Identification of Root-Associated Bacteria That Influence Plant Physiology, Increase Seed Germination, or Promote Growth of the Christmas Tree Species Abies nordmanniana
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33281762
PubMed Central
PMC7705201
DOI
10.3389/fmicb.2020.566613
Knihovny.cz E-zdroje
- Klíčová slova
- Bacillus, PGPR, Paenibacillus, antioxidative enzymes, phytohormones, plant carbohydrates, rhizosphere,
- Publikační typ
- časopisecké články MeSH
Abies nordmanniana is used for Christmas tree production but poor seed germination and slow growth represent challenges for the growers. We addressed the plant growth promoting potential of root-associated bacteria isolated from A. nordmanniana. Laboratory screenings of a bacterial strain collection yielded several Bacillus and Paenibacillus strains that improved seed germination and produced indole-3-acetic acid. The impact of three of these strains on seed germination, plant growth and growth-related physiological parameters was then determined in greenhouse and field trials after seed inoculation, and their persistence was assessed by 16S rRNA gene-targeted bacterial community analysis. Two strains showed distinct and significant effects. Bacillus sp. s50 enhanced seed germination in the greenhouse but did not promote shoot or root growth. In accordance, this strain did not increase the level of soluble hexoses needed for plant growth but increased the level of storage carbohydrates. Moreover, strain s50 increased glutathione reductase and glutathione-S-transferase activities in the plant, which may indicate induction of systemic resistance during the early phase of plant development, as the strain showed poor persistence in the root samples (rhizosphere soil plus root tissue). Paenibacillus sp. s37 increased plant root growth, especially by inducing secondary root formation, under in greenhouse conditions, where it showed high persistence in the root samples. Under these conditions, it further it increased the level of soluble carbohydrates in shoots, and the levels of starch and non-structural carbohydrates in roots, stem and shoots. Moreover, it increased the chlorophyll level in the field trial. These findings indicate that this strain improves plant growth and vigor through effects on photosynthesis and plant carbohydrate reservoirs. The current results show that the two strains s37 and s50 could be considered for growth promotion programs of A. nordmanniana in greenhouse nurseries, and even under field conditions.
Zobrazit více v PubMed
Aghai M. M., Khan Z., Joseph M. R., Stoda A. M., Sher A. W., Ettl G. J., et al. (2019). The effect of microbial endophyte consortia on PubMed DOI PMC
Akhtar S. S., Amby D. B., Hegelund J. N., Fimognari L., Großkinsky D. K., Westergaard J. C., et al. (2020). PubMed DOI PMC
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. PubMed DOI
Bais H. P., Weir T. L., Perry L. G., Gilroy S., Vivanco J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. PubMed DOI
Bakker P. A. H. M., Doornbos R. F., Zamioudis C., Berendsen R. L., Pieterse C. M. J. (2013). Induced systemic resistance and the rhizosphere microbiome. PubMed DOI PMC
Bal A., Chanway C. P. (2012). Evidence of nitrogen fixation in lodgepole pine inoculated with diazotrophic DOI
Barret M., Briand M., Bonneau S., Préveaux A., Valière S., Bouchez O. (2015). Emergence shapes the structure of the seed microbiota. PubMed DOI PMC
Berger S., Van Wees S. C. M., Nybroe O., Großkinsky D. K. (2020). Cross-frontier communication: phytohormone functions at the plant-microbe interface and beyond. PubMed DOI PMC
