMC

Brayson D., Shanahan C. M. (2017). Current insights into LMNA cardiomyopathies: Existing models and missing LINCs. Nucleus 8 17–33. 10.1080/19491034.2016.1260798 PubMed DOI PMC

Brown R. A., Prajapati R., McGrouther D. A., Yannas I. V., Eastwood M. (1998). Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates. J. Cell. Physiol. 175 323–332. 10.1002/(SICI)1097-4652(199806)175:3<323::AID-JCP10>3.0.CO;2-6 PubMed DOI

Brown S. S., Spudich J. A. (1981). Mechanism of action of cytochalasin: evidence that it binds to actin filament ends. J. Cell Biol. 88 487–491. 10.1083/jcb.88.3.487 PubMed DOI PMC

Bubb M. R., Senderowicz A. M. J., Sausville E. A., Duncan K. L. K., Korn E. D. (1994). Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J. Biol. Chem. 269 14869–14871. PubMed

Bubb M. R., Spector I., Beyer B. B., Fosen K. M. (2000). Effects of Jasplakinolide on the kinetics of actin polymerization an explanation for certain in vivo observations. J. Biol. Chem. 275 5163–5170. 10.1074/jbc.275.7.5163 PubMed DOI

Bugyi B., Carlier M.-F. (2010). Control of actin filament treadmilling in cell motility. Annu. Rev. Biophys. 39 449–470. 10.1146/annurev-biophys-051309-103849 PubMed DOI

Burke B., Roux K. J. (2009). Nuclei take a position: managing nuclear location. Dev. Cell 17 587–597. 10.1016/j.devcel.2009.10.018 PubMed DOI

Burridge K., Chrzanowska-Wodnicka M. (1996). Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 12 463–519. 10.1146/annurev.cellbio.12.1.463 PubMed DOI

Buxboim A., Swift J., Irianto J., Spinler K. R., Dingal P. C. D. P., Athirasala A., et al. (2014). Matrix elasticity regulates lamin-A,C phosphorylation and turnover with feedback to actomyosin. Curr. Biol. 24 1909–1917. 10.1016/j.cub.2014.07.001 PubMed DOI PMC

Cai Y., Rossier O., Gauthier N. C., Biais N., Fardin M.-A., Zhang X., et al. (2010). Cytoskeletal coherence requires myosin-IIA contractility. J. Cell Sci. 123 413–423. 10.1242/jcs.058297 PubMed DOI PMC

Calvo F., Ege N., Grande-Garcia A., Hooper S., Jenkins R. P., Chaudhry S. I., et al. (2013). Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15 637–646. 10.1038/ncb2756 PubMed DOI PMC

Camozzi D., Capanni C., Cenni V., Mattioli E., Columbaro M., Squarzoni S., et al. (2014). Diverse lamin-dependent mechanisms interact to control chromatin dynamics, focus on laminopathies. Nucleus 5 427–440. 10.4161/nucl.36289 PubMed DOI PMC

Capell B. C., Collins F. S. (2006). Human laminopathies: nuclei gone genetically awry. Nat. Rev. Genet. 7 940–952. 10.1038/nrg1906 PubMed DOI

Carisey A., Tsang R., Greiner A. M., Nijenhuis N., Heath N., Nazgiewicz A., et al. (2013). Vinculin regulates the recruitment and release of core focal adhesion proteins in a force-dependent manner. Curr. Biol. 23 271–281. 10.1016/j.cub.2013.01.009 PubMed DOI PMC

Cattaruzza M., Lattrich C., Hecker M. (2004). Focal adhesion protein zyxin is a mechanosensitive modulator of gene expression in vascular smooth muscle cells. Hypertension 43 726–730. 10.1161/01.HYP.0000119189.82659.52 PubMed DOI

Cavalcanti-Adam E. A., Volberg T., Micoulet A., Kessler H., Geiger B., Spatz J. P. (2007). Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J. 92 2964–2974. 10.1529/biophysj.106.089730 PubMed DOI PMC

Chambliss A. B., Khatau S. B., Erdenberger N., Robinson D. K., Hodzic D., Longmore G. D., et al. (2013). The LINC-anchored actin cap connects the extracellular milieu to the nucleus for ultrafast mechanotransduction. Sci. Rep. 3:1087. 10.1038/srep01087 PubMed DOI PMC

Chang J., Xie M., Shah V. R., Schneider M. D., Entman M. L., Wei L., et al. (2006). Activation of Rho-associated coiled-coil protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proc. Natl. Acad. Sci. U.S.A. 103 14495–14500. 10.1073/pnas.0601911103 PubMed DOI PMC

Chang T. T., Thakar D., Weaver V. M. (2017). Force-dependent breaching of the basement membrane. Matrix Biol. 5 178–189. 10.1016/j.matbio.2016.12.005 PubMed DOI PMC

Chen C. Y., Chi Y. H., Mutalif R. A., Starost M. F., Myers T. G., Anderson S. A., et al. (2012). Accumulation of the inner nuclear envelope protein Sun1 is pathogenic in progeric and dystrophic laminopathies. Cell 149 565–577. 10.1016/j.cell.2012.01.059 PubMed DOI PMC

Chen T. J., Wu C. C., Tang M. J., Huang J. S., Su F. C. (2010). Complexity of the tensegrity structure for dynamic energy and force distribution of cytoskeleton during cell spreading. PLoS One 5:e14392. 10.1371/journal.pone.0014392 PubMed DOI PMC

Chen W., Lou J., Evans E. A., Zhu C. (2012). Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells. J. Cell Biol. 199 497–512. 10.1083/jcb.201201091 PubMed DOI PMC

Chen Z.-J., Wang W.-P., Chen Y.-C., Wang J.-Y., Lin W.-H., Tai L.-A., et al. (2014). Dysregulated interactions between lamin A and SUN1 induce abnormalities in the nuclear envelope and endoplasmic reticulum in progeric laminopathies. J. Cell Sci. 127 1792–1804. 10.1242/jcs.139683 PubMed DOI

Cho S., Irianto J., Discher D. E. (2017). Mechanosensing by the nucleus: from pathways to scaling relationships. J. Cell Biol. 216 305–315. 10.1083/jcb.201610042 PubMed DOI PMC

Chorev D. S., Volberg T., Livne A., Eisenstein M., Martins B., Kam Z., et al. (2018). Conformational states during vinculin unlocking differentially regulate focal adhesion properties. Sci. Rep 8:2693. 10.1038/s41598-018-21006-8 PubMed DOI PMC

Ciobanasu C., Wang H., Henriot V., Mathieu C., Fente A., Csillag S., et al. (2018). Integrin-bound talin head inhibits actin filament barbed-end elongation. J. Biol. Chem. 293 2586–2596. 10.1074/jbc.M117.808204 PubMed DOI PMC

Colombelli J., Besser A., Kress H., Reynaud E. G., Girard P., Caussinus E., et al. (2009). Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization. J. Cell Sci. 122 1928–1928. 10.1242/jcs.054577 PubMed DOI

Comisar W., Mooney D., Linderman J. (2012). Integrin organization?: linking adhesion ligand nanapatterns with altered cell responses. J. Theor. Biol. 274 120–130. 10.1016/j.jtbi.2011.01.007.Integrin PubMed DOI PMC

Cramer L. P., Siebert M., Mitchison T. J. (1997). Identification of novel graded polarity actin filament bundles in locomoting heart fibroblasts: Implications for the generation of motile force. J. Cell Biol. 136 1287–1305. 10.1083/jcb.136.6.1287 PubMed DOI PMC

Crisp M., Liu Q., Roux K., Rattner J. B., Shanahan C., Burke B., et al. (2006). Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172 41–53. 10.1083/jcb.200509124 PubMed DOI PMC

Dahl K. N., Kalinowski A. (2011). Nucleoskeleton mechanics at a glance. J. Cell Sci. 124 675–678. 10.1242/jcs.069096 PubMed DOI PMC

Dahl K. N., Ribeiro A. J. S., Lammerding J. (2008). Nuclear shape, mechanics, and mechanotransduction. Circ. Res. 102 1307–1318. 10.1161/CIRCRESAHA.108.173989 PubMed DOI PMC

Darenfed H., Dayanandan B., Zhang T., Hsieh S. H.-K., Fournier A. E., Mandato C. A. (2007). Molecular characterization of the effects of Y-27632. Cell Motil. Cytoskeleton 64 97–109. 10.1002/cm.20168 PubMed DOI

