Bacillus licheniformis FMCH001 Increases Water Use Efficiency via Growth Stimulation in Both Normal and Drought Conditions

. 2020 ; 11 () : 297. [epub] 20200407

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32318078

Increasing agricultural losses due to biotic and abiotic stresses caused by climate change challenge food security worldwide. A promising strategy to sustain crop productivity under conditions of limited water availability is the use of plant growth promoting rhizobacteria (PGPR). Here, the effects of spore forming Bacillus licheniformis (FMCH001) on growth and physiology of maize (Zea mays L. cv. Ronaldinho) under well-watered and drought stressed conditions were investigated. Pot experiments were conducted in the automated high-throughput phenotyping platform PhenoLab and under greenhouse conditions. Results of the PhenoLab experiments showed that plants inoculated with B. licheniformis FMCH001 exhibited increased root dry weight (DW) and plant water use efficiency (WUE) compared to uninoculated plants. In greenhouse experiments, root and shoot DW significantly increased by more than 15% in inoculated plants compared to uninoculated control plants. Also, the WUE increased in FMCH001 plants up to 46% in both well-watered and drought stressed plants. Root and shoot activities of 11 carbohydrate and eight antioxidative enzymes were characterized in response to FMCH001 treatments. This showed a higher antioxidant activity of catalase (CAT) in roots of FMCH001 treated plants compared to uninoculated plants. The higher CAT activity was observed irrespective of the water regime. These findings show that seed coating with Gram positive spore forming B. licheniformis could be used as biostimulants for enhancing plant WUE under both normal and drought stress conditions.

Zobrazit více v PubMed

Akhtar S. S., Andersen M. N., Naveed M., Zahir Z. A., Liu F. (2015). Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. PubMed

Albacete A., Cantero-Navarro E., Balibrea M. E., Großkinsky D. K., de la Cruz González M., Martínez-Andújar C., et al. (2014a). Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity. PubMed DOI PMC

Albacete A., Cantero-Navarro E., Großkinsky D. K., Arias C. L., Balibrea M. E., Bru R., et al. (2014b). Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato. PubMed DOI PMC

Belimov A. A., Dodd I. C., Safronova V. I., Shaposhnikov A. I., Azarova T. S., Makarova N. M., et al. (2015). Rhizobacteria that produce auxins and contain 1-amino-cyclopropane-1-carboxylic acid deaminase decrease amino acid concentrations in the rhizosphere and improve growth and yield of well-watered and water-limited potato ( DOI

Calvo-Polanco M., Sánchez-Romera B., Aroca R., Asins M. J., Declerck S., Dodd I. C., et al. (2016). Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato. DOI

Cassán F., Vanderleyden J., Spaepen S. (2014). Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus DOI

Castillo P., Molina R., Andrade A., Vigliocco A., Alemano S., Cassán F. D. (2015). “Phytohormones and other plant growth regulators produced by PGPR: the genus DOI

Chakraborty U., Chakraborty B. N., Chakraborty A. P., Dey P. L. (2013). Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. PubMed DOI

Chen X. H., Koumoutsi A., Scholz R., Eisenreich A., Schneider K., Heinemeyer I., et al. (2007). Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium PubMed DOI

Chiappero J., Cappellari L. D. R., Sosa Alderete L. G., Palermo T. B., Banchio E. (2019). Plant growth promoting rhizobacteria improve the antioxidant status in DOI

Clements L. D., Miller B. S., Streips U. N. (2002). Comparative growth analysis of the facultative Anaerobes PubMed DOI

de Lima B. C., Moro A. L., Santos A. C. P., Bonifacio A., Araujo A. S. F., de Araujo F. F. (2019). DOI

Delaux P.-M., Radhakrishnan G. V., Jayaraman D., Cheema J., Malbreil M., Volkening J. D., et al. (2015). Algal ancestor of land plants was preadapted for symbiosis. PubMed DOI PMC

Ehrlich P. R., Harte J. (2015). Opinion: to feed the world in 2050 will require a global revolution. PubMed DOI PMC

FAO and ITPS (2015).

Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S. M. A. (2009). Plant drought stress: effects, mechanisms and management. DOI

Fimognari L., Dölker R., Kaselyte G., Jensen C. N. G., Akhtar S. S., Großkinsky D. K., et al. (2020). Simple semi-high throughput determination of activity signatures of key antioxidant enzymes for physiological phenotyping. PubMed DOI PMC

Garcia-Lemos A. M., Gro kinsky D. K., Stokholm M. S., Lund O. S., Nicolaisen M. H., Roitsch T. G., et al. (2019). Root-associated microbial communities of abies nordmanniana: insights into interactions of microbial communities with antioxidative enzymes and plant growth. PubMed DOI PMC

Glick B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. PubMed DOI PMC

Glick B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. PubMed DOI

Glick B. R., Todorovic B., Czarny J., Cheng Z., Duan J., McConkey B. (2007). Promotion of plant growth by bacterial ACC deaminase. DOI

Gowda V. R. P., Henry A., Yamauchi A., Shashidhar H. E., Serraj R. (2011). Root biology and genetic improvement for drought avoidance in rice. DOI

Großkinsky D. K., Svensgaard J., Christensen S., Roitsch T. (2015). Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. PubMed DOI

Großkinsky D. K., Syaifullah S. J., Roitsch T. (2018). Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. PubMed DOI

Gururani M. A., Upadhyaya C. P., Baskar V., Venkatesh J., Nookaraju A., Park S. W. (2013). Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in DOI

