Simple semi-high throughput determination of activity signatures of key antioxidant enzymes for physiological phenotyping
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32206082
PubMed Central
PMC7085164
DOI
10.1186/s13007-020-00583-8
PII: 583
Knihovny.cz E-zdroje
- Klíčová slova
- Enzymatic assay, High throughput, Physiological phenotyping, ROS metabolism, Reactive oxygen species,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Reactive oxygen species (ROS) such as hydrogen peroxide and superoxide anions significantly accumulate during biotic and abiotic stress and cause oxidative damage and eventually cell death. There is accumulating evidence that ROS are also involved in regulating beneficial plant-microbe interactions, signal transduction and plant growth and development. Due to the relevance of ROS throughout the life cycle and for interaction with the multifactorial environment, the physiological phenotyping of the mechanisms controlling ROS homeostasis is of general importance. RESULTS: In this study, we have developed a robust and resource-efficient experimental platform that allows the determination of the activities of the nine key ROS scavenging enzymes from a single extraction that integrates posttranscriptional and posttranslational regulations. The assays were optimized and adapted for a semi-high throughput 96-well assay format. In a case study, we have analyzed tobacco leaves challenged by pathogen infection, drought and salt stress. The three stress factors resulted in distinct activity signatures with differential temporal dynamics. CONCLUSIONS: This experimental platform proved to be suitable to determine the antioxidant enzyme activity signature in different tissues of monocotyledonous and dicotyledonous model and crop plants. The universal enzymatic extraction procedure combined with the 96-well assay format demonstrated to be a simple, fast and semi-high throughput experimental platform for the precise and robust fingerprinting of nine key antioxidant enzymatic activities in plants.
Chr Hansen A S Plant Health Innovation Bøge Allé 10 12 2970 Hørsholm Denmark
Department of Adaptive Biotechnologies Global Change Research Institute CAS Brno Czech Republic
Zobrazit více v PubMed
Mullineaux PM, Exposito-Rodriguez M, Laissue PP, Smirnoff N. ROS-dependent signalling pathways in plants and algae exposed to high light: comparisons with other eukaryotes. Free Radic Biol Med. 2018;122:52–64. doi: 10.1016/j.freeradbiomed.2018.01.033. PubMed DOI
Liu Y, He C. Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD. Plant Cell Rep. 2016;35:995–1007. doi: 10.1007/s00299-016-1950-x. PubMed DOI
El-Maarouf-Bouteau H, Bailly C. Oxidative signaling in seed germination and dormancy. Plant Signal Behav. 2008;3:175–182. doi: 10.4161/psb.3.3.5539. PubMed DOI PMC
O’Brien JA, Daudi A, Butt VS, Bolwell GP. Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta. 2012;236:765–779. doi: 10.1007/s00425-012-1696-9. PubMed DOI
Tsukagoshi H. Control of root growth and development by reactive oxygen species. Curr Opin Plant Biol. 2016;29:57–63. doi: 10.1016/j.pbi.2015.10.012. PubMed DOI
Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;2012:217037.
Bhattacharjee S. Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci. 2005;89:1113–1121.
Großkinsky DK, Svensgaard J, Christensen S, Roitsch T. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. J Exp Bot. 2015;66:5429–5440. doi: 10.1093/jxb/erv345. PubMed DOI
Großkinsky DK, Syaifullah SJ, Roitsch T. Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. J Exp Bot. 2018;69:825–844. doi: 10.1093/jxb/erx333. PubMed DOI
Choudhury FK, Rivero RM, Blumwald E, Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017;90:856–867. doi: 10.1111/tpj.13299. PubMed DOI
Liebthal M, Dietz KJ. The fundamental role of reactive oxygen species in plant stress response. Methods Mol Biol. 2017;1631:23–39. doi: 10.1007/978-1-4939-7136-7_2. PubMed DOI
Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Angel Torres M, et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature. 2003;422:442–446. doi: 10.1038/nature01485. PubMed DOI
Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, Takeda S, et al. Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell. 2014;26:1069–1080. doi: 10.1105/tpc.113.120642. PubMed DOI PMC
Duan L, Dietrich D, Ng CH, Yeen Chan PM, Bhalerao R, Bennett MJ, et al. Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell. 2013;25:324–341. doi: 10.1105/tpc.112.107227. PubMed DOI PMC
He J, Duan Y, Hua D, Fan G, Wang L, Liu Y, et al. DEXH box RNA Helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling. Plant Cell. 2012;24:1815–1833. doi: 10.1105/tpc.112.098707. PubMed DOI PMC
Desikan R, Last K, Harrett-Williams R, Tagliavia C, Harter K, Hooley R, et al. Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant J. 2006;47:907–916. doi: 10.1111/j.1365-313X.2006.02842.x. PubMed DOI
Han Y, Chaouch S, Mhamdi A, Queval G, Zechmann B, Noctor G. Functional analysis of arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling. Antioxid Redox Signal. 2013;18:2106–2121. doi: 10.1089/ars.2012.5052. PubMed DOI PMC
Han Y, Mhamdi A, Chaouch S, Noctor G. Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione. Plant Cell Environ. 2013;36:1135–1146. doi: 10.1111/pce.12048. PubMed DOI
Bettini PP, Cosi E, Bindi D, Buiatti M. Reactive oxygen species metabolism in plants: production, detoxification and signaling in the stress response. Plant Stress. 2008;2:28–39.
