Identification of Root-Associated Bacteria That Influence Plant Physiology, Increase Seed Germination, or Promote Growth of the Christmas Tree Species Abies nordmanniana
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33281762
PubMed Central
PMC7705201
DOI
10.3389/fmicb.2020.566613
Knihovny.cz E-zdroje
- Klíčová slova
- Bacillus, PGPR, Paenibacillus, antioxidative enzymes, phytohormones, plant carbohydrates, rhizosphere,
- Publikační typ
- časopisecké články MeSH
Abies nordmanniana is used for Christmas tree production but poor seed germination and slow growth represent challenges for the growers. We addressed the plant growth promoting potential of root-associated bacteria isolated from A. nordmanniana. Laboratory screenings of a bacterial strain collection yielded several Bacillus and Paenibacillus strains that improved seed germination and produced indole-3-acetic acid. The impact of three of these strains on seed germination, plant growth and growth-related physiological parameters was then determined in greenhouse and field trials after seed inoculation, and their persistence was assessed by 16S rRNA gene-targeted bacterial community analysis. Two strains showed distinct and significant effects. Bacillus sp. s50 enhanced seed germination in the greenhouse but did not promote shoot or root growth. In accordance, this strain did not increase the level of soluble hexoses needed for plant growth but increased the level of storage carbohydrates. Moreover, strain s50 increased glutathione reductase and glutathione-S-transferase activities in the plant, which may indicate induction of systemic resistance during the early phase of plant development, as the strain showed poor persistence in the root samples (rhizosphere soil plus root tissue). Paenibacillus sp. s37 increased plant root growth, especially by inducing secondary root formation, under in greenhouse conditions, where it showed high persistence in the root samples. Under these conditions, it further it increased the level of soluble carbohydrates in shoots, and the levels of starch and non-structural carbohydrates in roots, stem and shoots. Moreover, it increased the chlorophyll level in the field trial. These findings indicate that this strain improves plant growth and vigor through effects on photosynthesis and plant carbohydrate reservoirs. The current results show that the two strains s37 and s50 could be considered for growth promotion programs of A. nordmanniana in greenhouse nurseries, and even under field conditions.
Zobrazit více v PubMed
Aghai M. M., Khan Z., Joseph M. R., Stoda A. M., Sher A. W., Ettl G. J., et al. (2019). The effect of microbial endophyte consortia on Pseudotsuga menziesii and Thuja plicata survival, growth, and physiology across edaphic gradients. Front. Microbiol. 10:1353. 10.3389/fmicb.2019.01353 PubMed DOI PMC
Akhtar S. S., Amby D. B., Hegelund J. N., Fimognari L., Großkinsky D. K., Westergaard J. C., et al. (2020). Bacillus licheniformis FMCH001 increases water use efficiency via growth stimulation in both normal and drought conditions. Front. Plant Sci. 11:297. 10.3389/fpls.2020.00297 PubMed DOI PMC
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215 403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI
Bais H. P., Weir T. L., Perry L. G., Gilroy S., Vivanco J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57 233–266. 10.1146/annurev.arplant.57.032905.105159 PubMed DOI
Bakker P. A. H. M., Doornbos R. F., Zamioudis C., Berendsen R. L., Pieterse C. M. J. (2013). Induced systemic resistance and the rhizosphere microbiome. Plant Pathol. J. 29 136–143. 10.5423/PPJ.SI.07.2012.0111 PubMed DOI PMC