Bharti N., Pandey S. S., Barnawal D., Patel V. K., Kalra A. (2016). Plant growth promoting rhizobacteria PubMed DOI PMC
Brandt K. K., Petersen A., Holm P. E., Nybroe O. (2006). Decreased abundance and diversity of culturable PubMed DOI
Caverzan A., Casassola A., Brammer S. P. (2016). Antioxidant responses of wheat plants under stress. PubMed DOI PMC
Cankar K., Kraigher H., Ravnikar M., Rupnik M. (2005). Bacterial endophytes from seeds of Norway spruce ( PubMed DOI
Chowdhury S. P., Hartmann A., Gao X., Borriss R. (2015). Biocontrol mechanism by root-associated PubMed DOI PMC
Dahmani M. A., Desrut A., Moumen B., Verdon J., Mermouri L., Kacem M., et al. (2020). Unearthing the plant growth promoting traits of PubMed DOI PMC
Das P., Nutan K. K., Singla-Pareek S. L., Pareek A. (2015). Oxidative environment and redox homeostasis in plants: dissecting out significant contribution of major cellular organelles. DOI
Desjardins P., Conklin D. (2010). NanoDrop microvolume quantitation of nucleic acids. PubMed DOI PMC
Edwards E. A., Rawsthorne S., Mullineaux P. M. (1990). Subcellular distribution of multiple forms of glutathione reductase in leaves of pea ( PubMed DOI
El-Lithy M. E., Reymond M., Stich B., Koornneef M., Vreugdenhil D. (2010). Relation among plant growth, carbohydrates and flowering time in the PubMed DOI
Etesami H., Alikhani H. A., Hosseini H. M. (2015). Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. PubMed DOI PMC
Fimognari L., Dölker R., Kaselyte G., Jensen C. N. G., Akhtar S. S., Großkinsky D. K., et al. (2020). Simple semi-high throughput determination of activity signatures of key antioxidant enzymes for physiological phenotyping. PubMed DOI PMC
Gagné-Bourque F., Bertrand A., Claessens A., Aliferis K. A., Jabaji S. (2016). Alleviation of drought stress and metabolic changes in timothy ( PubMed DOI PMC
Garcia-Lemos A. M., Gobbi A., Nicolaisen M. H., Hansen L. H., Roitsch T., Veierskov B., et al. (2020). Under the Christmas tree: belowground bacterial associations with PubMed DOI PMC
Garcia-Lemos A. M., Großkinsky D. K., Stokholm M. S., Lund O. S., Nicolaisen M. H., Roitsch T. G., et al. (2019). Root-associated microbial communities of PubMed DOI PMC
Ghorbanpour M., Hatami M., Khavazi K. (2013). Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of DOI
Glick B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. PubMed DOI PMC
Govindasamy V., Senthilkumar M., Magheshwaran V., Kumar U., Bose P., Sharma V., et al. (2010). DOI
Grady E. N., MacDonald J., Liu L., Richman A., Yuan Z. C. (2016). Current knowledge and perspectives of PubMed DOI PMC
Großkinsky D. K., Tafner R., Moreno M. V., Stenglein S. A., García de Salamone I. E., Nelson L. M., et al. (2016). Cytokinin production by PubMed DOI PMC
Großkinsky D. K., Albacete A., Jammer A., Krbez P., van der Graaff E., Pfeifhofer H., et al. (2014). A rapid phytohormone and phytoalexin screening method for physiological phenotyping. PubMed DOI
Großkinsky D. K., Svensgaard J., Christensen S., Roitsch T. (2015). Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. PubMed DOI
Großkinsky D. K., Syaifullah S. J., Roitsch T. (2018). Integration of multiomics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. PubMed DOI
Guangwu Z., Xuwen J. (2014). Roles of gibberellin and auxin in promoting seed germination and seedling vigor in DOI
Gullner G., Komives T., Király L., Schröder P. (2018). Glutathione S-transferase enzymes in plant-pathogen interactions. PubMed DOI PMC
Helepciuc F. E., Mitoi M. E., Manole-Pǎunescu A., Aldea F., Brezeanu A., Cornea C. P. (2014). Induction of plant antioxidant system by interaction with beneficial and/or pathogenic microorganisms.