Hendry G. A. F. (2008). Oxygen, free radical processes and seed longevity. DOI

Honsdorf N., March T. J., Berger B., Tester M., Pillen K. (2014). High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PubMed DOI PMC

Hothorn T., Bretz F., Westfall P. (2008). Simultaneous inference in general parametric models. PubMed DOI

Jajic I., Sarna T., Strzalka K. (2015). Senescence, stress, and reactive oxygen species. PubMed DOI PMC

Jammer A., Gasperl A., Luschin-Ebengreuth N., Heyneke E., Chu H., Cantero-Navarro E., et al. (2015). Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants. PubMed DOI

Kasim W. A., Osman M. E., Omar M. N., Abd El-Daim I. A., Bejai S., Meijer J. (2013). Control of drought stress in wheat using plant-growth-promoting bacteria. DOI

Kavar T., Maras M., Kidrič M., Šuštar-Vozlič J., Meglič V. (2008). Identification of genes involved in the response of leaves of DOI

Khan N., Bano A., Zandi P. (2018). Effects of exogenously applied plant growth regulators in combination with PGPR on the physiology and root growth of chickpea ( DOI

Kumar A., Verma J. P. (2018). Does plant—microbe interaction confer stress tolerance in plants: a review? PubMed DOI

Kumar S., Agarwal M., Dheeman S., Maheshwari D. K. (2015). “Exploitation of phytohormone-producing PGPR in development of multispecies bioinoculant formulation,” in DOI

Kuska M. T., Behmann J., Großkinsky D. K., Roitsch T., Mahlein A.-K. (2018). Screening of barley resistance against powdery mildew by simultaneous high-throughput enzyme activity signature profiling and multispectral imaging. PubMed DOI PMC

Leser T. D., Knarreborg A., Worm J. (2008). Germination and outgrowth of PubMed DOI

Lim J.-H., Kim S.-D. (2013). Induction of drought stress resistance by multi-functional PGPR PubMed DOI PMC

Liu F., Jensen C. R., Shahanzari A., Andersen M. N., Jacobsen S.-E. (2005). ABA regulated stomatal control and photosynthetic water use efficiency of potato ( DOI

Lushchak V. I. (2014). Free radicals, reactive oxygen species, oxidative stress and its classification. PubMed DOI

Ma Y. (2019). Seed coating with beneficial microorganisms for precision agriculture. PubMed DOI

Maheshwari D. K., Dheeman S., Agarwal M. (2015). “Phytohormone-producing PGPR for sustainable agriculture,” in DOI

Nadeem S. M., Ahmad M., Zahir Z. A., Javaid A., Ashraf M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. PubMed DOI

Nadeem S. M., Imran M., Naveed M., Khan M. Y., Ahmad M., Zahir Z. A., et al. (2017). Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions. PubMed DOI

Nair A. S., Abraham T. K., Jaya D. S. (2008). Studies on the changes in lipid peroxidation and antioxidants in drought stress induced cowpea ( PubMed

Naseem H., Bano A. (2014). Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. DOI

Naveed M., Mitter B., Reichenauer T. G., Wieczorek K., Sessitsch A. (2014). Increased drought stress resilience of maize through endophytic colonization by DOI

Ngumbi E., Kloepper J. (2016). Bacterial-mediated drought tolerance: current and future prospects. DOI

Nicholson W. L., Munakata N., Horneck G., Melosh H. J., Setlow P. (2000). Resistance of PubMed DOI PMC

Niu X., Song L., Xiao Y., Ge W. (2018). Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. PubMed DOI PMC

Noctor G., Mhamdi A., Foyer C. H. (2014). The roles of reactive oxygen metabolism in drought: not so cut and dried. PubMed DOI PMC

Pinheiro J., Bates D., DebRoy S., Sarkar D. R Core Team, (2019).

R Core Team, (2017).

Radhakrishnan R., Hashem A., Abd Allah E. F. (2017). PubMed DOI PMC

Ryu C.-M., Farag M. A., Hu C.-H., Reddy M. S., Kloepper J. W., Paré P. W. (2004). Bacterial volatiles induce systemic resistance in PubMed DOI PMC

Saleem A. R., Bangash N., Mahmood T., Khalid A., Centritto M., Siddique M. T. (2015). Rhizobacteria capable of producing ACC deaminase promote growth of velvet bean ( DOI

Setlow P. (1994). Mechanisms which contribute to the long-term survival of spores of PubMed DOI

Sgherri C. L. M., Maffei M., Navari-Izzo F. (2000). Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering. DOI

Smart R. E., Bingham G. E. (1974). Rapid estimates of relative water content. PubMed DOI PMC

Tardieu F., Simonneau T., Muller B. (2018). The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach. PubMed DOI

Turner N. C., Wright G. C., Siddique K. H. M. (2001). Adaptation of grain legumes (pulses) to water-limited environments. DOI

Vejan P., Abdullah R., Khadiran T., Ismail S., Nasrulhaq Boyce A. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. PubMed DOI PMC

Vurukonda S. S. K. P., Vardharajula S., Shrivastava M., SkZ A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. PubMed DOI

Xu M., Sheng J., Chen L., Men Y., Gan L., Guo S., et al. (2014). Bacterial community compositions of tomato ( PubMed DOI

Zheng W., Zeng S., Bais H., LaManna J. M., Hussey D. S., Jacobson D. L., et al. (2018). Plant growth-promoting rhizobacteria (PGPR) reduce evaporation and increase soil water retention. DOI

Zhou C., Zhu L., Xie Y., Li F., Xiao X., Ma Z., et al. (2017). PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...