Bal A., Chanway C. P. (2012). Evidence of nitrogen fixation in lodgepole pine inoculated with diazotrophic Paenibacillus polymyxa. Botany 90 891–896. 10.1139/B2012-044 DOI
Barret M., Briand M., Bonneau S., Préveaux A., Valière S., Bouchez O. (2015). Emergence shapes the structure of the seed microbiota. Appl. Environ. Microbiol. 81 1257–1266. 10.1128/AEM.03722-14 PubMed DOI PMC
Berger S., Van Wees S. C. M., Nybroe O., Großkinsky D. K. (2020). Cross-frontier communication: phytohormone functions at the plant-microbe interface and beyond. Front. Plant Sci. 11:386. 10.3389/fpls.2020.00386 PubMed DOI PMC
Bharti N., Pandey S. S., Barnawal D., Patel V. K., Kalra A. (2016). Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci. Rep. 6:34768. 10.1038/srep34768 PubMed DOI PMC
Brandt K. K., Petersen A., Holm P. E., Nybroe O. (2006). Decreased abundance and diversity of culturable Pseudomonas spp. populations with increasing copper exposure in the sugar beet rhizosphere. FEMS Microbiol. Ecol. 56 281–291. 10.1111/j.1574-6941.2006.00081.x PubMed DOI
Caverzan A., Casassola A., Brammer S. P. (2016). Antioxidant responses of wheat plants under stress. Genet. Mol. Biol. 39 1–6. 10.1590/1678-4685-GMB-2015-0109 PubMed DOI PMC
Cankar K., Kraigher H., Ravnikar M., Rupnik M. (2005). Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst), FEMS Microbiol. Lett. 244, 341–345. 10.1016/j.femsle.2005.02.008 PubMed DOI
Chowdhury S. P., Hartmann A., Gao X., Borriss R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Front. Microbiol. 6:780. 10.3389/fmicb.2015.00780 PubMed DOI PMC
Dahmani M. A., Desrut A., Moumen B., Verdon J., Mermouri L., Kacem M., et al. (2020). Unearthing the plant growth promoting traits of Bacillus megaterium rmbm31, an endophytic bacterium isolated from root nodules of Retama monosperma. Front. Plant Sci. 11:124 10.3389/fpls.2020.00124 PubMed DOI PMC
Das P., Nutan K. K., Singla-Pareek S. L., Pareek A. (2015). Oxidative environment and redox homeostasis in plants: dissecting out significant contribution of major cellular organelles. Front. Environ. Sci. 2:70 10.3389/fenvs.2014.00070 DOI
Desjardins P., Conklin D. (2010). NanoDrop microvolume quantitation of nucleic acids. J. Vis. Exp. 45:e2565. 10.3791/2565 PubMed DOI PMC
Edwards E. A., Rawsthorne S., Mullineaux P. M. (1990). Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180 278–284. 10.1007/BF00194008 PubMed DOI
El-Lithy M. E., Reymond M., Stich B., Koornneef M., Vreugdenhil D. (2010). Relation among plant growth, carbohydrates and flowering time in the Arabidopsis Landsberg erecta × Kondara recombinant inbred line population. Plant Cell Environ. 33 1369–1382. 10.1111/j.1365-3040.2010.02155.x PubMed DOI
Etesami H., Alikhani H. A., Hosseini H. M. (2015). Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX 2 72–78. 10.1016/j.mex.2015.02.008 PubMed DOI PMC
Fimognari L., Dölker R., Kaselyte G., Jensen C. N. G., Akhtar S. S., Großkinsky D. K., et al. (2020). Simple semi-high throughput determination of activity signatures of key antioxidant enzymes for physiological phenotyping. Plant Methods 16:42 10.1186/s13007-020-00583-8 PubMed DOI PMC
Gagné-Bourque F., Bertrand A., Claessens A., Aliferis K. A., Jabaji S. (2016). Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26. Front. Plant Sci. 7:584. 10.3389/fpls.2016.00584 PubMed DOI PMC
Garcia-Lemos A. M., Gobbi A., Nicolaisen M. H., Hansen L. H., Roitsch T., Veierskov B., et al. (2020). Under the Christmas tree: belowground bacterial associations with Abies nordmanniana, across production systems and plant development. Front. Microbiol. 11:198. 10.3389/FMICB.2020.00198 PubMed DOI PMC
