Rhizosphere melatonin application reprograms nitrogen-cycling related microorganisms to modulate low temperature response in barley
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36275608
PubMed Central
PMC9583915
DOI
10.3389/fpls.2022.998861
Knihovny.cz E-zdroje
- Klíčová slova
- Hordeum vulgare, low temperature, melatonin, microbial diversity, nitrogen cycling,
- Publikační typ
- časopisecké články MeSH
Rhizospheric melatonin application has a positive effect on the tolerance of plants to low temperature; however, it remains unknown whether the rhizosphere microorganisms are involved in this process. The aim of this study was to investigate the effect of exogenous melatonin on the diversity and functioning of fungi and bacteria in rhizosphere of barley under low temperature. The results showed that rhizospheric melatonin application positively regulated the photosynthetic carbon assimilation and redox homeostasis in barley in response to low temperature. These effects might be associated with an altered diversity of microbial community in rhizosphere, especially the species and relative abundance of nitrogen cycling related microorganisms, as exemplified by the changes in rhizosphere metabolites in the pathways of amino acid synthesis and metabolism. Collectively, it was suggested that the altered rhizospheric microbial status upon melatonin application was associated with the response of barley to low temperature. This suggested that the melatonin induced microbial changes should be considered for its application in the crop cold-resistant cultivation.
College of Advanced Agricultural Sciences University of Chinese Academy of Sciences Beijing China
Department of Botany and Plant Physiology Czech University of Life Sciences Prague Prague Czechia
Department of Plant Physiology Slovak Agricultural University Nitra Slovakia
Zobrazit více v PubMed
Arnao M. B., Hernández-Ruiz J. (2009). Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. J. Pineal Res. 46, 58–63. doi: 10.1111/j.1600-079X.2008.00625.x PubMed DOI
Baghaie A. H., Aghili F. (2021). Soil zn fertilization and inoculation with arbuscular mycorrhizal fungus and Azotobacter chroococcum bacteria affect the cd concentration and zn bioavailability in bread wheat grown in a cd-spiked soil. Soil Sediment Contam. 30, 819–837. doi: 10.1080/15320383.2021.1893647 DOI
Bano S., Wu X., Zhang X. (2021). Towards sustainable agriculture: rhizosphere microbiome engineering. Appl. Microbiol. Biot. 105, 7141–7160. doi: 10.1007/s00253-021-11555-w PubMed DOI
Bhatti A. A., Haq S., Bhat R. A. (2017). Actinomycetes benefaction role in soil and plant health. Microb. Pathog. 111, 458–467. doi: 10.1016/j.micpath.2017.09.036 PubMed DOI
Bokulich N. A., Dillon M. R., Zhang Y., Rideout J. R., Bolyen E., Li H., et al. . (2018). q2-longitudinal: longitudinal and paired-sample analyses of microbiome data. Msystems 3, e00219–e00218. doi: 10.1128/mSystems.00219-18 PubMed DOI PMC
Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., Holmes S. P. (2016). DADA2: High-resolution sample inference from illumina amplicon data. Nat. Methods 13 581–583. doi: 10.1038/NMETH.3869 PubMed DOI PMC
Chao A. (1984). Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270. doi: 10.2307/4615964 DOI
Chen S., Strasser R. J., Qiang S. (2014). In vivo assessment of effect of phytotoxin tenuazonic acid on PSII reaction centers. Plant Physiol. Bioch. 84, 10–21. doi: 10.1016/j.plaphy.2014.09.004 PubMed DOI
