Simple semi-high throughput determination of activity signatures of key antioxidant enzymes for physiological phenotyping

. 2020 ; 16 () : 42. [epub] 20200321

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32206082

BACKGROUND: Reactive oxygen species (ROS) such as hydrogen peroxide and superoxide anions significantly accumulate during biotic and abiotic stress and cause oxidative damage and eventually cell death. There is accumulating evidence that ROS are also involved in regulating beneficial plant-microbe interactions, signal transduction and plant growth and development. Due to the relevance of ROS throughout the life cycle and for interaction with the multifactorial environment, the physiological phenotyping of the mechanisms controlling ROS homeostasis is of general importance. RESULTS: In this study, we have developed a robust and resource-efficient experimental platform that allows the determination of the activities of the nine key ROS scavenging enzymes from a single extraction that integrates posttranscriptional and posttranslational regulations. The assays were optimized and adapted for a semi-high throughput 96-well assay format. In a case study, we have analyzed tobacco leaves challenged by pathogen infection, drought and salt stress. The three stress factors resulted in distinct activity signatures with differential temporal dynamics. CONCLUSIONS: This experimental platform proved to be suitable to determine the antioxidant enzyme activity signature in different tissues of monocotyledonous and dicotyledonous model and crop plants. The universal enzymatic extraction procedure combined with the 96-well assay format demonstrated to be a simple, fast and semi-high throughput experimental platform for the precise and robust fingerprinting of nine key antioxidant enzymatic activities in plants.

Zobrazit více v PubMed

Mullineaux PM, Exposito-Rodriguez M, Laissue PP, Smirnoff N. ROS-dependent signalling pathways in plants and algae exposed to high light: comparisons with other eukaryotes. Free Radic Biol Med. 2018;122:52–64. doi: 10.1016/j.freeradbiomed.2018.01.033. PubMed DOI

Liu Y, He C. Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD. Plant Cell Rep. 2016;35:995–1007. doi: 10.1007/s00299-016-1950-x. PubMed DOI

El-Maarouf-Bouteau H, Bailly C. Oxidative signaling in seed germination and dormancy. Plant Signal Behav. 2008;3:175–182. doi: 10.4161/psb.3.3.5539. PubMed DOI PMC

O’Brien JA, Daudi A, Butt VS, Bolwell GP. Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta. 2012;236:765–779. doi: 10.1007/s00425-012-1696-9. PubMed DOI

Tsukagoshi H. Control of root growth and development by reactive oxygen species. Curr Opin Plant Biol. 2016;29:57–63. doi: 10.1016/j.pbi.2015.10.012. PubMed DOI

Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;2012:217037.

Bhattacharjee S. Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci. 2005;89:1113–1121.

Großkinsky DK, Svensgaard J, Christensen S, Roitsch T. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. J Exp Bot. 2015;66:5429–5440. doi: 10.1093/jxb/erv345. PubMed DOI

Großkinsky DK, Syaifullah SJ, Roitsch T. Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. J Exp Bot. 2018;69:825–844. doi: 10.1093/jxb/erx333. PubMed DOI

Choudhury FK, Rivero RM, Blumwald E, Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017;90:856–867. doi: 10.1111/tpj.13299. PubMed DOI

Liebthal M, Dietz KJ. The fundamental role of reactive oxygen species in plant stress response. Methods Mol Biol. 2017;1631:23–39. doi: 10.1007/978-1-4939-7136-7_2. PubMed DOI

Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Angel Torres M, et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature. 2003;422:442–446. doi: 10.1038/nature01485. PubMed DOI

Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, Takeda S, et al. Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell. 2014;26:1069–1080. doi: 10.1105/tpc.113.120642. PubMed DOI PMC

Duan L, Dietrich D, Ng CH, Yeen Chan PM, Bhalerao R, Bennett MJ, et al. Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell. 2013;25:324–341. doi: 10.1105/tpc.112.107227. PubMed DOI PMC

He J, Duan Y, Hua D, Fan G, Wang L, Liu Y, et al. DEXH box RNA Helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling. Plant Cell. 2012;24:1815–1833. doi: 10.1105/tpc.112.098707. PubMed DOI PMC

Desikan R, Last K, Harrett-Williams R, Tagliavia C, Harter K, Hooley R, et al. Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant J. 2006;47:907–916. doi: 10.1111/j.1365-313X.2006.02842.x. PubMed DOI

Han Y, Chaouch S, Mhamdi A, Queval G, Zechmann B, Noctor G. Functional analysis of arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling. Antioxid Redox Signal. 2013;18:2106–2121. doi: 10.1089/ars.2012.5052. PubMed DOI PMC

Han Y, Mhamdi A, Chaouch S, Noctor G. Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione. Plant Cell Environ. 2013;36:1135–1146. doi: 10.1111/pce.12048. PubMed DOI

Bettini PP, Cosi E, Bindi D, Buiatti M. Reactive oxygen species metabolism in plants: production, detoxification and signaling in the stress response. Plant Stress. 2008;2:28–39.

