Under the Christmas Tree: Belowground Bacterial Associations With Abies nordmanniana Across Production Systems and Plant Development
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32194515
PubMed Central
PMC7064441
DOI
10.3389/fmicb.2020.00198
Knihovny.cz E-zdroje
- Klíčová slova
- A. nordmanniana, Christmas trees, beneficial bacteria, denitrifying bacteria, microbiome, nitrogen cycling, nitrogen-fixing bacteria, rhizosphere,
- Publikační typ
- časopisecké články MeSH
Abies nordmanniana is an economically important tree crop widely used for Christmas tree production. After initial growth in nurseries, seedlings are transplanted to the field. Rhizosphere bacterial communities generally impact the growth and health of the host plant. However, the dynamics of these communities during A. nordmanniana growth in nurseries, and during transplanting, has not previously been addressed. By a 16S rRNA gene amplicon sequencing approach, we characterized the composition and dynamics of bacterial communities in the rhizosphere during early plant growth in field and greenhouse nurseries and for plants transplanted from the greenhouse to the field. Moreover, the N-cycling potential of rhizosphere bacteria across plant age was addressed in both nurseries. Overall, a rhizosphere core microbiome of A. nordmanniana, comprising 19.9% of the taxa at genus level, was maintained across plant age, nursery production systems, and even during the transplantation of plants from the greenhouse to the field. The core microbiome included the bacterial genera Bradyrhizobium, Burkholderia, Flavobacterium, Pseudomonas, Rhizobium, Rhodanobacter, and Sphingomonas, which harbor several N-fixing and plant growth-promoting taxa. Nevertheless, both plant age and production system caused significant changes in the rhizosphere bacterial communities. Concerning community composition, the relative abundance of Rhizobiales (genera Rhizobium, Bradyrhizobium, and Devosia) was higher in the rhizosphere of field-grown A. nordmanniana, whereas the relative abundance of Enterobacteriales and Pseudomonadales (genus Pseudomonas) was higher in the greenhouse. Analysis of community dynamics across plant age showed that in the field nursery, the most abundant bacterial orders showed more dynamic changes in their relative abundance in the rhizosphere than in the bulk soil. In the greenhouse, age-dependent dynamics even occurred but affected different taxa than for the field-grown plants. The N-cycling potential of rhizosphere bacterial communities showed an increase of the relative abundance of genes involved in nitrogen fixation and denitrification by plant age. Similarly, the relative abundance of reported nitrogen-fixing or denitrifying bacteria increased by plant age. However, different community structures seemed to lead to an increased potential for nitrogen fixation and denitrification in the field versus greenhouse nurseries.
Zobrazit více v PubMed
Andersen K. S., Kirkegaard R. H., Karst S. M., Albertsen M. (2018). ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. BioRxiv [Preprint]
Anderson C., Beare M., Buckley H. L., Lear G. (2017). Bacterial and fungal communities respond differently to varying tillage depth in agricultural soils. PeerJ 5:e3930. 10.7717/peerj.3930 PubMed DOI PMC
Bais H. P., Weir T. L., Perry L. G., Gilroy S., Vivanco J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57 233–266. 10.1146/annurev.arplant.57.032905.105159 PubMed DOI
Bolyen E., Rideout J. R., Dillon M. R., Bokulich N. A., Abnet C. C., Al-Ghalith G. A., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37 852–857. 10.1038/s41587-019-0209-9 PubMed DOI PMC
Braga R. M., Dourado M. N., Araújo W. L. (2016). Microbial interactions: ecology in a molecular perspective. Braz. J. Microbiol. 47 86–98. 10.1016/j.bjm.2016.10.005 PubMed DOI PMC