Kovtun Y, Chiu W-L, Tena G, Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci. 2000;97:2940–2945. doi: 10.1073/pnas.97.6.2940. PubMed DOI PMC
Nath M, Bhatt D, Prasad R, Gill SS, Anjum NA, Tuteja N. Reactive oxygen species generation-scavenging and signaling during plant-Arbuscular mycorrhizal and Piriformospora indica interaction under stress condition. Front Plant Sci. 2016;7:1–7. doi: 10.3389/fpls.2016.01574. PubMed DOI PMC
Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;2012:1–26. doi: 10.1155/2012/217037. DOI
Jammer A, Gasperl A, Luschin-Ebengreuth N, Heyneke E, Chu H, Cantero-Navarro E, et al. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants. J Exp Bot. 2015;66:5531–5542. doi: 10.1093/jxb/erv228. PubMed DOI
Mc Cord JM, Fridovich I. An enzymic. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) J Biol Chem. 1969;244:6049–6055. PubMed
Arrigoni O, Dipierro S, Borraccino G. Materials and methods. Febs Lett. 1981;125:242–244. doi: 10.1016/0014-5793(81)80729-6. DOI
Dalton DA, Russell SA, Hanus FJ, Pascoe GA, Evans HJ. Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc Natl Acad Sci. 1986;83:3811–3815. doi: 10.1073/pnas.83.11.3811. PubMed DOI PMC
Edwards E, Rawsthorne S, Mullineaux PM. Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.) Planta. 1990;180:278–284. doi: 10.1007/BF00194008. PubMed DOI
Polle A, Otter T, Seifert F. Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.) Plant Physiol. 1994;106:53–60. doi: 10.1104/pp.106.1.53. PubMed DOI PMC
Li Z, Zhen R, Rea PA. Glutathione-S-conjugate transport activity. Hepatology. 1995;109:177–185. PubMed PMC
Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S. Expression of Spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol. 2000;123:223–234. doi: 10.1104/pp.123.1.223. PubMed DOI PMC
Aebi H. [13] Catalase in vitro. Methods Enzymol. 1984;105:121–126. doi: 10.1016/S0076-6879(84)05016-3. PubMed DOI
Koffler BE, Luschin-Ebengreuth N, Stabentheiner E, Müller M, Zechmann B. Compartment specific response of antioxidants to drought stress in Arabidopsis. Plant Sci. 2014;227:133–144. doi: 10.1016/j.plantsci.2014.08.002. PubMed DOI PMC
De Carvalho MH, Contour-Ansel D. ( h ) GR ,beans and drought stress. Plant Signal Behav. 2008;3:834–835. doi: 10.4161/psb.3.10.5918. PubMed DOI PMC
Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, et al. Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front Plant Sci. 2017;08:1–12. doi: 10.3389/fpls.2017.00069. PubMed DOI PMC
Parida AK, Das AB, Mittra B, Mohanty P. Salt-stress induced alterations in protein profile and protease activity in the mangrove Bruguiera parviflora. Zeitschrift fur Naturforsch - Sect C J Biosci. 2004;59:408–414. doi: 10.1515/znc-2004-5-622. PubMed DOI
Großkinsky DK, Koffler BE, Roitsch T, Maier R, Zechmann B. Compartment-specific antioxidative defense in Arabidopsis against virulent and avirulent Pseudomonas syringae. Phytopathology. 2012;102:662–673. doi: 10.1094/PHYTO-02-12-0022-R. PubMed DOI PMC
De Pinto MC, Lavermicocca P, Evidente A, Corsaro MM, Lazzaroni S, De Gara L. Exopolysaccharides produced by plant pathogenic bacteria affect ascorbate metabolism in Nicotiana tabacum. Plant Cell Physiol. 2003;44:803–810. doi: 10.1093/pcp/pcg105. PubMed DOI
Grantz AA, Brummell DA, Bennett AB. Ascorbate free radical reductase mRNA levels are induced by wounding. Plant Physiol. 1995;108:411–418. doi: 10.1104/pp.108.1.411. PubMed DOI PMC
Faize M, Burgos L, Faize L, Petri C, Barba-Espin G, Díaz-Vivancos P, et al. Modulation of tobacco bacterial disease resistance using cytosolic ascorbate peroxidase and Cu, Zn-superoxide dismutase. Plant Pathol. 2012;61:858–866. doi: 10.1111/j.1365-3059.2011.02570.x. DOI
