Bacillus licheniformis FMCH001 Increases Water Use Efficiency via Growth Stimulation in Both Normal and Drought Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32318078
PubMed Central
PMC7155768
DOI
10.3389/fpls.2020.00297
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidants, biostimulants, plant growth promoting rhizobacteria, plant probiotics, water use efficiency,
- Publikační typ
- časopisecké články MeSH
Increasing agricultural losses due to biotic and abiotic stresses caused by climate change challenge food security worldwide. A promising strategy to sustain crop productivity under conditions of limited water availability is the use of plant growth promoting rhizobacteria (PGPR). Here, the effects of spore forming Bacillus licheniformis (FMCH001) on growth and physiology of maize (Zea mays L. cv. Ronaldinho) under well-watered and drought stressed conditions were investigated. Pot experiments were conducted in the automated high-throughput phenotyping platform PhenoLab and under greenhouse conditions. Results of the PhenoLab experiments showed that plants inoculated with B. licheniformis FMCH001 exhibited increased root dry weight (DW) and plant water use efficiency (WUE) compared to uninoculated plants. In greenhouse experiments, root and shoot DW significantly increased by more than 15% in inoculated plants compared to uninoculated control plants. Also, the WUE increased in FMCH001 plants up to 46% in both well-watered and drought stressed plants. Root and shoot activities of 11 carbohydrate and eight antioxidative enzymes were characterized in response to FMCH001 treatments. This showed a higher antioxidant activity of catalase (CAT) in roots of FMCH001 treated plants compared to uninoculated plants. The higher CAT activity was observed irrespective of the water regime. These findings show that seed coating with Gram positive spore forming B. licheniformis could be used as biostimulants for enhancing plant WUE under both normal and drought stress conditions.
Zobrazit více v PubMed
Akhtar S. S., Andersen M. N., Naveed M., Zahir Z. A., Liu F. (2015). Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. PubMed
Albacete A., Cantero-Navarro E., Balibrea M. E., Großkinsky D. K., de la Cruz González M., Martínez-Andújar C., et al. (2014a). Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity. PubMed DOI PMC
Albacete A., Cantero-Navarro E., Großkinsky D. K., Arias C. L., Balibrea M. E., Bru R., et al. (2014b). Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato. PubMed DOI PMC
Belimov A. A., Dodd I. C., Safronova V. I., Shaposhnikov A. I., Azarova T. S., Makarova N. M., et al. (2015). Rhizobacteria that produce auxins and contain 1-amino-cyclopropane-1-carboxylic acid deaminase decrease amino acid concentrations in the rhizosphere and improve growth and yield of well-watered and water-limited potato ( DOI
Calvo-Polanco M., Sánchez-Romera B., Aroca R., Asins M. J., Declerck S., Dodd I. C., et al. (2016). Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato. DOI
Cassán F., Vanderleyden J., Spaepen S. (2014). Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus DOI
Castillo P., Molina R., Andrade A., Vigliocco A., Alemano S., Cassán F. D. (2015). “Phytohormones and other plant growth regulators produced by PGPR: the genus DOI
Chakraborty U., Chakraborty B. N., Chakraborty A. P., Dey P. L. (2013). Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. PubMed DOI
Chen X. H., Koumoutsi A., Scholz R., Eisenreich A., Schneider K., Heinemeyer I., et al. (2007). Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium PubMed DOI
Chiappero J., Cappellari L. D. R., Sosa Alderete L. G., Palermo T. B., Banchio E. (2019). Plant growth promoting rhizobacteria improve the antioxidant status in DOI
Clements L. D., Miller B. S., Streips U. N. (2002). Comparative growth analysis of the facultative Anaerobes PubMed DOI
de Lima B. C., Moro A. L., Santos A. C. P., Bonifacio A., Araujo A. S. F., de Araujo F. F. (2019). DOI
Delaux P.-M., Radhakrishnan G. V., Jayaraman D., Cheema J., Malbreil M., Volkening J. D., et al. (2015). Algal ancestor of land plants was preadapted for symbiosis. PubMed DOI PMC
Ehrlich P. R., Harte J. (2015). Opinion: to feed the world in 2050 will require a global revolution. PubMed DOI PMC
FAO and ITPS (2015).
Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S. M. A. (2009). Plant drought stress: effects, mechanisms and management. DOI
Fimognari L., Dölker R., Kaselyte G., Jensen C. N. G., Akhtar S. S., Großkinsky D. K., et al. (2020). Simple semi-high throughput determination of activity signatures of key antioxidant enzymes for physiological phenotyping. PubMed DOI PMC
Garcia-Lemos A. M., Gro kinsky D. K., Stokholm M. S., Lund O. S., Nicolaisen M. H., Roitsch T. G., et al. (2019). Root-associated microbial communities of abies nordmanniana: insights into interactions of microbial communities with antioxidative enzymes and plant growth. PubMed DOI PMC
Glick B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. PubMed DOI PMC
Glick B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. PubMed DOI
Glick B. R., Todorovic B., Czarny J., Cheng Z., Duan J., McConkey B. (2007). Promotion of plant growth by bacterial ACC deaminase. DOI
Gowda V. R. P., Henry A., Yamauchi A., Shashidhar H. E., Serraj R. (2011). Root biology and genetic improvement for drought avoidance in rice. DOI
Großkinsky D. K., Svensgaard J., Christensen S., Roitsch T. (2015). Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. PubMed DOI
Großkinsky D. K., Syaifullah S. J., Roitsch T. (2018). Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. PubMed DOI
Gururani M. A., Upadhyaya C. P., Baskar V., Venkatesh J., Nookaraju A., Park S. W. (2013). Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in DOI
Hendry G. A. F. (2008). Oxygen, free radical processes and seed longevity. DOI
Honsdorf N., March T. J., Berger B., Tester M., Pillen K. (2014). High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PubMed DOI PMC
Hothorn T., Bretz F., Westfall P. (2008). Simultaneous inference in general parametric models. PubMed DOI
Jajic I., Sarna T., Strzalka K. (2015). Senescence, stress, and reactive oxygen species. PubMed DOI PMC
Jammer A., Gasperl A., Luschin-Ebengreuth N., Heyneke E., Chu H., Cantero-Navarro E., et al. (2015). Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants. PubMed DOI
Kasim W. A., Osman M. E., Omar M. N., Abd El-Daim I. A., Bejai S., Meijer J. (2013). Control of drought stress in wheat using plant-growth-promoting bacteria. DOI
Kavar T., Maras M., Kidrič M., Šuštar-Vozlič J., Meglič V. (2008). Identification of genes involved in the response of leaves of DOI
Khan N., Bano A., Zandi P. (2018). Effects of exogenously applied plant growth regulators in combination with PGPR on the physiology and root growth of chickpea ( DOI
Kumar A., Verma J. P. (2018). Does plant—microbe interaction confer stress tolerance in plants: a review? PubMed DOI
Kumar S., Agarwal M., Dheeman S., Maheshwari D. K. (2015). “Exploitation of phytohormone-producing PGPR in development of multispecies bioinoculant formulation,” in DOI
Kuska M. T., Behmann J., Großkinsky D. K., Roitsch T., Mahlein A.-K. (2018). Screening of barley resistance against powdery mildew by simultaneous high-throughput enzyme activity signature profiling and multispectral imaging. PubMed DOI PMC
Leser T. D., Knarreborg A., Worm J. (2008). Germination and outgrowth of PubMed DOI
Lim J.-H., Kim S.-D. (2013). Induction of drought stress resistance by multi-functional PGPR PubMed DOI PMC
Liu F., Jensen C. R., Shahanzari A., Andersen M. N., Jacobsen S.-E. (2005). ABA regulated stomatal control and photosynthetic water use efficiency of potato ( DOI
Lushchak V. I. (2014). Free radicals, reactive oxygen species, oxidative stress and its classification. PubMed DOI
Ma Y. (2019). Seed coating with beneficial microorganisms for precision agriculture. PubMed DOI
Maheshwari D. K., Dheeman S., Agarwal M. (2015). “Phytohormone-producing PGPR for sustainable agriculture,” in DOI
Nadeem S. M., Ahmad M., Zahir Z. A., Javaid A., Ashraf M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. PubMed DOI
Nadeem S. M., Imran M., Naveed M., Khan M. Y., Ahmad M., Zahir Z. A., et al. (2017). Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions. PubMed DOI
Nair A. S., Abraham T. K., Jaya D. S. (2008). Studies on the changes in lipid peroxidation and antioxidants in drought stress induced cowpea ( PubMed
Naseem H., Bano A. (2014). Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. DOI
Naveed M., Mitter B., Reichenauer T. G., Wieczorek K., Sessitsch A. (2014). Increased drought stress resilience of maize through endophytic colonization by DOI
Ngumbi E., Kloepper J. (2016). Bacterial-mediated drought tolerance: current and future prospects. DOI
Nicholson W. L., Munakata N., Horneck G., Melosh H. J., Setlow P. (2000). Resistance of PubMed DOI PMC
Niu X., Song L., Xiao Y., Ge W. (2018). Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. PubMed DOI PMC
Noctor G., Mhamdi A., Foyer C. H. (2014). The roles of reactive oxygen metabolism in drought: not so cut and dried. PubMed DOI PMC
Pinheiro J., Bates D., DebRoy S., Sarkar D. R Core Team, (2019).
R Core Team, (2017).
Radhakrishnan R., Hashem A., Abd Allah E. F. (2017). PubMed DOI PMC
Ryu C.-M., Farag M. A., Hu C.-H., Reddy M. S., Kloepper J. W., Paré P. W. (2004). Bacterial volatiles induce systemic resistance in PubMed DOI PMC
Saleem A. R., Bangash N., Mahmood T., Khalid A., Centritto M., Siddique M. T. (2015). Rhizobacteria capable of producing ACC deaminase promote growth of velvet bean ( DOI
Setlow P. (1994). Mechanisms which contribute to the long-term survival of spores of PubMed DOI
Sgherri C. L. M., Maffei M., Navari-Izzo F. (2000). Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering. DOI
Smart R. E., Bingham G. E. (1974). Rapid estimates of relative water content. PubMed DOI PMC
Tardieu F., Simonneau T., Muller B. (2018). The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach. PubMed DOI
Turner N. C., Wright G. C., Siddique K. H. M. (2001). Adaptation of grain legumes (pulses) to water-limited environments. DOI
Vejan P., Abdullah R., Khadiran T., Ismail S., Nasrulhaq Boyce A. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. PubMed DOI PMC
Vurukonda S. S. K. P., Vardharajula S., Shrivastava M., SkZ A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. PubMed DOI
Xu M., Sheng J., Chen L., Men Y., Gan L., Guo S., et al. (2014). Bacterial community compositions of tomato ( PubMed DOI
Zheng W., Zeng S., Bais H., LaManna J. M., Hussey D. S., Jacobson D. L., et al. (2018). Plant growth-promoting rhizobacteria (PGPR) reduce evaporation and increase soil water retention. DOI
Zhou C., Zhu L., Xie Y., Li F., Xiao X., Ma Z., et al. (2017). PubMed DOI PMC
Antioxidant Responses and Redox Regulation Within Plant-Beneficial Microbe Interaction
Presence and future of plant phenotyping approaches in biostimulant research and development
Burkholderia Phytofirmans PsJN Stimulate Growth and Yield of Quinoa under Salinity Stress