Bräuner Nielsen U., Hansen J. K., Kromann H. K. (2011). Impact of site and provenance on economic return in Nordmann fir Christmas tree production. Scand. J. For. Res. 26 74–89. 10.1080/02827581.2010.526955 DOI
Bürgman H., Meier S., Bunge M., Widmer F., Zeyer J. (2005). Effects of model root exudates on structure and activity of a soil diazotrof community. Environ. Microbiol. 7 1711–1724. 10.1111/j.1462-2920.2005.00818.x PubMed DOI
Caliz J., Montes-Borrego M., Triadó-Margarit X., Metsis M., Landa B. B., Casamayor E. O. (2015). Influence of edaphic, climatic, and agronomic factors on the composition and abundance of nitrifying microorganisms in the rhizosphere of commercial olive crops. PLoS One 10:e0125787. 10.1371/journal.pone.0125787 PubMed DOI PMC
Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., Holmes S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13 581–583. 10.1038/nmeth.3869 PubMed DOI PMC
Cassman N. A., Leite M. F. A., Pan Y., De Hollander M., Van Veen J. A., Kuramae E. E. (2016). Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland. Sci. Rep. 6:23680. 10.1038/srep23680 PubMed DOI PMC
Cernava T., Erlacher A., Soh J., Sensen C. W., Grube M., Berg G. (2019). Enterobacteriaceae dominate the core microbiome and contribute to the resistome of arugula (Eruca sativa Mill.). Microbiome 7:13. 10.1186/s40168-019-0624-7 PubMed DOI PMC
Chaparro J. M., Badri D. V., Vivanco J. M. (2014). Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8 790–803. 10.1038/ismej.2013.196 PubMed DOI PMC
Chu H., Haihua W., Chen H., Tang M. (2016). Pine wilt disease alters soil properties and root-associated fungal communities in Pinus tabulaeformis forest. Plant Soil 404 237–249. 10.1007/s11104-016-2845-x DOI
Deng B., Fu L., Zhang X., Zheng J., Peng L., Sun J., et al. (2014). The denitrification characteristics of Pseudomonas stutzeri SC221-M and its application to water quality control in grass carp aquaculture. PLoS One 9:e114886. 10.1371/journal.pone.0114886 PubMed DOI PMC
Dennis P. G., Miller A. J., Hirsch P. R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol. Ecol. 72 313–327. 10.1111/j.1574-6941.2010.00860.x PubMed DOI
Desjardins P., Conklin D. (2010). NanoDrop microvolume quantitation of nucleic acids. J. Vis. Exp. 45:e2565. 10.3791/2565 PubMed DOI PMC
Dicenzo G. C., Zamani M., Checcucci A., Fondi M., Griffitts J. S., Finan T. M., et al. (2019). Multidisciplinary approaches for studying rhizobium–legume symbioses. Can. J. Microbiol. 65 1–33. 10.1139/cjm-2018-0377 PubMed DOI
Edwards J. A., Santos-Medellín C. M., Liechty Z. S., Nguyen B., Lurie E., Eason S., et al. (2018). Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol. 16:e2003862. 10.1371/journal.pbio.2003862 PubMed DOI PMC
Eichorst S. A., Trojan D., Roux S., Herbold C., Rattei T., Woebken D. (2018). Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments. Environ. Microbiol. 20 1041–1063. 10.1111/1462-2920.14043 PubMed DOI PMC
Espenberg M., Truu M., Mander Ü., Kasak K., Nõlvak H., Ligi T., et al. (2018). Differences in microbial community structure and nitrogen cycling in natural and drained tropical peatland soils. Sci. Rep. 8 4742. 10.1038/s41598-018-23032-y PubMed DOI PMC
Faith D. P. (1992). Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61 1–10. 10.1016/0006-3207(92)91201-3 DOI
Garcia-Lemos A. M., Großkinsky D. K., Stokholm M. S., Lund O. S., Nicolaisen M. H., Roitsch T. G., et al. (2019). Root-associated microbial communities of Abies nordmanniana: insights into interactions of microbial communities with antioxidative enzymes and plant growth. Front. Microbiol. 10:1937. 10.3389/fmicb.2019.01937 PubMed DOI PMC