Kuvalekar A, Redkar A, Gandhe K, Harsulkar A. Peroxidase and polyphenol oxidase activities in compatible host-pathogen interaction in Jasminum officinale and Uromyces hobsoni: insights into susceptibility of host. New Zeal J Bot. 2011;49:351–359. doi: 10.1080/0028825X.2011.569727. DOI
Bestwick CS, Brown IR, Mansfield JW. Localized changes in peroxidase activity accompany hydrogen peroxide generation during the development of a nonhost hypersensitive reaction in lettuce. Plant Physiol. 1998;118:1067–1078. doi: 10.1104/pp.118.3.1067. PubMed DOI PMC
Gibon Y. A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell Online. 2004;16:3304–3325. doi: 10.1105/tpc.104.025973. PubMed DOI PMC
Sulpice R, Trenkamp S, Steinfath M, Usadel B, Gibon Y, Witucka-Wall H, et al. Network analysis of enzyme activities and metabolite levels and their relationship to biomass in a large panel of Arabidopsis accessions. Plant Cell. 2010;22:2872–2893. doi: 10.1105/tpc.110.076653. PubMed DOI PMC
Covington ED, Roitsch T, Dermastia M. Determination of the activity signature of key carbohydrate metabolism enzymes in phenolic-rich grapevine tissues. Acta Chim Slov. 2016;63:757–762. doi: 10.17344/acsi.2016.2484. PubMed DOI
Biais B, Benard C, Beauvoit B, Colombie S, Prodhomme D, Menard G, et al. Remarkable reproducibility of enzyme activity profiles in tomato fruits grown under contrasting environments provides a roadmap for studies of fruit metabolism. Plant Physiol. 2014;164:1204–1221. doi: 10.1104/pp.113.231241. PubMed DOI PMC
Prezelj N, Covington E, Roitsch T, Gruden K, Fragner L, Weckwerth W, et al. Metabolic consequences of infection of Grapevine (Vitis vinifera L.) cv. “Modra frankinja” with Flavescence dorée phytoplasma. Front Plant Sci. 2016;7:1–19. doi: 10.3389/fpls.2016.00711. PubMed DOI PMC
Cañas RA, Yesbergenova-Cuny Z, Simons M, Chardon F, Armengaud P, Quilleré I, et al. Exploiting the genetic diversity of maize using a combined metabolomic, enzyme activity profiling, and metabolic modeling approach to link leaf physiology to kernel yield. Plant Cell. 2017;29:919–943. doi: 10.1105/tpc.16.00613. PubMed DOI PMC
Grosskinsky DK, Naseem M, Abdelmohsen UR, Plickert N, Engelke T, Griebel T, et al. Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. PLANT Physiol. 2011;157:815–830. doi: 10.1104/pp.111.182931. PubMed DOI PMC
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Park AK, Kim IS, Do H, Jeon BW, Lee CW, Roh SJ, et al. Structure and catalytic mechanism of monodehydroascorbate reductase, MDHAR, from Oryza sativaL. japonica. Sci Rep. 2016;6:1–10. doi: 10.1038/s41598-016-0001-8. PubMed DOI PMC
Gasperl A, Morvan-Bertrand A, Prudhomme M-P, van der Graaff E, Roitsch T. A simple and fast kinetic assay for the determination of fructan exohydrolase activity in perenial ryegrass (Lolium perenne L.) Front Plant Sci. 2015 doi: 10.3389/fpls.2015.01154. PubMed DOI PMC
Geiger J, Doelker R, Salö S, Roitsch T, Dalgaard LT. Physiological phenotyping of mammalian cell lines by enzymatic activity fingerprinting of key carbohydrate metabolic enzymes: a pilot and feasibility study. BMC Res notes. 2019;12:1–6. doi: 10.1186/s13104-019-4697-y. PubMed DOI PMC
Covington ED, Roitsch T, Dermastia D. Determination of the activity signature of key carbohydrate metabolism enzymes in phenolic-rich grapevine tissues. Acta Chim Slov. 2016;63:757–762. doi: 10.17344/acsi.2016.2484. PubMed DOI
Antioxidant Responses and Redox Regulation Within Plant-Beneficial Microbe Interaction
Functional phenomics for improved climate resilience in Nordic agriculture
Early-stage sugar beet taproot development is characterized by three distinct physiological phases
Burkholderia Phytofirmans PsJN Stimulate Growth and Yield of Quinoa under Salinity Stress