De Sandre-Giovannoli A., Chaouch M., Kozlov S., Vallat J.-M., Tazir M., Kassouri N., et al. (2002). Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (charcot-marie-tooth disorder type 2) and mouse. Am. J. Hum. Genet. 70 726–736. 10.1086/339274 PubMed DOI PMC

del Rio A., Perez-Jimenez R., Liu R., Roca-Cusachs P., Fernandez J. M., Sheetz M. P. (2009). Stretching single talin rod molecules activates vinculin binding. Science 323 638–641. 10.1126/science.1162912 PubMed DOI PMC

Discher D. E. (2005). Tissue cells feel and respon to the stiffness of their substrate. Science 310 1139–1143. 10.1126/science.1116995 PubMed DOI

Doe C., Bentley R., Behm D. J., Lafferty R., Stavenger R., Jung D., et al. (2007). Novel Rho kinase inhibitors with anti-inflammatory and vasodilatory activities. J. Pharmacol. Exp. Ther. 320 89–98. 10.1124/jpet.106.110635 PubMed DOI

Dong J.-M., Lau L.-S., Ng Y.-W., Lim L., Manser E. (2009). Paxillin nuclear-cytoplasmic localization is regulated by phosphorylation of the LD 4 motif: evidence that nuclear paxillin promotes cell proliferation. Biochem. J. 418 173–184. 10.1042/BJ20080170 PubMed DOI

Dorner D., Gotzmann J., Foisner R. (2007). Nucleoplasmic lamins and their interaction partners, LAP2α, Rb, and BAF, in transcriptional regulation. FEBS J. 274 1362–1373. 10.1111/j.1742-4658.2007.05695.x PubMed DOI

dos Santos P. B., Zanetti J. S., Ribeiro-Silva A., Beltrão E. I. C. (2012). Beta 1 integrin predicts survival in breast cancer: a clinicopathological and immunohistochemical study. Diagn. Pathol. 7:104. 10.1186/1746-1596-7-104 PubMed DOI PMC

Driscoll T. P., Cosgrove B. D., Heo S. J., Shurden Z. E., Mauck R. L. (2015). Cytoskeletal to nuclear strain transfer regulates YAP signaling in mesenchymal stem cells. Biophys. J. 108 2783–2793. 10.1016/j.bpj.2015.05.010 PubMed DOI PMC

Dumbauld D. W., Lee T. T., Singh A., Scrimgeour J., Gersbach C. A., Zamir E. A., et al. (2013). How vinculin regulates force transmission. Proc. Natl. Acad. Sci. U.S.A. 110 9788–9793. 10.1073/pnas.1216209110 PubMed DOI PMC

Dupont S., Morsut L., Aragona M., Enzo E., Giulitti S., Cordenonsi M., et al. (2011). Role of YAP/TAZ in mechanotransduction. Nature 474 179–184. 10.1038/nature10137 PubMed DOI

Elosegui-Artola A., Andreu I., Beedle A. E. M., Lezamiz A., Uroz M., Kosmalska A. J., et al. (2017). Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171 1397.e14–1410.e14. 10.1016/j.cell.2017.10.008 PubMed DOI

Emery A. E., Dreifuss F. E. (1966). Unusual type of benign x-linked muscular dystrophy. J. Neurol. Neurosurg. Psychiatry 29 338–342. 10.1136/jnnp.29.4.338 PubMed DOI PMC

Engler A. J., Carag-Krieger C., Johnson C. P., Raab M., Tang H.-Y., Speicher D. W., et al. (2008). Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J. Cell Sci. 121 3794–3802. 10.1242/jcs.029678 PubMed DOI PMC

Engler A. J., Griffin M. A., Sen S., Bönnemann C. G., Sweeney H. L., Discher D. E. (2004). Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166 877–887. 10.1083/jcb.200405004 PubMed DOI PMC

Engler A. J., Sen S., Sweeney H. L., Discher D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell 126 677–689. 10.1016/j.cell.2006.06.044 PubMed DOI

Estes J. E., Selden L. A., Gershman L. C. (1981). Mechanism of action of phalloidin on the polymerization of muscle actin. Biochemistry 20 708–712. 10.1021/bi00507a006 PubMed DOI

Even-Ram S., Doyle A. D., Conti M. A., Matsumoto K., Adelstein R. S., Yamada K. M. (2007). Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nat. Cell Biol. 9 299–309. 10.1038/ncb1540 PubMed DOI

Fabry B., Klemm A. H., Kienle S., Schäffer T. E., Goldmann W. H. (2011). Focal adhesion kinase stabilizes the cytoskeleton. Biophys. J. 101 2131–2138. 10.1016/j.bpj.2011.09.043 PubMed DOI PMC

Fabry B., Maksym G. N., Butler J. P., Glogauer M., Navajas D., Fredberg J. J. (2001). Scaling the microrheology of living cells. Phys. Rev. Lett. 87:148102. 10.1103/PhysRevLett.87.148102 PubMed DOI

Fan R., Kim N.-G., Gumbiner B. M. (2013). Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc. Natl. Acad. Sci. U.S.A. 110 2569–2574. 10.1073/pnas.1216462110 PubMed DOI PMC

Fedorchak G. R., Kaminski A., Lammerding J. (2014). Cellular mechanosensing: Getting to the nucleus of it all. Prog. Biophys. Mol. Biol. 115 76–92. 10.1016/j.pbiomolbio.2014.06.009 PubMed DOI PMC

Fidziańska A., Hausmanowa-Petrusewicz I. (2003). Architectural abnormalities in muscle nuclei. Ultrastructural differences between X-linked and autosomal dominant forms of EDMD. J. Neurol. Sci. 210 47–51. 10.1016/S0022-510X(03)00012-1 PubMed DOI

Filippi M.-D. (2016). Chapter two - mechanism of diapedesis: importance of the transcellular route. Adv. Immunol. 129 25–53. 10.1016/bs.ai.2015.09.001 PubMed DOI PMC

Fink J., Carpi N., Betz T., Bétard A., Chebah M., Azioune A., et al. (2011). External forces control mitotic spindle positioning. Nat. Cell Biol. 13 771–778. 10.1038/ncb2269 PubMed DOI

Flatau G., Lemichez E., Gauthier M., Chardin P., Paris S., Florentini C., et al. (1997). Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387 729–733. 10.1038/42743 PubMed DOI

Fletcher D. A., Mullins R. D. (2010). Cell mechanics and the cytoskeleton. Nature 463 485–492. 10.1038/nature08908 PubMed DOI PMC

Folker E. S., Ostlund C., Luxton G. W. G., Worman H. J., Gundersen G. G. (2011). Lamin A variants that cause striated muscle disease are defective in anchoring transmembrane actin-associated nuclear lines for nuclear movement. Proc. Natl. Acad. Sci. U.S.A. 108 131–136. 10.1073/pnas.1000824108 PubMed DOI PMC

Forte G., Carotenuto F., Pagliari F., Pagliari S., Cossa P., Fiaccavento R., et al. (2008). Criticality of the biological and physical stimuli array inducing resident cardiac stem cell determination. Stem Cells 26 2093–2103. 10.1634/stemcells.2008-0061 PubMed DOI

Forte G., Pagliari S., Ebara M., Uto K., Tam J. K., Romanazzo S., et al. (2012). Substrate stiffness modulates gene expression and phenotype in neonatal cardiomyocytes in vitro. Tissue Eng. Part A 18 1837–1848. 10.1089/ten.tea.2011.0707 PubMed DOI

Fridolfsson H. N., Starr D. A. (2010). Kinesin-1 and dynein at the nuclear envelope mediate the bidirectional migrations of nuclei. J. Cell Biol. 191 115–128. 10.1083/jcb.201004118 PubMed DOI PMC

Fujiwara S., Ohashi K., Mashiko T., Kondo H., Mizuno K. (2016). Interplay between Solo and keratin filaments is crucial for mechanical force-induced stress fiber reinforcement. Mol. Biol. Cell 27 954–966. 10.1091/mbc.E15-06-0417 PubMed DOI PMC

Fukata Y., Kaibuchi K., Amano M., Kaibuchi K. (2001). Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol. Sci. 22 32–39. 10.1016/S0165-6147(00)01596-0 PubMed DOI

Galbraith C. G., Yamada K. M., Galbraith J. A. (2007). Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science 315 992–995. 10.1126/science.1137904 PubMed DOI