Garcia-Lemos A. M., Großkinsky D. K., Stokholm M. S., Lund O. S., Nicolaisen M. H., Roitsch T. G., et al. (2019). Root-associated microbial communities of Abies nordmanniana: insights into interactions of microbial communities with antioxidative enzymes and plant growth. Front. Microbiol. 10:1937. 10.3389/fmicb.2019.01937 PubMed DOI PMC
Ghorbanpour M., Hatami M., Khavazi K. (2013). Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus niger under water deficit stress. Turk. J. Biol. 37 350–360. 10.3906/biy-1209-12 PubMed DOI
Glick B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401. 10.6064/2012/963401 PubMed DOI PMC
Govindasamy V., Senthilkumar M., Magheshwaran V., Kumar U., Bose P., Sharma V., et al. (2010). Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. Microbiol. Monogr. 18 333–364. 10.1007/978-3-642-13612-2_15 DOI
Grady E. N., MacDonald J., Liu L., Richman A., Yuan Z. C. (2016). Current knowledge and perspectives of Paenibacillus: a review. Microb. Cell Fact. 15:203. 10.1186/s12934-016-0603-7 PubMed DOI PMC
Großkinsky D. K., Tafner R., Moreno M. V., Stenglein S. A., García de Salamone I. E., Nelson L. M., et al. (2016). Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci. Rep. 6:23310. 10.1038/srep23310 PubMed DOI PMC
Großkinsky D. K., Albacete A., Jammer A., Krbez P., van der Graaff E., Pfeifhofer H., et al. (2014). A rapid phytohormone and phytoalexin screening method for physiological phenotyping. Mol. Plant 7 1053–1056. 10.1093/mp/ssu015 PubMed DOI
Großkinsky D. K., Svensgaard J., Christensen S., Roitsch T. (2015). Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. J. Exp. Bot. 66 5429–5440. 10.1093/jxb/erv345 PubMed DOI
Großkinsky D. K., Syaifullah S. J., Roitsch T. (2018). Integration of multiomics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. J. Exp. Bot. 69 825–844. 10.1093/jxb/erx333 PubMed DOI
Guangwu Z., Xuwen J. (2014). Roles of gibberellin and auxin in promoting seed germination and seedling vigor in Pinus massoniana. For. Sci. 60 367–373. 10.5849/forsci.12-143 DOI
Gullner G., Komives T., Király L., Schröder P. (2018). Glutathione S-transferase enzymes in plant-pathogen interactions. Front. Plant Sci. 9:1836. 10.3389/fpls.2018.01836 PubMed DOI PMC
Helepciuc F. E., Mitoi M. E., Manole-Pǎunescu A., Aldea F., Brezeanu A., Cornea C. P. (2014). Induction of plant antioxidant system by interaction with beneficial and/or pathogenic microorganisms. Rom. Biotechnol. Lett. 19 9366–9375.
Hernández J. A., Barba-Espín G., Diaz-Vivancos P. (2017). “Glutathione-mediated biotic stress tolerance in plants,” in Glutathione in Plant Growth, Development, and Stress Tolerance, eds Hossain M., Mostofa M., Diaz-Vivancos P., Burritt D., Fujita M., Tran L. S. (Cham: Springer; ). 10.1007/978-3-319-66682-2_14 DOI
Idris E. E., Bochow H., Ross H., Borriss R. (2004). Use of Bacillus subtilis as biocontrol agent. Phytohormone-like action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. J. Plant Dis. Prot. 111 583–597. 10.2307/43215615 DOI
Ingvardsen C., Veierskov B., Joshi P. (2001). Immunohistochemical localisation of ubiquitin and the proteasome in sunflower (Helianthus annuus cv. Giganteus). Planta 213 333–341. 10.1007/s004250000511 PubMed DOI
Jammer A., Gasperl A., Luschin-Ebengreuth N., Heyneke E., Chu H., Cantero-Navarro E., et al. (2015). Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants. J. Exp. Bot. 66 5531–5542. 10.1093/jxb/erv228 PubMed DOI
Jebara S., Jebara M., Limam F., Aouani M. E. (2005). Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. J. Plant Physiol. 162 929–936. 10.1016/j.jplph.2004.10.005 PubMed DOI