Hernández J. A., Barba-Espín G., Diaz-Vivancos P. (2017). “Glutathione-mediated biotic stress tolerance in plants,” in DOI
Idris E. E., Bochow H., Ross H., Borriss R. (2004). Use of DOI
Ingvardsen C., Veierskov B., Joshi P. (2001). Immunohistochemical localisation of ubiquitin and the proteasome in sunflower ( PubMed DOI
Jammer A., Gasperl A., Luschin-Ebengreuth N., Heyneke E., Chu H., Cantero-Navarro E., et al. (2015). Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants. PubMed DOI
Jebara S., Jebara M., Limam F., Aouani M. E. (2005). Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean ( PubMed DOI
Kang S.-M., Khan A. L., Waqas M., Asaf S., Lee K.-E., Park Y.-G., et al. (2019). Integrated phytohormone production by the plant growth-promoting rhizobacterium DOI
Kour D., Rana K. L., Yadav N., Yadav A. N., Kumar A., Meena V. S., et al. (2019). “Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture,” in DOI
Kumari B., Mallick M. A., Solanki M. K., Solanki A. C., Hora A., Guo W. (2019). “Plant growth promoting rhizobacteria (PGPR): modern prospects for sustainable agriculture,” in DOI
LaFever R. E., Vogel B. S., Croteau R. (1994). Diterpenoid resin acid biosynthesis in Conifers: enzymatic cyclization of geranylgeranyl pyrophosphate to abietadiene, the precursor of abietic acid. PubMed DOI
Lata R., Gond S. K. (2019). “Plant growth-promoting microbes for abiotic stress tolerance in plants,” in DOI
Liu T. (1971).
Liu X., Zhang H., Zhao Y., Feng Z., Li Q., Yang H.-Q., et al. (2013). Auxin–ABA interaction controls seed dormancy. PubMed DOI PMC
Lübeck P. S., Alekhina I. A., Lübeck M., Bulat S. A. (1998). UP-PCR genotyping and rDNA analysis of DOI
Lucy M., Reed E., Glick B. R. (2004). Applications of free living plant growth-promoting rhizobacteria. PubMed DOI
Magel E., Einig W., Hampp R. (2000). Carbohydrates in trees. DOI
Marcos F. C. C., Iório R. P. F., Silveira A. P. D., Ribeiro R. V., Machado E. C., Lagôa A. M. M. A. (2016). Endophytic bacteria affect sugarcane physiology without changing plant growth. DOI
Martens H. J., Sørensen S., Burow M., Veierskov B. (2019). Characterization of top leader elongation in Nordmann fir ( DOI
Martínez-Viveros O., Jorquera M. A., Crowley D. E., Gajardo G., Mora M. L. (2010). Mechanisms and practical considerations involved in plant growth promotion by Rhizobacteria. DOI
Mercado-Blanco J., Abrantes I., Caracciolo A. B., Bevivino A., Ciancio A., Grenni P., et al. (2018). Belowground microbiota and the health of tree crops. PubMed DOI PMC
Mhadhbi H., Jebara M., Limam F., Aouani M. E. (2004). Rhizobial strain involvement in plant growth, nodule protein composition and antioxidant enzyme activities of chickpea-rhizobia symbioses: modulation by salt stress. PubMed DOI
Nelson E. B. (2018). The seed microbiome: origins, interactions, and impacts. DOI
Nielsen U. B., Hansen J. K., Kromann H. K. (2011). Impact of site and provenance on economic return in Nordmann fir Christmas tree production. DOI
Olanrewaju O. S., Glick B. R., Babalola O. O. (2017). Mechanisms of action of plant growth promoting bacteria. PubMed DOI PMC
Ortíz-Castro R., Contreras-Cornejo H. A., Macías-Rodríguez L., López-Bucio J. (2009). The role of microbial signals in plant growth and development. PubMed DOI PMC
Overmann J., Abt B., Sikorski J. (2017). Present and future of culturing bacteria. PubMed DOI
Paulin M. M., Nicolaisen M. H., Jacobsen C. S., Gimsing A. L., Sørensen J., Bælum J. (2013). Improving Griffith’s protocol for co-extraction of microbial DNA and RNA in adsorptive soils. DOI
Pindi P. K., Sultana T., Vootla P. K. (2014). Plant growth regulation of Bt-cotton through PubMed DOI PMC