Giannone G. (2015). Super-resolution links vinculin localization to function in focal adhesions. Nat. Cell Biol. 17 845–847. 10.1038/ncb3196 PubMed DOI

Gimpel P., Lee Y. L., Sobota R. M., Calvi A., Koullourou V., Patel R., et al. (2017). Nesprin-1α-dependent microtubule nucleation from the nuclear envelope via Akap450 is necessary for nuclear positioning in muscle cells. Curr. Biol. 27 2999.e9–3009.e9. 10.1016/j.cub.2017.08.031 PubMed DOI PMC

Gingras A. R., Ziegler W. H., Bobkov A. A., Joyce M. G., Fasci D., Himmel M., et al. (2009). Structural determinants of integrin binding to the talin rod. J. Biol. Chem. 284 8866–8876. 10.1074/jbc.M805937200 PubMed DOI PMC

Gingras A. R., Ziegler W. H., Frank R., Barsukov I. L., Roberts G. C. K., Critchley D. R., et al. (2005). Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod. J. Biol. Chem. 280 37217–37224. 10.1074/jbc.M508060200 PubMed DOI

Goffin J. M., Pittet P., Csucs G., Lussi J. W., Meister J. J., Hinz B. (2006). Focal adhesion size controls tension-dependent recruitment of α-smooth muscle actin to stress fibers. J. Cell Biol. 172 259–268. 10.1083/jcb.200506179 PubMed DOI PMC

Goldman R. D., Shumaker D. K., Erdos M. R., Eriksson M., Goldman A. E., Gordon L. B., et al. (2004). Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc. Natl. Acad. Sci. U.S.A. 101 8963–8968. 10.1073/pnas.0402943101 PubMed DOI PMC

Golji J., Mofrad M. R. K. (2014). The talin dimer structure orientation is mechanically regulated. Biophys. J. 107 1802–1809. 10.1016/j.bpj.2014.08.038 PubMed DOI PMC

Gottardi C. J., Arpin M., Fanning A. S., Louvard D. (1996). The junction-associated protein, zonula occludens-1, localizes to the nucleus before the maturation and during the remodeling of cell-cell contacts. Proc. Natl. Acad. Sci. U.S.A. 93 10779–10784. 10.1073/pnas.93.20.10779 PubMed DOI PMC

Graf K., Neuss M., Stawowy P., Hsueh W. A., Fleck E., Law R. E. (2000). Angiotensin II and v 3 integrin expression in rat neonatal cardiac fibroblasts. Hypertension 35 978–984. 10.1161/01.HYP.35.4.978 PubMed DOI

Grannas K., Arngården L., Lönn P., Mazurkiewicz M., Blokzijl A., Zieba A., et al. (2015). Crosstalk between hippo and TGFβ: subcellular localization of YAP/TAZ/Smad Complexes. J. Mol. Biol. 427 3407–3415. 10.1016/j.jmb.2015.04.015 PubMed DOI

Gruenbaum Y., Medalia O. (2015). Lamins: the structure and protein complexes. Curr. Opin. Cell Biol. 32 7–12. 10.1016/j.ceb.2014.09.009 PubMed DOI

Guilak F. (1995). Compression-induced changes in the shape and volume of the chondrocyte nucleus. J. Biomech. 28 1529–1541. 10.1016/0021-9290(95)00100-x PubMed DOI

Guilak F., Tedrow J. R., Burgkart R. (2000). Viscoelastic properties of the cell nucleus. Biochem. Biophys. Res. Commun. 269 781–786. 10.1006/bbrc.2000.2360 PubMed DOI

Guilluy C., Osborne L. D., Van Landeghem L., Sharek L., Superfine R., Garcia-Mata R., et al. (2014). Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat. Cell Biol. 16 376–381. 10.1038/ncb2927 PubMed DOI PMC

Gumbiner B. (1995). Signal transduction by B-catenin. Curr. Opin. Cell Biol. 7 634–640. 10.1016/0955-0674(95)80104-9 PubMed DOI

Haining A. W. M., Von Essen M., Attwood S. J., Hytönen V. P., Del Río Hernández A. (2016). All subdomains of the talin rod are mechanically vulnerable and may contribute to cellular mechanosensing. ACS Nano 10 6648–6658. 10.1021/acsnano.6b01658 PubMed DOI PMC

Handorf A. M., Zhou Y., Halanski M. A., Li W. J. (2015). Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 11 1–15. 10.1080/15476278.2015.1019687 PubMed DOI PMC

Hansen C. G., Moroishi T., Guan K. L. (2015). YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol. 25 499–513. 10.1016/j.tcb.2015.05.002 PubMed DOI PMC

Haque F., Lloyd D. J., Smallwood D. T., Dent C. L., Shanahan C. M., Fry A. M., et al. (2006). SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol. Cell. Biol. 26 3738–3751. 10.1128/MCB.26.10.3738-3751.2006 PubMed DOI PMC

Hartman C. D., Isenberg B. C., Chua S. G., Wong J. Y. (2016). Vascular smooth muscle cell durotaxis depends on extracellular matrix composition. Proc. Natl. Acad. Sci. U.S.A. 113 11190–11195. 10.1073/pnas.1611324113 PubMed DOI PMC

Haskins J. W., Nguyen D. X., Stern D. F. (2014). Neuregulin 1-activated ERBB4 interacts with YAP to induce Hippo pathway target genes and promote cell migration. Sci. Signal. 7:ra116. 10.1126/scisignal.2005770 PubMed DOI PMC

Hayakawa K., Tatsumi H., Sokabe M. (2011). Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament. J. Cell Biol. 195 721–727. 10.1083/jcb.201102039 PubMed DOI PMC

Hayashi K., Iwata M. (2015). Stiffness of cancer cells measured with an AFM indentation method. J. Mech. Behav. Biomed. Mater. 49 105–111. 10.1016/j.jmbbm.2015.04.030 PubMed DOI

Head J., Lee L. L., Field D. J., Lee J. C. (1985). Equilibrium and rapid kinetic studies on interaction. J. Biol. Chem. 20 11060–11066. PubMed

Heessen S., Fornerod M. (2007). The inner nuclear envelope as a transcription factor resting place. EMBO Rep. 8 914–919. 10.1038/sj.embor.7401075 PubMed DOI PMC

Hirata H., Tatsumi H., Lim C. T., Sokabe M. (2014). Force-dependent vinculin binding to talin in live cells: a crucial step in anchoring the actin cytoskeleton to focal adhesions. AJP Cell Physiol. 306 C607–C620. 10.1152/ajpcell.00122.2013 PubMed DOI

Ho C. Y., Jaalouk D. E., Vartiainen M. K., Lammerding J. (2013). Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature 497 507–511. 10.1038/nature12105 PubMed DOI PMC

Ho C. Y., Lammerding J. (2012). Lamins at a glance. J. Cell Sci. 125 2087–2093. 10.1242/jcs.087288 PubMed DOI PMC

Hoffman L. M., Jensen C. C., Chaturvedi A., Yoshigi M., Beckerle M. C. (2012). Stretch-induced actin remodeling requires targeting of zyxin to stress fibers and recruitment of actin regulators. Mol. Biol. Cell 23 1846–1859. 10.1091/mbc.E11-12-1057 PubMed DOI PMC

Holzinger A. (2009). Jasplakinolide: an actin-specific reagent that promotes actin polymerization. Methods Mol. Biol. 586 71–87. 10.1007/978-1-60761-376-3_4 PubMed DOI

Hotulainen P., Lappalainen P. (2006). Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173 383–394. 10.1083/jcb.200511093 PubMed DOI PMC

Huber O., Korn R., McLaughlin J., Ohsugi M., Herrmann B. G., Kemler R. (1996). Nuclear localization of β-catenin by interaction with transcription factor LEF-1. Mech. Dev. 59 3–10. 10.1016/0925-4773(96)00597-7 PubMed DOI

Humphries J. D., Wang P., Streuli C., Geiger B., Humphries M. J., Ballestrem C. (2007). Vinculin controls focal adhesion formation by direct interactions with talin and actin. J. Cell Biol. 179 1043–1057. 10.1083/jcb.200703036 PubMed DOI PMC

Ibarra A., Hetzer M. W. (2015). Nuclear pore proteins and the control of genome functions. Genes Dev. 29 337–349. 10.1101/gad.256495.114 PubMed DOI PMC

Ishizaki T., Uehata M., Tamechika I., Keel J., Nonomura K., Maekawa M., et al. (2000). Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol. Pharmacol. 57 976–983. PubMed