Daims H., Lüecker S., Wagner M. (2016). A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 24, 699–712. doi: 10.1016/j.tim.2016.05.004 PubMed DOI PMC
Dhatt B. K., Abshire N., Paul P., Hasanthika K., Sandhu J., Zhang Q., et al. . (2019). Metabolic dynamics of developing rice seeds under high night-time temperature stress. Front. Plant Sci. 10 1443. doi: 10.3389/fpls.2019.01443 PubMed DOI PMC
Ding J., Sun H., Liang A., Liu J., Song L., Lv M., et al. . (2021). Testosterone amendment alters metabolite profiles of the soil microbial community. Environ. pollut. 272, 115928. doi: 10.1016/j.envpol.2020.115928 PubMed DOI
Edwards J., Johnson C., Santos-Medellín C., Lurie E., Podishetty N. K., Bhatnagar S., et al. . (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. PNAS. 112, E911–E920. doi: 10.1073/pnas.1414592112 PubMed DOI PMC
Egamberdieva D., Li L., Lindström K., Räsänen L. A. (2016). A synergistic interaction between salt-tolerant Pseudomonas and Mesorhizobium strains improves growth and symbiotic performance of liquorice (Glycyrrhiza uralensis fish.) under salt stress. Appl. Microbiol. Biol. 100, 2829–2841. doi: 10.1007/s00253-015-7147-3 PubMed DOI
Eisenhauer N., Scheu S., Jousset A. (2012). Bacterial diversity stabilizes community productivity. PLoS One 7, e34517. doi: 10.1371/journal.pone.0034517 PubMed DOI PMC
Fales F. W. (1951). The assimilation and degradation of carbohydrates by yeast cells. J. Biol. Chem. 193, 113–124. doi: 10.1515/bchm2.1951.286.1-6.270 PubMed DOI
Fan J., Hu Z., Xie Y., Chan Z., Chen K., Amombo E., et al. . (2015). Alleviation of cold damage to photosystem II and metabolisms by melatonin in bermudagrass. Front. Plant Sci. 6. doi: 10.3389/fpls.2015.00925 PubMed DOI PMC
Fimognari L., Dölker R., Kaselyte G., Jensen C. N. G., Akhtar S. S., Großkinsky D.K., et al. . (2020). Simple semi-high throughput determination of activity signatures of key antioxidant enzymes for physiological phenotyping. Plant Methods 16, 42. doi: 10.1186/s13007-020-00583-8 PubMed DOI PMC
Geng L., Shao G., Raymond B., Wang M., Sun X., Shu C., et al. . (2018). Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut (Arachis hypogaea l.) rhizosphere microbiome. Microbiol. Res. 211, 13–20. doi: 10.1016/j.micres.2018.02.008 PubMed DOI
Goh C. H., Vallejos D. F. V., Nicotra A. B., Mathesius U. (2013). The impact of beneficial plant-associated microbes on plant phenotypic plasticity. J. Chem. Ecol. 39, 826–839. doi: 10.1007/s10886-013-0326-8 PubMed DOI PMC
Guo J., Liu W., Zhu C., Luo G., Kong Y., Ling N., et al. . (2018). Bacterial rather than fungal community composition is associated with microbial activities and nutrient-use efficiencies in a paddy soil with short-term organic amendments. Plant Soil 424, 335–349. doi: 10.1007/s11104-017-3547-8 DOI
Jammer A., Gasperl A., Luschin-Ebengreuth N., Heyneke E., Chu H., Cantero-Navarro E., et al. . (2015). Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants. J. Exp. Bot. 66, 5531–5542. doi: 10.1093/jxb/erv228 PubMed DOI
Jiang M., Wang Z., Li X., Liu S., Song F., Liu F. (2021). Relationship between endophytic microbial diversity and grain quality in wheat exposed to multi-generational CO2 elevation. Sci. Total Environ. 776, 146029. doi: 10.1016/j.scitotenv.2021.146029 PubMed DOI
Kersters K., Vos P. D., Gillis M., Swings J., Vandamme P., Stackebrandt E. (2006). “Introduction to the proteobacteria,” in The prokaryotes, proteobacteria: alpha and beta subclasses. Eds. Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. (New York: Springer; ), 3–37.