Garrido-Oter R., Nakano R. T., Dombrowski N., Ma K. W., McHardy A. C., Schulze-Lefert P. (2018). Modular traits of the rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host Microbe 24 155–167. 10.1016/j.chom.2018.06.006 PubMed DOI PMC
Gobbi A., Santini R. G., Filippi E., Ellegaard-Jensen L., Jacobsen C. S., Hansen L. H. (2019). Quantitative and qualitative evaluation of the impact of the G2 enhancer, bead sizes and lysing tubes on the bacterial community composition during DNA extraction from recalcitrant soil core samples based on community sequencing and qPCR. PLoS One 14:e0200979. 10.1371/journal.pone.0200979 PubMed DOI PMC
Haas J. C., Street N. R., Sjödin A., Lee N. M., Högberg M. N., Näsholm T., et al. (2018). Microbial community response to growing season and plant nutrient optimisation in a boreal Norway spruce forest. Soil Biol. Biochem. 125 197–209. 10.1016/j.soilbio.2018.07.005 DOI
Hai B., Diallo N. H., Sall S., Haesler F., Schauss K., Bonzi M., et al. (2009). Quantification of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agroecosystems. Appl. Environ. Microbiol. 75 4993–5000. 10.1128/AEM.02917-08 PubMed DOI PMC
Hardoim P. R., van Overbeek L. S., Berg G., Pirttilä A. M., Compant S., Campisano A., et al. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79 293–320. 10.1128/mmbr.00050-14 PubMed DOI PMC
Heckman J., Vodak M. (2012). Soil Fertility Recommendations for Christmas Trees Liming Practice: Soil pH, Calcium. Available at: https://njaes.rutgers.edu/fs1187/ (accessed September 20, 2019).
Henderson S. L., Dandie C. E., Patten C. L., Zebarth B. J., Burton D. L., Trevors J. T., et al. (2010). Changes in denitrifier abundance, denitrification gene mRNA levels, nitrous oxide emissions, and denitrification in anoxic soil microcosms amended with glucose and plant residues. Appl. Environ. Microbiol. 76 2155–2164. 10.1128/AEM.02993-09 PubMed DOI PMC
Henry S., Texier S., Hallet S., Bru D., Dambreville C., Chèneby D., et al. (2008). Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates. Environ. Microbiol. 10 3082–3092. 10.1111/j.1462-2920.2008.01599.x PubMed DOI
Hester E. R., Harpenslager S. F., van Diggelen J. M. H., Lamers L. L., Jetten M. S. M., Lüke C., et al. (2018). Linking nitrogen load to the structure and function of wetland soil and rhizosphere microbial communities. mSystems 3:e00214-17. 10.1128/msystems.00214-17 PubMed DOI PMC
Houlden A., Timms-Wilson T. M., Day M. J., Bailey M. J. (2008). Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microbiol. Ecol. 65 193–201. 10.1111/j.1574-6941.2008.00535.x PubMed DOI
Igiehon N. O., Babalola O. O. (2018). Rhizosphere microbiome modulators: contributions of nitrogen fixing bacteria towards sustainable agriculture. Int. J. Environ. Res. Public Health. 15:574. 10.3390/ijerph15040574 PubMed DOI PMC
Izumi H., Anderson I. C., Alexander I. J., Killham K., Moore E. R. B. (2006). Endobacteria in some ectomycorrhiza of Scots pine (Pinus sylvestris). FEMS Microbiol. Ecol. 56 34–43. 10.1111/j.1574-6941.2005.00048.x PubMed DOI
Karimi B., Dequiedt S., Terrat S., Jolivet C., Arrouays D., Wincker P., et al. (2019). Biogeography of soil bacterial networks along a gradient of cropping intensity. Sci. Rep. 9:3812. 10.1038/s41598-019-40422-y PubMed DOI PMC
Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30 772–780. 10.1093/molbev/mst010 PubMed DOI PMC
Khetmalas M. B., Egger K. N., Massicotte H. B., Tackaberry L. E., Clapperton M. J. (2002). Bacterial diversity associated with subalpine fir (Abies lasiocarpa) ectomycorrhizae following wildfire and salvage-logging in central British Columbia. Can. J. Microbiol. 48 611–625. 10.1139/w02-056 PubMed DOI
Kielak A. M., Barreto C. C., Kowalchuk G. A., van Veen J. A., Kuramae E. E. (2016). The ecology of Acidobacteria: moving beyond genes and genomes. Front. Microbiol. 7:744. 10.3389/fmicb.2016.00744 PubMed DOI PMC