Kovtun Y, Chiu W-L, Tena G, Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci. 2000;97:2940–2945. doi: 10.1073/pnas.97.6.2940. PubMed DOI PMC

Nath M, Bhatt D, Prasad R, Gill SS, Anjum NA, Tuteja N. Reactive oxygen species generation-scavenging and signaling during plant-Arbuscular mycorrhizal and Piriformospora indica interaction under stress condition. Front Plant Sci. 2016;7:1–7. doi: 10.3389/fpls.2016.01574. PubMed DOI PMC

Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;2012:1–26. doi: 10.1155/2012/217037. DOI

Jammer A, Gasperl A, Luschin-Ebengreuth N, Heyneke E, Chu H, Cantero-Navarro E, et al. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants. J Exp Bot. 2015;66:5531–5542. doi: 10.1093/jxb/erv228. PubMed DOI

Mc Cord JM, Fridovich I. An enzymic. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) J Biol Chem. 1969;244:6049–6055. PubMed

Arrigoni O, Dipierro S, Borraccino G. Materials and methods. Febs Lett. 1981;125:242–244. doi: 10.1016/0014-5793(81)80729-6. DOI

Dalton DA, Russell SA, Hanus FJ, Pascoe GA, Evans HJ. Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc Natl Acad Sci. 1986;83:3811–3815. doi: 10.1073/pnas.83.11.3811. PubMed DOI PMC

Edwards E, Rawsthorne S, Mullineaux PM. Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.) Planta. 1990;180:278–284. doi: 10.1007/BF00194008. PubMed DOI

Polle A, Otter T, Seifert F. Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.) Plant Physiol. 1994;106:53–60. doi: 10.1104/pp.106.1.53. PubMed DOI PMC

Li Z, Zhen R, Rea PA. Glutathione-S-conjugate transport activity. Hepatology. 1995;109:177–185. PubMed PMC

Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S. Expression of Spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol. 2000;123:223–234. doi: 10.1104/pp.123.1.223. PubMed DOI PMC

Aebi H. [13] Catalase in vitro. Methods Enzymol. 1984;105:121–126. doi: 10.1016/S0076-6879(84)05016-3. PubMed DOI

Koffler BE, Luschin-Ebengreuth N, Stabentheiner E, Müller M, Zechmann B. Compartment specific response of antioxidants to drought stress in Arabidopsis. Plant Sci. 2014;227:133–144. doi: 10.1016/j.plantsci.2014.08.002. PubMed DOI PMC

De Carvalho MH, Contour-Ansel D. ( h ) GR ,beans and drought stress. Plant Signal Behav. 2008;3:834–835. doi: 10.4161/psb.3.10.5918. PubMed DOI PMC

Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, et al. Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front Plant Sci. 2017;08:1–12. doi: 10.3389/fpls.2017.00069. PubMed DOI PMC

Parida AK, Das AB, Mittra B, Mohanty P. Salt-stress induced alterations in protein profile and protease activity in the mangrove Bruguiera parviflora. Zeitschrift fur Naturforsch - Sect C J Biosci. 2004;59:408–414. doi: 10.1515/znc-2004-5-622. PubMed DOI

Großkinsky DK, Koffler BE, Roitsch T, Maier R, Zechmann B. Compartment-specific antioxidative defense in Arabidopsis against virulent and avirulent Pseudomonas syringae. Phytopathology. 2012;102:662–673. doi: 10.1094/PHYTO-02-12-0022-R. PubMed DOI PMC

De Pinto MC, Lavermicocca P, Evidente A, Corsaro MM, Lazzaroni S, De Gara L. Exopolysaccharides produced by plant pathogenic bacteria affect ascorbate metabolism in Nicotiana tabacum. Plant Cell Physiol. 2003;44:803–810. doi: 10.1093/pcp/pcg105. PubMed DOI

Grantz AA, Brummell DA, Bennett AB. Ascorbate free radical reductase mRNA levels are induced by wounding. Plant Physiol. 1995;108:411–418. doi: 10.1104/pp.108.1.411. PubMed DOI PMC

Faize M, Burgos L, Faize L, Petri C, Barba-Espin G, Díaz-Vivancos P, et al. Modulation of tobacco bacterial disease resistance using cytosolic ascorbate peroxidase and Cu, Zn-superoxide dismutase. Plant Pathol. 2012;61:858–866. doi: 10.1111/j.1365-3059.2011.02570.x. DOI

Kuvalekar A, Redkar A, Gandhe K, Harsulkar A. Peroxidase and polyphenol oxidase activities in compatible host-pathogen interaction in Jasminum officinale and Uromyces hobsoni: insights into susceptibility of host. New Zeal J Bot. 2011;49:351–359. doi: 10.1080/0028825X.2011.569727. DOI