Polle A., Otter T., Seifert F. (1994). Apoplastic peroxidases and lignification in needles of Norway spruce ( PubMed DOI PMC
Qin S. J., Zhou W. J., Li Z. X., Lyu D. G. (2016). Effects of rhizobacteria on the respiration and growth of DOI
Rais A., Jabeen Z., Shair F., Hafeez F. Y., Hassan M. N. (2017). PubMed DOI PMC
Rasmussen H. N., Veierskov B., Hansen-Møller J., Nørbæk R., Nielsen B. N. (2009). Cytokinin profiles in the conifer tree DOI
Rodríguez C. E., Mitter B., Barret M., Angela S., Compant S. (2018). Commentary: seed bacterial inhabitants and their routes of colonization. DOI
Rostamikia Y., Kouchaksaraei M. T., Asgharzadeh A. (2016). Effect of plant growth promoting rhizobacteria (PGPR) and cold stratification on seed germination and early growth of DOI
Sakr S., Wang M., Dédaldéchamp F., Perez-Garcia M. D., Ogé L., Hamama L., et al. (2018). The sugar-signaling hub: overview of regulators and interaction with the hormonal and metabolic network. PubMed DOI PMC
Sandhya V., Ali S. Z., Grover M., Reddy G., Venkateswarlu B. (2010a). Effect of plant growth promoting DOI
Sandhya V., Ali S. Z., Venkateswarlu B., Reddy G., Grover M. (2010b). Effect of osmotic stress on plant growth promoting PubMed DOI
São José J. F. B., Volpiano C. G., Vargas L. K., Hernandes M. A. S., Lisboa B. B., Schlindwein G., et al. (2019). Influence of hot water on breaking dormancy, incubation temperature and rhizobial inoculation on germination of DOI
Sasse J., Martinoia E., Northen T. (2018). Feed your friends: do plant exudates shape the root microbiome? PubMed DOI
Schiestl-Aalto P., Ryhti K., Mäkelä A., Peltoniemi M., Bäck J., Kulmala L. (2019). Analysis of the NSC storage dynamics in tree organs reveals the allocation to belowground symbionts in the framework of whole tree carbon balance. DOI
Seifert J. R. (2015). Growing Christmas trees.
Shelake R. M., Pramanik D., Kim J.-Y. (2019). Exploration of plant-microbe interactions for sustainable agriculture in CRISPR Era. PubMed DOI PMC
Shishido M., Massicotte H. B., Chanway C. P. (1996). Effect of plant growth promoting DOI
Sørensen M. T., Danielsen V. (2006). Effects of the plant growth regulator, chlormequat, on mammalian fertility. PubMed DOI
Vardharajula S., Ali S. Z., Grover M., Reddy G., Bandi V. (2011). Drought-tolerant plant growth promoting DOI
Veierskov B., Ferguson I. B. (1991). Ubiquitin conjugating activity in leaves and isolated chloroplasts from
Vessey J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. DOI
Wagner K., Krause K., Gallegos-Monterrosa R., Sammer D., Kovács Á. T., Kothe E. (2019). The ectomycorrhizospheric habitat of Norway spruce and PubMed DOI PMC
Weber R., Gessler A., Hoch G. (2019). High carbon storage in carbon-limited trees. PubMed DOI
Wu C. H., Bernard S. M., Andersen G. L., Chen W. (2009). Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. PubMed DOI PMC
Xie X., Zhang H., Pare P. (2009). Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium PubMed DOI PMC
Yang H., Puri A., Padda K. P., Chanway C. P. (2017). Substrate utilization by endophytic bacteria
Yang Y., Wang N., Guo X., Zhang Y., Ye B. (2017). Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. PubMed DOI PMC
Yoshimura K., Yabuta Y., Ishikawa T., Shigeoka S. (2000). Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. PubMed DOI PMC
Zulueta-Rodríguez R., Hernández-Montiel L. G., Murillo-Amador B., Rueda-Puente E. O., Capistrán L. L., Troyo-Diéguez E., et al. (2015). Effect of hydropriming and biopriming on seed germination and growth of two Mexican fir tree species in danger of extinction. DOI