Kuramae E. E., Yergeau E., Wong L. C., Pijl A. S., van Veen J. A., Kowalchuk G. A. (2012). Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiol. Ecol. 79 12–24. 10.1111/j.1574-6941.2011.01192.x PubMed DOI
Lareen A., Burton F., Scha P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Mol. Biol. 90 575–587. 10.1007/s11103-015-0417-8 PubMed DOI PMC
Lau J. A., Lennon J. T. (2012). Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc. Natl. Acad. Sci. U.S.A. 109 14058–14062. 10.1073/pnas.1202319109 PubMed DOI PMC
Li Y., Jia Z., Sun Q., Cheng J., Yang Y., Zhan J., et al. (2017). Plant-mediated changes in soil N-cycling genes during revegetation of copper mine tailings. Front. Environ. Sci. 5:79 10.3389/fenvs.2017.00079 DOI
Li Y., Jing H., Xia X., Cheung S., Suzuki K., Liu H. (2018). Metagenomic insights into the microbial community and nutrient cycling in the western subarctic Pacific Ocean. Front. Microbiol. 9:623. 10.3389/fmicb.2018.00623 PubMed DOI PMC
Lladó S., López-Mondéjar R., Baldrian P. (2017). Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Rev. 81:e00063-16. 10.1128/mmbr.00063-16 PubMed DOI PMC
Lozupone C., Knight R. (2005). UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71 8228–8235. 10.1128/AEM.71.12.8228-8235.2005 PubMed DOI PMC
Marques J. M., da Silva T. F., Vollu R. E., Blank A. F., Ding G.-C., Seldin L., et al. (2014). Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiol. Ecol. 88 424–435. 10.1111/1574-6941.12313 PubMed DOI
Marschner P., Crowley D., Yang C. H. (2004). Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261 199–208. 10.1023/B:PLSO.0000035569.80747.c5 DOI
Mendes L. W., Kuramae E. E., Navarrete A. A., van Veen J. A., Tsai S. M. (2014). Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J. 8 1577–1587. 10.1038/ismej.2014.17 PubMed DOI PMC
Meng Q., Xu X., Zhang W., Cheng L., Men M., Xu B., et al. (2018). Diversity and abundance of denitrifiers during cow manure composting. Rev. Argent. Microbiol. 51 191–200. 10.1016/j.ram.2018.08.003 PubMed DOI
Mercado-Blanco J., Abrantes I., Caracciolo A. B., Bevivino A., Ciancio A., Grenni P., et al. (2018). Belowground microbiota and the health of tree crops. Front. Microbiol. 9:1006. 10.3389/fmicb.2018.01006 PubMed DOI PMC
Micallef S. A., Channer S., Shiaris M. P., Colón-Carmona A. (2009). Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signal. Behav. 4 777–780. 10.4161/psb.4.8.9229 PubMed DOI PMC
Millard P., Grelet G. A. (2010). Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiol. 30 1083–1095. 10.1093/treephys/tpq042 PubMed DOI
Miller M., Zebarth B., Dandie C., Burton D., Goyer C., Trevors J. (2008). Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil. Soil Biol. Biochem. 40 2553–2562. 10.1016/j.soilbio.2008.06.024 DOI
Miller M., Zebarth B., Dandie C., Burton D., Goyer C., Trevors J. (2009). Influence of liquid manure on soil denitrifier abundance, denitrification, and nitrous oxide emissions. Soil Sci. Soc. Am. J. 73 760–768. 10.2136/sssaj2008.0059 DOI
Na X., Cao X., Ma C., Ma S., Xu P., Liu S., et al. (2019). Plant stage, not drought stress, determines the effect of cultivars on bacterial community diversity in the rhizosphere of broomcorn millet (Panicum miliaceum L.). Front. Microbiol. 10:828 10.3389/fmicb.2019.00828 PubMed DOI PMC
Na X., Xu T. T., Li M., Ma F., Kardol P. (2017). Bacterial diversity in the rhizosphere of two phylogenetically closely related plant species across environmental gradients. J. Soils Sediments. 17 122–132. 10.1007/s11368-016-1486-2 DOI
Naumova N. B., Kuznetsova G. V., Alikina T. Y., Kabilov M. R. (2015). Bacterial 16S DNA diversity in the rhizosphere soil of the two pine species. Biomics 7 128–137.