Bestwick CS, Brown IR, Mansfield JW. Localized changes in peroxidase activity accompany hydrogen peroxide generation during the development of a nonhost hypersensitive reaction in lettuce. Plant Physiol. 1998;118:1067–1078. doi: 10.1104/pp.118.3.1067. PubMed DOI PMC

Gibon Y. A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell Online. 2004;16:3304–3325. doi: 10.1105/tpc.104.025973. PubMed DOI PMC

Sulpice R, Trenkamp S, Steinfath M, Usadel B, Gibon Y, Witucka-Wall H, et al. Network analysis of enzyme activities and metabolite levels and their relationship to biomass in a large panel of Arabidopsis accessions. Plant Cell. 2010;22:2872–2893. doi: 10.1105/tpc.110.076653. PubMed DOI PMC

Covington ED, Roitsch T, Dermastia M. Determination of the activity signature of key carbohydrate metabolism enzymes in phenolic-rich grapevine tissues. Acta Chim Slov. 2016;63:757–762. doi: 10.17344/acsi.2016.2484. PubMed DOI

Biais B, Benard C, Beauvoit B, Colombie S, Prodhomme D, Menard G, et al. Remarkable reproducibility of enzyme activity profiles in tomato fruits grown under contrasting environments provides a roadmap for studies of fruit metabolism. Plant Physiol. 2014;164:1204–1221. doi: 10.1104/pp.113.231241. PubMed DOI PMC

Prezelj N, Covington E, Roitsch T, Gruden K, Fragner L, Weckwerth W, et al. Metabolic consequences of infection of Grapevine (Vitis vinifera L.) cv. “Modra frankinja” with Flavescence dorée phytoplasma. Front Plant Sci. 2016;7:1–19. doi: 10.3389/fpls.2016.00711. PubMed DOI PMC

Cañas RA, Yesbergenova-Cuny Z, Simons M, Chardon F, Armengaud P, Quilleré I, et al. Exploiting the genetic diversity of maize using a combined metabolomic, enzyme activity profiling, and metabolic modeling approach to link leaf physiology to kernel yield. Plant Cell. 2017;29:919–943. doi: 10.1105/tpc.16.00613. PubMed DOI PMC

Grosskinsky DK, Naseem M, Abdelmohsen UR, Plickert N, Engelke T, Griebel T, et al. Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. PLANT Physiol. 2011;157:815–830. doi: 10.1104/pp.111.182931. PubMed DOI PMC

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Park AK, Kim IS, Do H, Jeon BW, Lee CW, Roh SJ, et al. Structure and catalytic mechanism of monodehydroascorbate reductase, MDHAR, from Oryza sativaL. japonica. Sci Rep. 2016;6:1–10. doi: 10.1038/s41598-016-0001-8. PubMed DOI PMC

Gasperl A, Morvan-Bertrand A, Prudhomme M-P, van der Graaff E, Roitsch T. A simple and fast kinetic assay for the determination of fructan exohydrolase activity in perenial ryegrass (Lolium perenne L.) Front Plant Sci. 2015 doi: 10.3389/fpls.2015.01154. PubMed DOI PMC

Geiger J, Doelker R, Salö S, Roitsch T, Dalgaard LT. Physiological phenotyping of mammalian cell lines by enzymatic activity fingerprinting of key carbohydrate metabolic enzymes: a pilot and feasibility study. BMC Res notes. 2019;12:1–6. doi: 10.1186/s13104-019-4697-y. PubMed DOI PMC

Covington ED, Roitsch T, Dermastia D. Determination of the activity signature of key carbohydrate metabolism enzymes in phenolic-rich grapevine tissues. Acta Chim Slov. 2016;63:757–762. doi: 10.17344/acsi.2016.2484. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Antioxidant Responses and Redox Regulation Within Plant-Beneficial Microbe Interaction

. 2024 Dec 18 ; 13 (12) : . [epub] 20241218

Rhizosphere melatonin application reprograms nitrogen-cycling related microorganisms to modulate low temperature response in barley

. 2022 ; 13 () : 998861. [epub] 20221006

Functional phenomics for improved climate resilience in Nordic agriculture

. 2022 Sep 03 ; 73 (15) : 5111-5127.

High-throughput phenotyping of physiological traits for wheat resilience to high temperature and drought stress

. 2022 Sep 03 ; 73 (15) : 5235-5251.

Identification of Root-Associated Bacteria That Influence Plant Physiology, Increase Seed Germination, or Promote Growth of the Christmas Tree Species Abies nordmanniana

. 2020 ; 11 () : 566613. [epub] 20201117

Early-stage sugar beet taproot development is characterized by three distinct physiological phases

. 2020 Jul ; 4 (7) : e00221. [epub] 20200801

Burkholderia Phytofirmans PsJN Stimulate Growth and Yield of Quinoa under Salinity Stress

. 2020 May 26 ; 9 (6) : . [epub] 20200526

Bacillus licheniformis FMCH001 Increases Water Use Efficiency via Growth Stimulation in Both Normal and Drought Conditions

. 2020 ; 11 () : 297. [epub] 20200407

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...