Koide R. T., Fernandez C., Petprakob K. (2011). General principles in the community ecology of ectomycorrhizal fungi. Ann. For. Sci. 68, 45–55. doi: 10.1007/s13595-010-0006-6 DOI
Kõljalg U., Nilsson R. H., Abarenkov K., Tedersoo L., Taylor A. F. S., Bahram M., et al. . (2013). Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277. doi: 10.1111/mec.12481 PubMed DOI
Kuramae E. E., de Assis Costa O. Y. (2019). “Acidobacteria,” in Encyclopedia of microbiology (Fourth edition). Ed. Schmidt T. M. (Oxford: Academic Press; ), 1–8.
Kuypers M. M. M., Marchant H. K., Kartal B. (2018). The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276. doi: 10.1038/nrmicro.2018.9 PubMed DOI
Kuzyakov Y., Razavi B. S. (2019). Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biol. Biochem. 135, 343–360. doi: 10.1016/j.soilbio.2019.05.011 DOI
Li X., Cai J., Liu F., Dai T., Cao W., Jiang D. (2014. a). Physiological, proteomic and transcriptional responses of wheat to combination of drought or waterlogging with late spring low temperature. Funct. Plant Biol. 41, 690–703. doi: 10.1071/FP13306 PubMed DOI
Li X., Cai J., Liu F., Dai T., Cao W., Jiang D. (2014. b). Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat. Plant Physiol. Bioch. 82, 34–43. doi: 10.1016/j.plaphy.2014.05.005 PubMed DOI
Li X., Cai J., Liu F., Zhou Q., Dai T., Cao W., et al. . (2015). Wheat plants exposed to winter warming are more susceptible to low temperature stress in the spring. Plant Growth Regul. 77, 11–19. doi: 10.1007/s10725-015-0029-y DOI
Li S., Guo J., Wang T., Gong L., Liu F., Brestic M., et al. . (2021). Melatonin reduces nanoplastic uptake, translocation, and toxicity in wheat. J. Pineal Res. 71, e12761. doi: 10.1111/jpi.12761 PubMed DOI
Li X., Tan D., Jiang D., Liu F. (2016). Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley. J. Pineal Res. 61, 328–339. doi: 10.1111/jpi.12350 PubMed DOI
Liu H., Brettell L. E., Qiu Z., Singh B. K. (2020). Microbiome-mediated stress resistance in plants. Trends Plant Sci. 25, 733–743. doi: 10.1016/j.tplants.2020.03.014 PubMed DOI
Madigan A. P., Egidi E., Bedon F., Franks A. E., Plummer K. M. (2019). Bacterial and fungal communities are differentially modified by melatonin in agricultural soils under abiotic stress. Front. Microbiol. 10 2616. doi: 10.3389/fmicb.2019.02616 PubMed DOI PMC
Ma Q. X., Kuzyakov Y., Pan W. K., Tang S., Chadwick D. R., Wen Y., et al. . (2021). Substrate control of sulphur utilisation and microbial stoichiometry in soil: Results of 13C, 15N, 14C, and 35S quad labelling. Isme J. 15, 3148–3158. doi: 10.1038/s41396-021-00999-7 PubMed DOI PMC
Mehnaz S., Mirza M. S., Hassan U., Malik K. A. (1998). “Detection of inoculated plant growth-promoting rhizobacteria in the rhizosphere of rice,” in Developments in plant and soil sciences. Eds. Malik K. A., Mirza M. S., Ladha J. K. (Kluwer Academic, London: ), 75–83.