Nguyen N. H., Bruns T. D. (2015). The microbiome of Pinus muricata ectomycorrhizae: community assemblages, fungal species effects, and Burkholderia as important bacteria in multipartnered symbioses. Microb. Ecol. 69 914–921. 10.1007/s00248-015-0574-y PubMed DOI
Niehaus L., Boland I., Liu M., Chen K., Fu D., Henckel C., et al. (2019). Microbial coexistence through chemical-mediated interactions. Nat. Commun. 10:2052. 10.1038/s41467-019-10062-x PubMed DOI PMC
Oliveros J. C. (2007). An interactive tool for comparing lists with Venn Diagrams. Available online at: https://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed August, 2019).
Philippot L., Raaijmakers J. M., Lemanceau P., Van Der Putten W. H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11 789–799. 10.1038/nrmicro3109 PubMed DOI
Plett J. M., Martin F. M. (2018). Know your enemy, embrace your friend: using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms. Plant J. 93 729–746. 10.1111/tpj.13802 PubMed DOI
Price M. N., Dehal P. S., Arkin A. P. (2010). FastTree 2 - Approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. 10.1371/journal.pone.0009490 PubMed DOI PMC
Proença D. N., Francisco R., Kublik S., Schöler A., Vestergaard G., Schloter M., et al. (2017). The microbiome of endophytic, wood colonizing bacteria from pine trees as affected by pine wilt disease. Sci. Rep. 7:4205. 10.1038/s41598-017-04141-6 PubMed DOI PMC
Qin S., Zhang P., Zhou W., Lyu D. (2019). Assessment of species richness and diversity of Prunus avium rhizosphere and bulk soil bacterial communities. 327–336. 10.17660/ActaHortic.2019.1235.45 DOI
Rasmussen H. N., Bjarke Veierskov B., Hansen-Møller J., Nørbaek R. (2009). Cytokinin profiles in the conifer tree Abies nordmanniana: whole-plant relations in year-round perspective. J. Plant Growth Regul. 28 154–166. 10.1007/s00344-009-9084-9 DOI
Rodrigues Coelho M. R., De Vos M., Carneiro N. P., Marriel I. E., Paiva E., Seldin L. (2008). Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer. FEMS Microbiol. Lett. 279 15–22. 10.1111/j.1574-6968.2007.00975.x PubMed DOI
Roos S., Dicksved J., Tarasco V., Locatelli E., Ricceri F., Grandin U., et al. (2013). 454 pyrosequencing analysis on faecal samples from a randomized DBPC trial of colicky infants treated with Lactobacillus reuteri DSM 17938. PLoS One 8:e56710. 10.1371/journal.pone.0056710 PubMed DOI PMC
Rosenberg E., Zilber-Rosenberg I. (2016). Microbes drive evolution of animals and plants: the hologenome concept. mBio 7:e01395-15. 10.1128/mBio.01395-15 PubMed DOI PMC
Rousk J., Baath E., Brookes P. C., Lauber C. L., Lozupone C., Caporaso J. G., et al. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4 1340–1351. 10.1038/ismej.2010.58 PubMed DOI
Saarenheimo J., Tiirola M. A., Rissanen A. J. (2015). Functional gene pyrosequencing reveals core proteobacterial denitrifiers in boreal lakes. Front. Microbiol. 6:674. 10.3389/fmicb.2015.00674 PubMed DOI PMC
Santhanam R., Luu V. T., Weinhold A., Goldberg J., Oh Y., Baldwin I. T. (2015). Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc. Natl. Acad. Sci. U.S.A. 112 5013–5020. 10.1073/pnas.1505765112 PubMed DOI PMC
Schlemper T. R., Leite F. A., Lucheta A. R., Shimels M., Bouwmeester H. J., Van Veen J. A., et al. (2017). Rhizobacterial community structure differences among sorghum cultivars in different growth stages and soils. FEMS Microbiol. Ecol. 93:8. 10.1093/femsec/fix096 PubMed DOI
Seifert J. R. (2015). Growing Christmas trees. Scott. For. 55 231–233.