Kang S.-M., Khan A. L., Waqas M., Asaf S., Lee K.-E., Park Y.-G., et al. (2019). Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. J. Plant Interact. 14 416–423. 10.1080/17429145.2019.1640294 DOI
Kour D., Rana K. L., Yadav N., Yadav A. N., Kumar A., Meena V. S., et al. (2019). “Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture,” in Plant Growth Promoting Rhizobacteria for Agricultural Sustainability, eds Kumar A., Meena V. (Singapore: Springer; ), 19–65. 10.1007/978-981-13-7553-8_2 DOI
Kumari B., Mallick M. A., Solanki M. K., Solanki A. C., Hora A., Guo W. (2019). “Plant growth promoting rhizobacteria (PGPR): modern prospects for sustainable agriculture,” in Plant Health Under Biotic Stress, eds Sayyed R. Z., Reddy M. S., Antonius S. (Singapore: Springer; ), 109–127. 10.1007/978-981-13-6040-4_6 DOI
LaFever R. E., Vogel B. S., Croteau R. (1994). Diterpenoid resin acid biosynthesis in Conifers: enzymatic cyclization of geranylgeranyl pyrophosphate to abietadiene, the precursor of abietic acid. Arch. Biochem. Biophys. 3131 139–149. 10.1006/abbi.1994.1370 PubMed DOI
Lata R., Gond S. K. (2019). “Plant growth-promoting microbes for abiotic stress tolerance in plants,” in Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology, eds Choudhary K. K., Kumar A., Singh A. K. (Amsterdam: Elsevier; ), 89–105. 10.1016/b978-0-12-817004-5.00006-3 DOI
Liu T. (1971). A Monograph of the Genus Abies. Taipei: National Taiwan University, 608.
Liu X., Zhang H., Zhao Y., Feng Z., Li Q., Yang H.-Q., et al. (2013). Auxin–ABA interaction controls seed dormancy. Proc. Natl. Acad. Sci. U.S.A. 110 15485–15490. 10.1073/pnas.1304651110 PubMed DOI PMC
Lübeck P. S., Alekhina I. A., Lübeck M., Bulat S. A. (1998). UP-PCR genotyping and rDNA analysis of Ascochyta pisi lib. J. Phytopathol. 146 51–55. 10.1111/j.1439-0434.1998.tb04749.x DOI
Lucy M., Reed E., Glick B. R. (2004). Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86 1–25. 10.1023/B:ANTO.0000024903.10757.6e PubMed DOI
Magel E., Einig W., Hampp R. (2000). Carbohydrates in trees. Dev. Crop Sci. 26 317–336. 10.1016/S0378-519X(00)80016-1 DOI
Marcos F. C. C., Iório R. P. F., Silveira A. P. D., Ribeiro R. V., Machado E. C., Lagôa A. M. M. A. (2016). Endophytic bacteria affect sugarcane physiology without changing plant growth. Bragantia 75 1–9. 10.1590/1678-4499.256 DOI
Martens H. J., Sørensen S., Burow M., Veierskov B. (2019). Characterization of top leader elongation in Nordmann fir (Abies nordmanniana). J. Plant Growth Regul. 38 1354–1361. 10.1007/s00344-019-09938-5 DOI
Martínez-Viveros O., Jorquera M. A., Crowley D. E., Gajardo G., Mora M. L. (2010). Mechanisms and practical considerations involved in plant growth promotion by Rhizobacteria. J. Soil Sci. Plant Nutr. 10 293–319. 10.4067/S0718-95162010000100006 PubMed DOI
Mercado-Blanco J., Abrantes I., Caracciolo A. B., Bevivino A., Ciancio A., Grenni P., et al. (2018). Belowground microbiota and the health of tree crops. Front. Microbiol. 9:1006. 10.3389/fmicb.2018.01006 PubMed DOI PMC
Mhadhbi H., Jebara M., Limam F., Aouani M. E. (2004). Rhizobial strain involvement in plant growth, nodule protein composition and antioxidant enzyme activities of chickpea-rhizobia symbioses: modulation by salt stress. Plant Physiol. Biochem. 42 717–722. 10.1016/j.plaphy.2004.07.005 PubMed DOI
Nelson E. B. (2018). The seed microbiome: origins, interactions, and impacts. Plant Soil 422 7–34. 10.1007/s11104-017-3289-7 DOI
Nielsen U. B., Hansen J. K., Kromann H. K. (2011). Impact of site and provenance on economic return in Nordmann fir Christmas tree production. Scand. J. For. Res. 26 74–89. 10.1080/02827581.2010.526955 DOI