Ivorra C., Kubicek M., González J. M., Sanz-González S. M., Álvarez-Barrientos A., O’Connor J. E., et al. (2006). A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C. Genes Dev. 20 307–320. 10.1101/gad.349506 PubMed DOI PMC

Iyer K. V., Pulford S., Mogilner A., Shivashankar G. V. (2012). Mechanical activation of cells induces chromatin remodeling preceding MKL nuclear transport. Biophys. J. 103 1416–1428. 10.1016/j.bpj.2012.08.041 PubMed DOI PMC

Jaalouk D. E., Lammerding J. (2009). Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10 63–73. 10.1038/nrm2597 PubMed DOI PMC

Janoštiak R., Pataki A. C., Brábek J., Rösel D. (2014). Mechanosensors in integrin signaling: the emerging role of p130Cas. Eur. J. Cell Biol. 93 445–454. 10.1016/j.ejcb.2014.07.002 PubMed DOI

Jin J. K., Tien P. C., Cheng C. J., Song J. H., Huang C., Lin S. H., et al. (2015). Talin1 phosphorylation activates β1 integrins: a novel mechanism to promote prostate cancer bone metastasis. Oncogene 34 1811–1821. 10.1038/onc.2014.116 PubMed DOI PMC

Jiu Y., Lehtimäki J., Tojkander S., Cheng F., Jäälinoja H., Liu X., et al. (2015). Bidirectional interplay between vimentin intermediate filaments and contractile actin stress fibers. Cell Rep. 11 1511–1518. 10.1016/j.celrep.2015.05.008 PubMed DOI

Jiu Y., Peränen J., Schaible N., Cheng F., Eriksson J. E., Krishnan R., et al. (2017). Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA. J. Cell Sci. 130 892–902. 10.1242/jcs.196881 PubMed DOI PMC

Jung O., Choi S., Jang S.-B., Lee S.-A., Lim S.-T., Choi Y.-J., et al. (2012). Tetraspan TM4SF5-dependent direct activation of FAK and metastatic potential of hepatocarcinoma cells. J. Cell Sci. 125 5960–5973. 10.1242/jcs.100586 PubMed DOI PMC

Kadrmas J. L., Beckerle M. C. (2004). The LIM domain: from the cytoskeleton to the nucleus. Nat. Rev. Mol. Cell Biol. 5 920–931. 10.1038/nrm1499 PubMed DOI

Kajikawa M., Noma K., Tatsuya M., Mikami S., Iwamoto Y., Iwamoto A., et al. (2014). Rho-associated kinase activity is a predictor of cardiovascular outcomes. Hypertension 63 856–864. 10.1161/HYPERTENSIONAHA.113.02296 PubMed DOI PMC

Kataoka C., Egashira K., Inoue S., Takemoto M., Ni W. (2002). Important role of rho-kinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long-term blockade of nitric oxide synthesis in rats. Sci. Technol. 39 245–250. 10.1161/hy0202.103271 PubMed DOI

Kawano H., Cody R. J., Graf K., Goetze S., Kawano Y., Schnee J., et al. (2000). Angiotensin II enhances integrin and alpha-actinin expression in adult rat cardiac fibroblasts. Hypertension 35 273–279. 10.1161/01.HYP.35.1.273 PubMed DOI

Khatau S. B., Hale C. M., Stewart-Hutchinson P. J., Patel M. S., Stewart C. L., Searson P. C., et al. (2009). A perinuclear actin cap regulates nuclear shape. Proc. Natl. Acad. Sci. U.S.A. 106 19017–19022. 10.1073/pnas.0908686106 PubMed DOI PMC

Kim D. H., Khatau S. B., Feng Y., Walcott S., Sun S. X., Longmore G. D., et al. (2012). Actin cap associated focal adhesions and their distinct role in cellular mechanosensing. Sci. Rep. 2:555. 10.1038/srep00555 PubMed DOI PMC

Kim D. H., Wirtz D. (2015). Cytoskeletal tension induces the polarized architecture of the nucleus. Biomaterials 48 161–172. 10.1016/j.biomaterials.2015.01.023 PubMed DOI PMC

Kim H. E., Dalal S. S., Young E., Legato M. J., Weisfeldt M. L., D’Armiento J. (2000). Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J. Clin. Invest. 106 857–866. 10.1172/JCI8040 PubMed DOI PMC

Kim N.-G., Koh E., Chen X., Gumbiner B. M. (2011). E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc. Natl. Acad. Sci. U.S.A. 108 11930–11935. 10.1073/pnas.1103345108 PubMed DOI PMC

Klaas M., Kangur T., Viil J., Mäemets-Allas K., Minajeva A., Vadi K., et al. (2016). The alterations in the extracellular matrix composition guide the repair of damaged liver tissue. Sci. Rep. 6:27398. 10.1038/srep27398 PubMed DOI PMC

Klenchin V. A., King R., Tanaka J., Marriott G., Rayment I. (2005). Structural basis of swinholide a binding to actin. Chem. Biol. 12 287–291. 10.1016/j.chembiol.2005.02.011 PubMed DOI

Komuro A., Nagai M., Navin N. E., Sudol M. (2003). WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J. Biol. Chem. 278 33334–33341. 10.1074/jbc.M305597200 PubMed DOI

Kovács M., Wang F., Hu A., Zhang Y., Sellers J. R. (2003). Functional divergence of human cytoplasmic myosin II. Kinetic characterization of the non-muscle IIA isoform. J. Biol. Chem. 278 38132–38140. 10.1074/jbc.M305453200 PubMed DOI

Krendel M., Zenke F. T., Bokoch G. M. (2002). Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat. Cell Biol. 4 294–301. 10.1038/ncb773 PubMed DOI

Krull S., Dörries J., Boysen B., Reidenbach S., Magnius L., Norder H., et al. (2010). Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J. 29 1659–1673. 10.1038/emboj.2010.54 PubMed DOI PMC

Lachowski D., Cortes E., Robinson B., Rice A., Rombouts K., Del Río Hernández A. E. (2018). FAK controls the mechanical activation of YAP, a transcriptional regulator required for durotaxis. FASEB J. 32 1099–1107. 10.1096/fj.201700721R PubMed DOI

Lammerding J., Schulze P. C., Takahashi T., Kozlov S., Sullivan T., Kamm R. D., et al. (2004). Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113 370–378. 10.1172/JCI200419670 PubMed DOI PMC

Last J. A., Pan T., Ding Y., Reilly C. M., Keller K., Acott T. S., et al. (2011). Elastic modulus determination of normal and glaucomatous human trabecular meshwork. Investig. Ophthalmol. Vis. Sci. 52 2147–2152. 10.1167/iovs.10-6342 PubMed DOI PMC

Lauriol J., Keith K., Jaffré F., Couvillon A., Saci A., Goonasekera S. A., et al. (2014). RhoA signaling in cardiomyocytes protects against stress-induced heart failure but facilitates cardiac fibrosis. Sci. Signal. 7:ra100. 10.1126/scisignal.2005262 PubMed DOI PMC

Lee S., Kumar S. (2016). Actomyosin stress fiber mechanosensing in 2D and 3D. F1000Res. 5:2261. 10.12688/f1000research.8800.1 PubMed DOI PMC

Lessey E. C., Guilluy C., Burridge K. (2012). From mechanical force to RhoA activation. Biochemistry 51 7420–7432. 10.1021/bi300758e PubMed DOI PMC

Lewis J. M., Baskaran R., Taagepera S., Schwartz M. A., Wang J. Y. (1996). Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmic-nuclear transport. Proc. Natl. Acad. Sci. U.S.A. 93 15174–15179. 10.1073/pnas.93.26.15174 PubMed DOI PMC

Li Q., Kumar A., Makhija E., Shivashankar G. V. (2014). The regulation of dynamic mechanical coupling between actin cytoskeleton and nucleus by matrix geometry. Biomaterials 35 961–969. 10.1016/j.biomaterials.2013.10.037 PubMed DOI

Li R., Wu Y., Manso A. M., Gu Y., Liao P., Israeli S., et al. (2012). β1 integrin gene excision in the adult murine cardiac myocyte causes defective mechanical and signaling responses. Am. J. Pathol. 180 952–962. 10.1016/j.ajpath.2011.12.007 PubMed DOI PMC

Liu M., Öberg K., Zhou Y. (2007). Expression and function of vinculin in neuroendocrine tumors. Tumor Biol. 28 196–204. 10.1159/000107415 PubMed DOI