Mendes R., Garbeva P., Raaijmakers J. M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663. doi: 10.1111/1574-6976.12028 PubMed DOI
Mesa V., Navazas A., González-Gil R., González A., Weyens N., Lauga B., et al. . (2017). Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica . Appl. Environ. Microb. 83, e03411–e03416. doi: 10.1128/AEM.03411-16 PubMed DOI PMC
Nawaz M. A., Huang Y., Bie Z., Ahmed W., Reiter R. J., Niu M., et al. . (2016). Melatonin: current status and future perspectives in plant science. Front. Plant Sci. 6. 1230 doi: 10.3389/fpls.2015.01230 PubMed DOI PMC
Philippot L., Raaijmakers J. M., Lemanceau P., van der Putten W. H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789–799. doi: 10.1038/nrmicro3109 PubMed DOI
Pieterse C. M. J., Zamioudis C., Berendsen R. L., Weller D. M., Van Wees S. C. M., Bakker P. A. H. M. (2014). Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347–375. doi: 10.1146/annurev-phyto-082712-102340 PubMed DOI
Purahong W., Krüeger D. (2012). A better understanding of functional roles of fungi in the decomposition process: using precursor rRNA containing ITS regions as a marker for the active fungal community. Ann. Foest Sci. 69, 659–662. doi: 10.1007/s13595-012-0210-7 DOI
Qin S., Feng W., Zhang Y., Wang T., Xiong Y., Xing K. (2018). Diversity of bacterial microbiota of coastal halophyte Limonium sinense and amelioration of salinity stress damage by symbiotic plant growth-promoting actinobacterium Glutamicibacter halophytocola KLBMP 5180. Appl. Environ. Microb. 84, e01533–e01518. doi: 10.1128/AEM.01533-18 PubMed DOI PMC
Raittz R. T., Pierri C. R. D., Maluk M., Batista M. B., Carmona M., Junghare M., et al. . (2021). Comparative genomics provides insights into the taxonomy of Azoarcus and reveals separate origins of Nif genes in the proposed Azoarcus and Aromatoleum genera. Genes-Basel. 12, 71. doi: 10.3390/genes12010071 PubMed DOI PMC
Rasul G., Mirza M. S., Latif F., Malik K. A. (1998). “Identification of plant growth hormones produced by bacterial isolates from rice, wheat and kallar grass,” in Developments in plant and soil sciences. Eds. Malik K. A., Mirza M. S., Ladha J. K. (Kluwer Academic, London: ), 25–37.
Roitsch T., González M. C. (2004). Function and regulation of plant invertases: sweet sensations. Trends Plant Sci. 9, 606–613. doi: 10.1016/j.tplants.2004.10.009 PubMed DOI
Shannon C. E. (1948). A mathematical theory of communication. Bell System Tech. J. 27, 379–423. doi: 10.1002/j.1538-7305.1948.tb00917.x DOI
Shi Z., Li D., Qi J., Cai J., Jiang D., Cao W., et al. . (2012). Effects of nitrogen applications on soil nitrogen balance and nitrogen utilization of winter wheat in a rice - wheat rotation. Field Crop Res. 127, 241–247. doi: 10.1016/j.fcr.2011.11.025 DOI
Simpson E. H. (1997). Measurement of diversity. J. Cardiothor Vasc. An. 11, 812–812. doi: 10.1136/thx.27.2.261 DOI
Sohal P. K., Gupta R. P., Pandher M. S. (1998). “Effect of inoculation of azotobacter and PSM on fertilizer economy, plant growth and yield of winter maize,” in Developments in plant and soil sciences. Eds. Malik K. A., Mirza M. S., Ladha J. K. (Kluwer Academic, London: ), 271–273.