Shi C., Wang C., Xu X., Huang B., Wu L., Yang D. (2014). Comparison of bacterial communities in soil between nematode-infected and nematode-uninfected Pinus massoniana pinewood forest. Appl. Soil Ecol. 85 11–20. 10.1016/j.apsoil.2014.08.008 DOI
Sun H., Terhonen E., Koskinen K., Paulin L., Kasanen R., Asiegbu F. O. (2014). Bacterial diversity and community structure along different peat soils in boreal forest. Appl. Soil Ecol. 74 37–45. 10.1016/j.apsoil.2013.09.010 DOI
Tedersoo L., Smith M. E. (2013). Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol. Rev. 27 83–99. 10.1016/j.fbr.2013.09.001 DOI
Tveit A., Schwacke R., Svenning M. M., Urich T. (2013). Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J. 7 299–311. 10.1038/ismej.2012.99 PubMed DOI PMC
Uroz S., Buée M., Deveau A., Mieszkin S., Martin F. (2016). Ecology of the forest microbiome: highlights of temperate and boreal ecosystems. Soil Biol. Biochem. 103 471–488. 10.1016/j.soilbio.2016.09.006 DOI
Vázquez-Baeza Y., Pirrung M., Gonzalez A., Knight R. (2013). EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience 2 2–5. 10.1186/2047-217X-2-16 PubMed DOI PMC
Wagner M. R., Lundberg D. S., Del Rio T. G., Tringe S. G., Dangl J. L., Mitchell-Olds T. (2016). Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7:12151. 10.1038/ncomms12151 PubMed DOI PMC
Wang Q., Quensen J., Fish F., Lee J. A., Kwon T., Tiedje Y., et al. (2013). Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using framebot, a new informatics tool. mBio 4:e00592-13. 10.1128/mBio.00592-13 PubMed DOI PMC
Wang Z., Liu L., Chen Q., Wen X., Liu Y., Han J., et al. (2017). Conservation tillage enhances the stability of the rhizosphere bacterial community responding to plant growth. Agron. Sustain. Dev. 37:44 10.1007/s13593-017-0454-6 DOI
Wüst P. K., Horn M. A., Drake H. L. (2011). Clostridiaceae and Enterobacteriaceae as active fermenters in earthworm gut content. ISME J. 5 92–106. 10.1038/ismej.2010.99 PubMed DOI PMC
Yang Y., Wang N., Guo X., Zhang Y., Ye B. (2017). Comparative analysis of bacterial community structure in the rhizosphere of maize by high- throughput pyrosequencing. PLoS One 12:e0178425. 10.1371/journal.pone.0178425 PubMed DOI PMC
Yeoh Y. K., Dennis P. G., Paungfoo-Lonhienne C., Weber L., Brackin R., Ragan M. A., et al. (2017). Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat. Commun. 8:215. 10.1038/s41467-017-00262-8 PubMed DOI PMC
Yoshida M., Ishii S., Otsuka S., Senoo K. (2010). nirk-harboring denitrifiers are more responsive to denitrification-inducing conditions in rice paddy soil than nirs-harboring bacteria. Microbes Environ. 25 45–48. 10.1264/jsme2.ME09160 PubMed DOI
Yu H. X., Wang C. Y., Tang M. (2013). Fungal and bacterial communities in the rhizosphere of Pinus tabulaeformis related to the restoration of plantations and natural secondary forests in the loess plateau, Northwest China. Sci. World J. 2013:606480. 10.1155/2013/606480 PubMed DOI PMC
Zhalnina K., Louie K. B., Hao Z., Mansoori N., Da Rocha U. N., Shi S., et al. (2018). Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3 470–480. 10.1038/s41564-018-0129-3 PubMed DOI