Liu Q., Pante N., Misteli T., Elsagga M., Crisp M., Hodzic D., et al. (2007). Functional association of Sun1 with nuclear pore complexes. J. Cell Biol. 178 785–798. 10.1083/jcb.200704108 PubMed DOI PMC

Liu Y. J., Le Berre M., Lautenschlaeger F., Maiuri P., Callan-Jones A., Heuzé M., et al. (2015). Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160 659–672. 10.1016/j.cell.2015.01.007 PubMed DOI

Lombardi M. L., Lammerding J. (2011). Keeping the LINC: the importance of nucleocytoskeletal coupling in intracellular force transmission and cellular function. Biochem. Soc. Trans. 39 1729–1734. 10.1042/BST20110686 PubMed DOI PMC

Luis Alonso J., Goldmann W. H. (2016). Cellular mechanotransduction. AIMS Biophys. 3 50–62. 10.3934/biophy.2016.1.50 DOI

Luxton G. W. G., Gomes E. R., Folker E. S., Vintinner E., Gundersen G. G. (2010). Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329 956–959. 10.1126/science.1189072 PubMed DOI PMC

Maggi L., Carboni N., Bernasconi P. (2016). Skeletal muscle laminopathies: a review of clinical and molecular features. Cells 5:E33. 10.3390/cells5030033 PubMed DOI PMC

Maki K., Nakao N., Adachi T. (2017). Nano-mechanical characterization of tension-sensitive helix bundles in talin rod. Biochem. Biophys. Res. Commun. 484 372–377. 10.1016/j.bbrc.2017.01.127 PubMed DOI

Mallat Z., Gojova A., Sauzeau V., Brun V., Silvestre J. S., Esposito B., et al. (2003). Rho-associated protein kinase contributes to early atherosclerotic lesion formation in mice. Circ. Res. 93 884–888. 10.1161/01.RES.0000099062.55042.9A PubMed DOI

Markiewicz E., Tilgner K., Barker N., Van De Wetering M., Clevers H., Dorobek M., et al. (2006). The inner nuclear membrane protein Emerin regulates β-catenin activity by restricting its accumulation in the nucleus. EMBO J. 25 3275–3285. 10.1038/sj.emboj.7601230 PubMed DOI PMC

Martinac B. (2014). The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity. Biochim. Biophys. Acta 1838 682–691. 10.1016/j.bbamem.2013.07.015 PubMed DOI

McBeath R., Pirone D. M., Nelson C. M., Bhadriraju K., Chen C. S. (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6 483–495. 10.1016/S1534-5807(04)00075-9 PubMed DOI

McGough A., Pope B., Chiu W., Weeds A. (1997). Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J. Cell Biol. 138 771–781. 10.1083/jcb.138.4.771 PubMed DOI PMC

Meacci G., Wolfenson H., Liu S., Stachowiak M. R., Iskratsch T., Mathur A., et al. (2016). α-Actinin links extracellular matrix rigidity-sensing contractile units with periodic cell-edge retractions. Mol. Biol. Cell 27 3471–3479. 10.1091/mbc.E16-02-0107 PubMed DOI PMC

Meinke P., Mattioli E., Haque F., Antoku S., Columbaro M., Straatman K. R., et al. (2014). Muscular dystrophy-associated SUN1 and SUN2 variants disrupt nuclear-cytoskeletal connections and myonuclear organization. PLoS Genet. 10:e1004605. 10.1371/journal.pgen.1004605 PubMed DOI PMC

Méjat A., Misteli T. (2010). LINC complexes in health and disease. Nucleus 1 40–52. 10.4161/nucl.1.1.10530 PubMed DOI PMC

Michael K. E., Dumbauld D. W., Burns K. L., Hanks S. K., Garcia A. J. (2009). Focal adhesion kinase modulates cell adhesion strengthening via integrin activation. Mol. Biol. Cell 20 2508–2519. 10.1091/mbc.E08-01-0076 PubMed DOI PMC

Mierke C. T., Kollmannsberger P., Zitterbart D. P., Smith J., Fabry B., Goldmann W. H. (2008). Mechano-coupling and regulation of contractility by the vinculin tail domain. Biophys. J. 94 661–670. 10.1529/biophysj.107.108472 PubMed DOI PMC

Milloud R., Destaing O., de Mets R., Bourrin-Reynard I., Oddou C., Delon A., et al. (2017). αvβ3 integrins negatively regulate cellular forces by phosphorylation of its distal NPXY site. Biol. Cell 109 127–137. 10.1111/boc.201600041 PubMed DOI

Miralles F., Posern G., Zaromytidou A. I., Treisman R. (2003). Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113 329–342. 10.1016/S0092-8674(03)00278-2 PubMed DOI

Mo J. S., Yu F. X., Gong R., Brown J. H., Guan K. L. (2012). Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes Dev. 26 2138–2143. 10.1101/gad.197582.112 PubMed DOI PMC

Morikawa Y., Zhang M., Heallen T., Leach J., Tao G., Xiao Y., et al. (2015). Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice. Sci. Signal. 8:ra41. 10.1126/scisignal.2005781 PubMed DOI PMC

Morton W. M., Ayscough K. R., Mclaughlin P. J. (2000). Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nat. Cell Biol. 2 376–378. 10.1038/35014075 PubMed DOI

Mosqueira D., Pagliari S., Uto K., Ebara M., Romanazzo S., Escobedo-Lucea C., et al. (2014). Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure. ACS Nano 8 2033–2047. 10.1021/nn4058984 PubMed DOI

Nardone G., Oliver-De La Cruz J., Vrbsky J., Martini C., Pribyl J., Skládal P., et al. (2017). YAP regulates cell mechanics by controlling focal adhesion assembly. Nat. Commun. 8:15321. 10.1038/ncomms15321 PubMed DOI PMC

Natarajan V., Berglund E. J., Chen D. X., Kidambi S. (2015). Substrate elasticity regulates primary hepatocyte functions. RSC Adv. 5:80956 10.1039/C5RA15208A PubMed DOI PMC

Naumanen P., Lappalainen P., Hotulainen P. (2008). Mechanisms of actin stress fibre assembly. J. Microsc. 231 446–454. 10.1111/j.1365-2818.2008.02057.x PubMed DOI

Navarro C. L., Cau P., Lévy N. (2006). Molecular bases of progeroid syndromes. Hum. Mol. Genet. 15Spec No 2:R151–R161. 10.1093/hmg/ddl214 PubMed DOI

Neelam S., Chancellor T. J., Li Y., Nickerson J. A., Roux K. J., Dickinson R. B., et al. (2015). Direct force probe reveals the mechanics of nuclear homeostasis in the mammalian cell. Proc. Natl. Acad. Sci. U.S.A. 112 5720–5725. 10.1073/pnas.1502111112 PubMed DOI PMC

Neumann J., Gottschalk K. E. (2016). The integrin-talin complex under force. Protein Eng. Des. Sel. 29 503–512. 10.1093/protein/gzw031 PubMed DOI

Nguyen A. T., Sathe S. R., Yim E. K. F. (2016). From nano to micro: topographical scale and its impact on cell adhesion, morphology and contact guidance. J. Phys. Condens. Matter. 28:183001. 10.1088/0953-8984/28/18/183001 PubMed DOI

Nikolova V., Leimena C., McMahon A. C., Tan J. C., Chandar S., Jogia D., et al. (2004). Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J. Clin. Invest. 113 357–369. 10.1172/JCI200419448 PubMed DOI PMC

Nikolova-Krstevski V., Leimena C., Xiao X. H., Kesteven S., Tan J. C., Yeo L. S., et al. (2011). Nesprin-1 and actin contribute to nuclear and cytoskeletal defects in lamin A/C-deficient cardiomyopathy. J. Mol. Cell. Cardiol. 50 479–486. 10.1016/j.yjmcc.2010.12.001 PubMed DOI

Nix D. A., Beckerle M. C. (1997). Nuclear-cytoplasmic shuttling of the focal contact protein, zyxin: a potential mechanism for communication between sites of cell adhesion and the nucleus. J. Cell Biol. 138 1139–1147. 10.1083/jcb.138.5.1139 PubMed DOI PMC

Oka T., Sudol M. (2009). Nuclear localization and pro-apoptotic signaling of YAP2 require intact PDZ-binding motif. Genes Cells 14 607–615. 10.1111/j.1365-2443.2009.01292.x PubMed DOI