Olanrewaju O. S., Glick B. R., Babalola O. O. (2017). Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 33:197. 10.1007/s11274-017-2364-9 PubMed DOI PMC
Ortíz-Castro R., Contreras-Cornejo H. A., Macías-Rodríguez L., López-Bucio J. (2009). The role of microbial signals in plant growth and development. Plant Signal. Behav. 4 701–712. 10.4161/psb.4.8.9047 PubMed DOI PMC
Overmann J., Abt B., Sikorski J. (2017). Present and future of culturing bacteria. Annu. Rev. Microbiol. 71 711–730. 10.1146/annurev-micro-090816-093449 PubMed DOI
Paulin M. M., Nicolaisen M. H., Jacobsen C. S., Gimsing A. L., Sørensen J., Bælum J. (2013). Improving Griffith’s protocol for co-extraction of microbial DNA and RNA in adsorptive soils. Soil Biol. Biochem. 63 37–49. 10.1016/j.soilbio.2013.02.007 DOI
Pindi P. K., Sultana T., Vootla P. K. (2014). Plant growth regulation of Bt-cotton through Bacillus species. 3 Biotech 4 305–315. 10.1007/s13205-013-0154-0 PubMed DOI PMC
Polle A., Otter T., Seifert F. (1994). Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol. 106 53–60. 10.1104/pp.106.1.53 PubMed DOI PMC
Qin S. J., Zhou W. J., Li Z. X., Lyu D. G. (2016). Effects of rhizobacteria on the respiration and growth of Cerasus sachalinensis Kom. seedlings. Span. J. Agric. Res. 14:e0803 10.5424/sjar/2016142-6848 DOI
Rais A., Jabeen Z., Shair F., Hafeez F. Y., Hassan M. N. (2017). Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS One 12:e0187412. 10.1371/journal.pone.0187412 PubMed DOI PMC
Rasmussen H. N., Veierskov B., Hansen-Møller J., Nørbæk R., Nielsen B. N. (2009). Cytokinin profiles in the conifer tree Abies nordmanniana: whole-plant relations in year-round perspective. J. Plant Growth Regul. 28 154–166. 10.1007/s00344-009-9084-9 DOI
Rodríguez C. E., Mitter B., Barret M., Angela S., Compant S. (2018). Commentary: seed bacterial inhabitants and their routes of colonization. Plant Soil 422 129–134. 10.1007/s11104-017-3368-9 DOI
Rostamikia Y., Kouchaksaraei M. T., Asgharzadeh A. (2016). Effect of plant growth promoting rhizobacteria (PGPR) and cold stratification on seed germination and early growth of Corylus avellana L. Austrian J. For. Sci. 4 337–352. 10.1007/978-90-481-8661-7_63 DOI
Sakr S., Wang M., Dédaldéchamp F., Perez-Garcia M. D., Ogé L., Hamama L., et al. (2018). The sugar-signaling hub: overview of regulators and interaction with the hormonal and metabolic network. Int. J. Mol. Sci. 19:2506. 10.3390/ijms19092506 PubMed DOI PMC
Sandhya V., Ali S. Z., Grover M., Reddy G., Venkateswarlu B. (2010a). Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul. 62 21–30. 10.1007/s10725-010-9479-4 DOI
Sandhya V., Ali S. Z., Venkateswarlu B., Reddy G., Grover M. (2010b). Effect of osmotic stress on plant growth promoting Pseudomonas spp. Arch. Microbiol. 192 867–876. 10.1007/s00203-010-0613-5 PubMed DOI
São José J. F. B., Volpiano C. G., Vargas L. K., Hernandes M. A. S., Lisboa B. B., Schlindwein G., et al. (2019). Influence of hot water on breaking dormancy, incubation temperature and rhizobial inoculation on germination of Acacia mearnsii seeds. Aust. For. 82 157–161. 10.1080/00049158.2019.1636350 DOI
Sasse J., Martinoia E., Northen T. (2018). Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 23 25–41. 10.1016/j.tplants.2017.09.003 PubMed DOI
Schiestl-Aalto P., Ryhti K., Mäkelä A., Peltoniemi M., Bäck J., Kulmala L. (2019). Analysis of the NSC storage dynamics in tree organs reveals the allocation to belowground symbionts in the framework of whole tree carbon balance. Front. For. Glob. Change 2:17 10.3389/ffgc.2019.00017 DOI
Seifert J. R. (2015). Growing Christmas trees. Scott. For. 55 231–233.