Stein L. Y., Klotz M. G. (2017). The nitrogen cycle. Curr. Biol. 26, R94–R98. doi: 10.1016/j.cub.2015.12.021 PubMed DOI
Sun L., Song F., Guo J., Zhu X., Liu S., Liu F., et al. . (2020). Nano-ZnO-induced drought tolerance is associated with melatonin synthesis and metabolism in maize. Int. J. Mol. Sci. 21, 782. doi: 10.3390/ijms21030782 PubMed DOI PMC
Tan D., Hardeland R., Manchester L. C., Korkmaz A., Ma S., Rosales-Corral S., et al. . (2012). Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J. Exp. Bot. 63, 577–597. doi: 10.1093/jxb/err256 PubMed DOI
Tan W., Liu J., Dai T., Jing Q., Cao W., Jiang D. (2008). Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging. Photosynthetica. 46, 21–27. doi: 10.1007/s11099-008-0005-0 DOI
Tan D., Reiter R. J. (2019). Mitochondria: The birth place, battle ground and the site of melatonin metabolism in cells. Melatonin Res. 2, 44–66. doi: 10.32794/mr11250011 DOI
Toju H., Peay K. G., Yamamichi M. (2018). Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257. doi: 10.1038/s41477-018-0139-4 PubMed DOI
Trivedi P., Leach J. E., Tringe S. G., Sa T., Singh B. K. (2021). Plan-microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 19, 72. doi: 10.1038/s41579-020-0412-1 PubMed DOI
Trujillo M. E., Riesco R., Benito P., Carro L. (2015). Endophytic observed species and the interaction of Micromonospora and nitrogen fixing plants. Front. Microbiol. 6. doi: 10.3389/fmicb.2015.01341 PubMed DOI PMC
Verma V. C., Gond S. K., Kumar A., Mishra A., Kharwar R. N., Gange A. C. (2009). Endophytic actinomycetes from Azadirachta indica a. juss.: solation, diversity, and anti-microbial activity. Microbl Ecol. 57, 749–756. doi: 10.1007/s00248-008-9450-3 PubMed DOI
Wan J., Zhang P., Wang R., Sun L., Ju Q., Xu J. (2018). Comparative physiological responses and transcriptome analysis reveal the roles of melatonin and serotonin in regulating growth and metabolism in Arabidopsis . BMC Plant Biol. 18, 362. doi: 10.1186/s12870-018-1548-2 PubMed DOI PMC
Withers E., Hill P. W., Chadwick D. R., Jones D. L. (2020). Use of untargeted metabolomics for assessing soil quality and microbial function. Soil Biol. Biochem. 143, 107758. doi: 10.1016/j.soilbio.2020.107758 DOI
Wolfe B. E., Klironomos J. N. (2005). Breaking new ground: soil communities and exotic plant invasion. Bioscience. 55, 477–487. doi: 10.1641/00063568(2005)055[0477:BNGSCA]2.0.CO;2 DOI
Xu L., Dong Z., Chiniquy D., Pierroz G., Deng S., Gao C., et al. . (2021). Genome-resolved metagenomics reveals role of iron metabolism in drought-induced rhizosphere microbiome dynamics. Nat. Commun. 12, 3209. doi: 10.1038/s41467-021-23553-7 PubMed DOI PMC
Xu L., Naylor D., Dong Z., Simmons T., Pierroz G., Hixson K. K., et al. . (2018). Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. PNAS. 115, E4592. doi: 10.1073/pnas.1717308115 PubMed DOI PMC
Ye F., Jiang M., Zhang P., Liu L., Liu S., Zhao C., et al. . (2022). Exogenous melatonin reprograms the rhizosphere microbial community to modulate the responses of barley to drought stress. Int. J. Mol. Sci. 23, 9665. doi: 10.3390/ijms23179665 PubMed DOI PMC
Yelle D. J., Ralph J., Lu F., Hammel K. E. (2008). Evidence for cleavage of lignin by a brown rot basidiomycete. Environ. Microbiol. 10, 1844–1849. doi: 10.1111/j.1462-2920.2008.01605.x PubMed DOI
Yousefi S., Kartoolinejad D., Bahmani M., Naghdi R. (2017). Effect of Azospirillum lipoferum and Azotobacter chroococcum on germination and early growth of hopbush shrub (Dodonaea viscosa l.) under salinity stress. J. Sustain Forest. 36, 107–120. doi: 10.1080/10549811.2016.1256220 DOI
Zhang S., Amanze C., Sun C., Zou K., Fu S., Deng Y., et al. . (2021). Evolutionary, genomic, and biogeographic characterization of two novel xenobiotics-degrading strains affiliated with Dechloromonas . Heliyon. 7, e07181. doi: 10.1016/j.heliyon.2021.e07181 PubMed DOI PMC
Zhao H., Su T., Huo L., Wei H., Jiang Y., Xu L., et al. . (2015). Unveiling the mechanism of melatonin impacts on maize seedling growth: sugar metabolism as a case. J. Pineal Res. 59, 255–266. doi: 10.1111/jpi.12258 PubMed DOI