Olson E. N., Nordheim A. (2010). Linking actin dynamics and gene transcription to drive cellular motile functions. Nat. Rev. Mol. Cell Biol. 11 353–365. 10.1038/nrm2890 PubMed DOI PMC

Oria R., Wiegand T., Escribano J., Elosegui-Artola A., Uriarte J. J., Moreno-Pulido C., et al. (2017). Force loading explains spatial sensing of ligands by cells. Nature 552 219–224. 10.1038/nature24662 PubMed DOI

Orsulic S., Peifer M. (1996). An in vivo structure-function study of Armadillo, the β-catenin homologue, reveals both separate and overlapping regions of the protein required for cell adhesion and for wingless signaling. J. Cell Biol. 134 1283–1300. 10.1083/jcb.134.5.1283 PubMed DOI PMC

Osmanagic-Myers S., Dechat T., Foisner R. (2015). Lamins at the crossroads of mechanosignaling. Genes Dev. 29 225–237. 10.1101/gad.255968.114 PubMed DOI PMC

Palazzo A. F., Cook T. A., Alberts A. S., Gundersen G. G. (2001). mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat. Cell Biol. 3 723–729. 10.1038/35087035 PubMed DOI

Park J., Bauer S., Von Der Mark K., Schmuki P. (2007). Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett. 7 1686–1691. 10.1021/nl070678d PubMed DOI

Parker M. W., Rossi D., Peterson M., Smith K., Sikström K., White E. S., et al. (2014). Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J. Clin. Invest. 124 1622–1635. 10.1172/JCI71386 PubMed DOI PMC

Pasapera A. M., Schneider I. C., Rericha E., Schlaepfer D. D., Waterman C. M. (2010). Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J. Cell Biol. 188 877–890. 10.1083/jcb.200906012 PubMed DOI PMC

Paul C. D., Hung W., Wirtz D. (2017). Engineered models of confined cell migration. Annu. Rev. Biomed. Eng. 18 159–180. 10.1146/annurev-bioeng-071114-040654.Engineered PubMed DOI PMC

Pellegrin S., Mellor H. (2007). Actin stress fibres. J. Cell Sci. 120 3491–3499. 10.1242/jcs.018473 PubMed DOI

Peter A. K., Cheng H., Ross R. S., Knowlton K. U., Chen J. (2011). The costamere bridges sarcomeres to the sarcolemma in striated muscle. Prog. Pediatr. Cardiol. 31 83–88. 10.1016/j.ppedcard.2011.02.003 PubMed DOI PMC

Peterson L. J., Rajfur Z., Maddox A. S., Freel C. D., Chen Y., Edlund M., et al. (2004). Simultaneous stretching and contraction of stress fibers in vivo. Mol. Biol. Cell 15 3497–3508. 10.1091/mbc.E03 PubMed DOI PMC

Phrommintikul A., Tran L., Kompa A., Wang B., Adrahtas A., Cantwell D., et al. (2008). Effects of a Rho kinase inhibitor on pressure overload induced cardiac hypertrophy and associated diastolic dysfunction. Am. J. Physiol. Heart Circ. Physiol. 294 H1804–H1814. 10.1152/ajpheart.01078.2007 PubMed DOI

Plessner M., Melak M., Chinchilla P., Baarlink C., Grosse R. (2015). Nuclear f actin phalloidin nuclear F-actin formation and reorganization upon cell spreading. J. Biol. Chem. 290 11209–11216. 10.1074/jbc.M114.627166 PubMed DOI PMC

Pollard T. D., Cooper J. A. (2009). Actin, a central player in cell shape and movement. Science 326 1208–1212. 10.1126/science.1175862 PubMed DOI PMC

Poudel I., Menter D. E., Lim J. Y. (2012). Directing cell function and fate via micropatterning: role of cell patterning size, shape, and interconnectivity. Biomed. Eng. Lett. 2 38–45. 10.1007/s13534-012-0045-z DOI

Prokocimer M., Davidovich M., Nissim-Rafinia M., Wiesel-Motiuk N., Bar D. Z., Barkan R., et al. (2009). Nuclear lamins: key regulators of nuclear structure and activities. J. Cell. Mol. Med. 13 1059–1085. 10.1111/j.1582-4934.2008.00676.x PubMed DOI PMC

Qin R., Schmid H., Münzberg C., Maass U., Krndija D., Adler G., et al. (2015). Phosphorylation and turnover of paxillin in focal contacts is controlled by force and defines the dynamic state of the adhesion site. Cytoskeleton 72 101–112. 10.1002/cm.21209 PubMed DOI

Rahikainen R., Von Essen M., Schaefer M., Qi L., Azizi L., Kelly C., et al. (2017). Mechanical stability of talin rod controls cell migration and substrate sensing. Sci. Rep. 7:3571. 10.1038/s41598-017-03335-2 PubMed DOI PMC

Rao S., Krauss N. E., Heerding J. M., Swindell C. S., Ringel I., Orr G. A., et al. (1994). 3’-(p-Azidobenzamido)taxol photolabels the N-terminal 31 amino acids of β-tubulin. J. Biol. Chem. 269 3132–3134. PubMed

Razinia Z., Castagnino P., Xu T., Vázquez-Salgado A., Puré E., Assoian R. K. (2017). Stiffness-dependent motility and proliferation uncoupled by deletion of CD44. Sci. Rep. 7:16499. 10.1038/s41598-017-16486-z PubMed DOI PMC

Reid S. E., Kay E. J., Neilson L. J., Henze A.-T., Serneels J., McGhee E. J., et al. (2017). Tumor matrix stiffness promotes metastatic cancer cell interaction with endothelium. EMBO J. 36 2373–2389. 10.15252/embj.201694912 PubMed DOI PMC

Roca-Cusachs P., del Rio A., Puklin-Faucher E., Gauthier N. C., Biais N., Sheetz M. P. (2013). Integrin-dependent force transmission to the extracellular matrix by -actinin triggers adhesion maturation. Proc. Natl. Acad. Sci. U.S.A. 110 E1361–E1370. 10.1073/pnas.1220723110 PubMed DOI PMC

Rubashkin M. G., Cassereau L., Bainer R., DuFort C. C., Yui Y., Ou G., et al. (2014). Force engages vinculin and promotes tumor progression by enhancing PI3K activation of phosphatidylinositol (3,4,5)-triphosphate. Cancer Res. 74 4597–4611. 10.1158/0008-5472.CAN-13-3698 PubMed DOI PMC

Saha K., Keung A. J., Irwin E. F., Li Y., Little L., Schaffer D. V., et al. (2008). Substrate modulus directs neural stem cell behavior. Biophys. J. 95 4426–4438. 10.1529/biophysj.108.132217 PubMed DOI PMC

Saito S. Y., Watabe S., Ozaki H., Fusetani N., Karaki H. (1994). Mycalolide B, a novel actin depolymerizing agent. J. Biol. Chem. 269 29710–29714. PubMed

Saitoh M., Ishikawa T., Matsushima S., Naka M., Hidaka H. (1987). Selective inhibition of catalytic activity of smooth muscle myosin light chain kinase. J. Biol. Chem. 262 7796–7801. PubMed

Sakamoto S., Kyprianou N. (2010). Targeting anoikis resistance in prostate cancer metastasis. Mol. Aspects Med. 31 205–214. 10.1016/j.mam.2010.02.001 PubMed DOI PMC

Sakamoto S., McCann R. O., Dhir R., Kyprianou N. (2010). Talin1 promotes tumor invasion and metastasis via focal adhesion signaling and anoikis resistance. Cancer Res. 70 1885–1895. 10.1158/0008-5472.CAN-09-2833 PubMed DOI PMC

Sathe A. R., Shivashankar G. V., Sheetz M. P. (2016). Nuclear transport of paxillin depends on focal adhesion dynamics and FAT domains. J. Cell Sci. 129 1981–1988. 10.1242/jcs.172643 PubMed DOI PMC

Sawada Y., Tamada M., Dubin-Thaler B. J., Cherniavskaya O., Sakai R., Tanaka S., et al. (2006). Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127 1015–1026. 10.1016/j.cell.2006.09.044 PubMed DOI PMC

Scaffidi P., Misteli T. (2006). Lamin A – dependent nuclear defects in human aging. Environ. Heal. 312 1059–1063. 10.1126/science.1127168 PubMed DOI PMC

Scaffidi P., Misteli T. (2008). Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat. Cell Biol. 10 452–459. 10.1038/ncb1708 PubMed DOI PMC