Shelake R. M., Pramanik D., Kim J.-Y. (2019). Exploration of plant-microbe interactions for sustainable agriculture in CRISPR Era. Microorganisms 7:269. 10.3390/microorganisms7080269 PubMed DOI PMC
Shishido M., Massicotte H. B., Chanway C. P. (1996). Effect of plant growth promoting Bacillus strains on pine and spruce seedling growth and mycorrhizal infection. Ann. Bot. 77 433–442. 10.1006/anbo.1996.0053 DOI
Sørensen M. T., Danielsen V. (2006). Effects of the plant growth regulator, chlormequat, on mammalian fertility. Int. J. Androl. 29 129–133. 10.1111/j.1365-2605.2005.00629.x PubMed DOI
Vardharajula S., Ali S. Z., Grover M., Reddy G., Bandi V. (2011). Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J. Plant Interact. 6 1–14. 10.1080/17429145.2010.535178 DOI
Veierskov B., Ferguson I. B. (1991). Ubiquitin conjugating activity in leaves and isolated chloroplasts from Avena sativa L. during senescence. J. Plant Physiol. 138 608–613.
Vessey J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255 571–586. 10.1023/A:1026037216893 DOI
Wagner K., Krause K., Gallegos-Monterrosa R., Sammer D., Kovács Á. T., Kothe E. (2019). The ectomycorrhizospheric habitat of Norway spruce and Tricholoma vaccinum: promotion of plant growth and fitness by a rich microorganismic community. Front. Microbiol. 10:307. 10.3389/fmicb.2019.00307 PubMed DOI PMC
Weber R., Gessler A., Hoch G. (2019). High carbon storage in carbon-limited trees. New Phytol. 222 171–182. 10.1111/nph.15599 PubMed DOI
Wu C. H., Bernard S. M., Andersen G. L., Chen W. (2009). Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb. Biotechnol. 2 428–440. 10.1111/j.1751-7915.2009.00109.x PubMed DOI PMC
Xie X., Zhang H., Pare P. (2009). Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal. Behav. 4 948–953. 10.4161/psb.4.10.9709 PubMed DOI PMC
Yang H., Puri A., Padda K. P., Chanway C. P. (2017). Substrate utilization by endophytic bacteria Paenibacillus polymyxa P2b-2R that may facilitate bacterial entrance and survival inside diverse plant hosts. FACETS 2 120–130.
Yang Y., Wang N., Guo X., Zhang Y., Ye B. (2017). Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. PLoS One 12:e0178425. 10.1371/journal.pone.0178425 PubMed DOI PMC
Yoshimura K., Yabuta Y., Ishikawa T., Shigeoka S. (2000). Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol. 123 223–234. 10.1104/pp.123.1.223 PubMed DOI PMC
Zulueta-Rodríguez R., Hernández-Montiel L. G., Murillo-Amador B., Rueda-Puente E. O., Capistrán L. L., Troyo-Diéguez E., et al. (2015). Effect of hydropriming and biopriming on seed germination and growth of two Mexican fir tree species in danger of extinction. Forests 6 3109–3122. 10.3390/f6093109 DOI