Schiller H. B., Fässler R. (2013). Mechanosensitivity and compositional dynamics of cell-matrix adhesions. EMBO Rep. 14 509–519. 10.1038/embor.2013.49 PubMed DOI PMC

Schiller H. B., Hermann M. R., Polleux J., Vignaud T., Zanivan S., Friedel C. C., et al. (2013). β 1 - And α v -class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments. Nat. Cell Biol. 15 625–636. 10.1038/ncb2747 PubMed DOI

Schreiber K. H., Kennedy B. K. (2013). When lamins go bad: Nuclear structure and disease. Cell 152 1365–1375. 10.1016/j.cell.2013.02.015 PubMed DOI PMC

Seetharaman S., Etienne-Manneville S. (2018). Integrin diversity brings specificity in mechanotransduction. Biol. Cell 110 49–64. 10.1111/boc.201700060 PubMed DOI

Seo C. H., Furukawa K., Montagne K., Jeong H., Ushida T. (2011). The effect of substrate microtopography on focal adhesion maturation and actin organization via the RhoA/ROCK pathway. Biomaterials 32 9568–9575. 10.1016/j.biomaterials.2011.08.077 PubMed DOI

Shi J., Takahashi S., Jin X. H., Li Y. Q., Ito Y., Mori Y., et al. (2007). Myosin light chain kinase-independent inhibition by ML-9 of murine TRPC6 channels expressed in HEK293 cells. Br. J. Pharmacol. 152 122–131. 10.1038/sj.bjp.0707368 PubMed DOI PMC

Shiu J. Y., Aires L., Lin Z., Vogel V. (2018). Nanopillar force measurements reveal actin-cap-mediated YAP mechanotransduction. Nat. Cell Biol. 20 262–271. 10.1038/s41556-017-0030-y PubMed DOI

Shkumatov A., Thompson M., Choi K. M., Sicard D., Baek K., Kim D. H., et al. (2015). Matrix stiffness-modulated proliferation and secretory function of the airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 308 L1125–L1135. 10.1152/ajplung.00154.2014 PubMed DOI PMC

Skoufias D. A., Wilson L. (1992). Mechanism of inhibition of microtubule polymerization by colchicine: inhibitory potencies of unliganded colchicine and tubulin-colchicine complexes. Biochemistry 31 738–746. 10.1021/bi00118a015 PubMed DOI

Small J. V., Rottner K., Kaverina I., Anderson K. I. (1998). Assembling an actin cytoskeleton for cell attachment and movement. Biochim. Biophys. Acta 1404 271–281. 10.1016/S0167-4889(98)00080-9 PubMed DOI

Smith L., Cho S., Discher D. E. (2017). Title: Mechanosensing of matrix by stem cells: from contractility and matrix heterogeneity to cardiogenesis and muscle stem cells. Semin. Cell Dev. Biol. 71 84–98. 10.1016/j.semcdb.2017.05.025 PubMed DOI PMC

Smith M. A., Blankman E., Deakin N. O., Hoffman L. M., Jensen C. C., Turner C. E., et al. (2013). LIM domains target actin regulators paxillin and zyxin to sites of stress fiber strain. PLoS One 8:e69378. 10.1371/journal.pone.0069378 PubMed DOI PMC

Snider N. T., Omary M. B. (2014). Post-translational modifications of intermediate filament proteins: Mechanisms and functions. Nat. Rev. Mol. Cell Biol. 15 163–177. 10.1038/nrm3753 PubMed DOI PMC

Sörensen P. M., Iacob R. E., Fritzsche M., Engen J. R., Brieher W. M., Charras G., et al. (2012). The natural product cucurbitacin e inhibits depolymerization of actin filaments. ACS Chem. Biol. 7 1502–1508. 10.1021/cb300254s PubMed DOI PMC

Sosa B. A., Rothballer A., Kutay U., Schwartz T. U. (2012). LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins. Cell 149 1035–1047. 10.1016/j.cell.2012.03.046 PubMed DOI PMC

Spinale F. G. (2007). Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol. Rev. 87 1285–1342. 10.1152/physrev.00012.2007 PubMed DOI

Stewart J. A., Gardner J. D., Brower G. L., Janicki J. S. (2014). Temporal changes in integrin-mediated cardiomyocyte adhesion secondary to chronic cardiac volume overload in rats. Am. J. Physiol. Heart Circ. Physiol. 306 H101–H108. 10.1152/ajpheart.00541.2013 PubMed DOI PMC

Straight A. F., Cheung A., Limouze J., Chen I., Westwood N. J., Sellers J. R., et al. (2003). Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 299 1743–1747. 10.1126/science.1081412 PubMed DOI

Strohmeyer N., Bharadwaj M., Costell M., Fässler R., Müller D. J. (2018). Fibronectin-bound α5β1 integrins sense load and signal to reinforce adhesion in less than a second. Nat. Mater. 16 1262–1270. 10.1038/NMAT5023 PubMed DOI

Sullivan T., Escalante-Alcalde D., Bhatt H., Anver M., Bhat N., Nagashima K., et al. (1999). Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147 913–919. 10.1083/jcb.147.5.913 PubMed DOI PMC

Surma M., Wei L., Shi J. (2011). Rho kinase as a therapeutic target in cardiovascular disease. Future Cardiol. 7 657–671. 10.2217/fca.11.51.Rho PubMed DOI PMC

Swift J., Ivanovska I. L., Buxboim A., Harada T., Dingal P. C. D. P., Pinter J., et al. (2013). Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104. 10.1126/science.1240104 PubMed DOI PMC

Tamada M., Sheetz M. P., Sawada Y. (2004). Activation of a signaling cascade by cytoskeleton stretch. Dev. Cell 7 709–718. 10.1016/j.devcel.2004.08.021 PubMed DOI

Tan Y., Tajik A., Chen J., Jia Q., Chowdhury F., Wang L., et al. (2014). Matrix softness regulates plasticity of tumour-repopulating cells via H3K9 demethylation and Sox2 expression. Nat. Commun. 5:4619. 10.1038/ncomms5619 PubMed DOI PMC

Taranum S., Sur I., Müller R., Lu W., Rashmi R. N., Munck M., et al. (2012). Cytoskeletal interactions at the nuclear envelope mediated by Nesprins. Int. J. Cell Biol. 2012:736524. 10.1155/2012/736524 PubMed DOI PMC

Tautzenberger A., Förtsch C., Zwerger C., Dmochewitz L., Kreja L., Ignatius A., et al. (2013). C3 Rho-inhibitor for targeted pharmacological manipulation of osteoclast-like cells. PLoS One 8:e85695. 10.1371/journal.pone.0085695 PubMed DOI PMC

Teixeira A., McKie G., Foley J., Bertics P., Nealey P., Murphy C. (2006). The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. Biomaterials 27 3945–3954. 10.1038/ja.2013.113.Venturicidin PubMed DOI PMC

Teo B. K. K., Wong S. T., Lim C. K., Kung T. Y. S., Yap C. H., Ramagopal Y., et al. (2013). Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase. ACS Nano 7 4785–4798. 10.1021/nn304966z PubMed DOI

Terry D. R., Spector I., Higa T., Bubb M. R. (1997). Misakinolide A is a marine macrolide that caps but does not sever filamentous actin. J. Biol. Chem. 272 7841–7845. 10.1074/jbc.272.12.7841 PubMed DOI

Tojkander S., Gateva G., Lappalainen P. (2012). Actin stress fibers - assembly, dynamics and biological roles. J. Cell Sci. 125 1855–1864. 10.1242/jcs.098087 PubMed DOI

Tse J. R., Engler A. J. (2011). Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS One 6:e15978. 10.1371/journal.pone.0015978 PubMed DOI PMC

Uemura A., Nguyen T. N., Steele A. N., Yamada S. (2011). The LIM domain of zyxin is sufficient for force-induced accumulation of zyxin during cell migration. Biophys. J. 101 1069–1075. 10.1016/j.bpj.2011.08.001 PubMed DOI PMC

Uzer G., Rubin C. T., Rubin J. (2016). Cell mechanosensitivity is enabled by the LINC nuclear complex. Curr. Mol. Biol. Rep. 2 36–47. 10.1007/s40610-016-0032-8 PubMed DOI PMC

Valbuena A., Vera A. M., Oroz J., Menéndez M., Carrión-Vázquez M. (2012). Mechanical properties of β-catenin revealed by single-molecule experiments. Biophys. J. 103 1744–1752. 10.1016/j.bpj.2012.07.051 PubMed DOI PMC

Vincent L. G., Choi Y. S., Alonso-Latorre B., Del Álamo J. C., Engler A. J. (2013). Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength. Biotechnol. J. 8 472–484. 10.1002/biot.201200205 PubMed DOI PMC

Wang N., Tytell J. D., Ingber D. E. (2009). Mechanotransduction at a distance: Mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10 75–82. 10.1038/nrm2594 PubMed DOI

Wang Y., Yu Y., Li G. B., Li S. A., Wu C., Gigant B., et al. (2017). Mechanism of microtubule stabilization by taccalonolide AJ. Nat. Commun. 8:15787. 10.1038/ncomms15787 PubMed DOI PMC

Webster K. D., Ng W. P., Fletcher D. A. (2014). Tensional homeostasis in single fibroblasts. Biophys. J. 107 146–155. 10.1016/j.bpj.2014.04.051 PubMed DOI PMC

Wei S. C., Yang J. (2016). Forcing through tumor metastasis: the interplay between tissue rigidity and epithelial-mesenchymal transition. Trends Cell Biol. 26 111–120. 10.1016/j.tcb.2015.09.009 PubMed DOI PMC

Wiesel N., Mattout A., Melcer S., Melamed-Book N., Herrmann H., Medalia O., et al. (2008). Laminopathic mutations interfere with the assembly, localization, and dynamics of nuclear lamins. Proc. Natl. Acad. Sci. U.S.A. 105 180–185. 10.1073/pnas.0708974105 PubMed DOI PMC

Wiggan O., Shaw A. E., DeLuca J. G., Bamburg J. R. (2012). ADF/cofilin regulates actomyosin assembly through competitive inhibition of myosin II binding to F-actin. Dev. Cell 22 530–543. 10.1016/j.devcel.2011.12.026 PubMed DOI PMC

Wilkinson F. L., Holaska J. M., Zhang Z., Sharma A., Manilal S., Holt I., et al. (2003). Emerin interacts in vitro with the splicing-associated factor, YT521-B. Eur. J. Biochem. 270 2459–2466. 10.1046/j.1432-1033.2003.03617.x PubMed DOI

Worman H. J., Bonne G. (2007). “Laminopathies”: a wide spectrum of human diseases. Exp. Cell Res. 313 2121–2133. 10.1016/j.yexcr.2007.03.028 PubMed DOI PMC

Worman H. J., Fong L. G., Muchir A., Young S. G. (2009). Laminopathies and the long strange trip from basic cell biology to therapy. J. Clin. Invest. 119 1825–1836. 10.1172/JCI37679 PubMed DOI PMC

Xiang S. Y., Vanhoutte D., Del Re D. P., Purcell N. H., Ling H., Banerjee I., et al. (2011). RhoA protects the mouse heart against ischemia/reperfusion injury. J. Clin. Invest. 121 3269–3276. 10.1172/JCI44371 PubMed DOI PMC

Yamaguchi H., Kasa M., Amano M., Kaibuchi K., Hakoshima T. (2006). Molecular mechanism for the regulation of rho-kinase by dimerization and its inhibition by fasudil. Structure 14 589–560. 10.1016/j.str.2005.11.024 PubMed DOI

Yamashita H., Ichikawa T., Matsuyama D., Kimura Y., Ueda K., Craig S. W., et al. (2014). The role of the interaction of the vinculin proline-rich linker region with vinexin in sensing the stiffness of the extracellular matrix. J. Cell Sci. 127 1875–1886. 10.1242/jcs.133645 PubMed DOI

Yao M., Goult B. T., Klapholz B., Hu X., Toseland C. P., Guo Y., et al. (2016). The mechanical response of talin. Nat. Commun. 7:11966. 10.1038/ncomms11966 PubMed DOI PMC

Yeh Y. T., Hur S. S., Chang J., Wang K. C., Chiu J. J., Li Y. S., et al. (2012). Matrix stiffness regulates endothelial cell proliferation through septin 9. PLoS One 7:e46889. 10.1371/journal.pone.0046889 PubMed DOI PMC

Yim E. K. F., Pang S. W., Leong K. W. (2007). Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp. Cell Res. 313 1820–1829. 10.1016/j.yexcr.2007.02.031 PubMed DOI PMC

Yoshigi M., Hoffman L. M., Jensen C. C., Yost H. J., Beckerle M. C. (2005). Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J. Cell Biol. 171 209–215. 10.1083/jcb.200505018 PubMed DOI PMC

Yutao X., Geru W., Xiaojun B., Tao G., Aiqun M. (2006). Mechanical stretch-induced hypertrophy of neonatal rat ventricular myocytes is mediated by β1-integrin-microtubule signaling pathways. Eur. J. Heart Fail. 8 16–22. 10.1016/j.ejheart.2005.05.014 PubMed DOI

Zanconato F., Cordenonsi M., Piccolo S. (2016). YAP/TAZ at the roots of cancer. Cancer Cell 29 783–803. 10.1016/j.ccell.2016.05.005 PubMed DOI PMC

Zanconato F., Forcato M., Battilana G., Azzolin L., Quaranta E., Bodega B., et al. (2015). Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat. Cell Biol. 17 1218–1227. 10.1038/ncb3216 PubMed DOI PMC

Zarkoob H., Bodduluri S., Ponnaluri S. V., Selby J. C., Sander E. A. (2015). Substrate stiffness affects human keratinocyte colony formation. Cell. Mol. Bioeng. 8 32–50. 10.1007/s12195-015-0377-8 PubMed DOI PMC

Zhang J., Guo W.-H., Wang Y.-L. (2014). Microtubules stabilize cell polarity by localizing rear signals. Proc. Natl. Acad. Sci. U.S.A. 111 16383–16388. 10.1073/pnas.1410533111 PubMed DOI PMC

Zhou D. W., Lee T. T., Weng S., Fu J., García A. J. (2017). Effects of substrate stiffness and actomyosin contractility on coupling between force transmission and vinculin–paxillin recruitment at single focal adhesions. Mol. Biol. Cell 28 1901–1911. 10.1091/mbc.E17-02-0116 PubMed DOI PMC

Zhou J., Aponte-Santamaría C., Sturm S., Bullerjahn J. T., Bronowska A., Gräter F. (2015). Mechanism of focal adhesion kinase mechanosensing. PLoS Comput. Biol. 11:e1004593. 10.1371/journal.pcbi.1004593 PubMed DOI PMC

Zigmond S. H. (2004). Formin-induced nucleation of actin filaments. Curr. Opin. Cell Biol. 16 99–105. 10.1016/j.ceb.2003.10.019 PubMed DOI

Zwerger M., Jaalouk D. E., Lombardi M. L., Isermann P., Mauermann M., Dialynas G., et al. (2013). Myopathic lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling. Hum. Mol. Genet. 22 2335–2349. 10.1093/hmg/ddt079 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Regulation of Cell-Nanoparticle Interactions through Mechanobiology

. 2025 Feb 19 ; 25 (7) : 2600-2609. [epub] 20250108

Mechanics of cell sheets: plectin as an integrator of cytoskeletal networks

. 2025 Jan ; 15 (1) : 240208. [epub] 20250129

Fibrotic extracellular matrix impacts cardiomyocyte phenotype and function in an iPSC-derived isogenic model of cardiac fibrosis

. 2024 Nov ; 273 () : 58-77. [epub] 20240716

YAP Signaling Regulates the Cellular Uptake and Therapeutic Effect of Nanoparticles

. 2024 Jan ; 11 (2) : e2302965. [epub] 20231109

Expression of genes regulating cell division in porcine follicular granulosa cells

. 2023 Aug 07 ; 18 (1) : 12. [epub] 20230807

A primer to traction force microscopy

. 2022 May ; 298 (5) : 101867. [epub] 20220326

YAP-TEAD1 control of cytoskeleton dynamics and intracellular tension guides human pluripotent stem cell mesoderm specification

. 2021 Apr ; 28 (4) : 1193-1207. [epub] 20201028

Functionalizable Antifouling Coatings as Tunable Platforms for the Stress-Driven Manipulation of Living Cell Machinery

. 2020 Aug 05 ; 10 (8) : . [epub] 20200805

Combining Nanomaterials and Developmental Pathways to Design New Treatments for Cardiac Regeneration: The Pulsing Heart of Advanced Therapies

. 2020 ; 8 () : 323. [epub] 20200424

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace