Physiological phenotyping of mammalian cell lines by enzymatic activity fingerprinting of key carbohydrate metabolic enzymes: a pilot and feasibility study

. 2019 Oct 22 ; 12 (1) : 682. [epub] 20191022

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31640766

Grantová podpora
FSS 1331-00033B Danish Medical Research Council
LO1415 Ministry of Education, Youth and Sports of the Czech Republic: National Sustainability Program I

Odkazy

PubMed 31640766
PubMed Central PMC6805439
DOI 10.1186/s13104-019-4697-y
PII: 10.1186/s13104-019-4697-y
Knihovny.cz E-zdroje

OBJECTIVE: Enzymatic fingerprinting of key enzymes of glucose metabolism is a valuable analysis tool in cell physiological phenotyping of plant samples. Yet, a similar approach for mammalian cell line samples is missing. In this study, we applied semi-high throughput enzyme activity assays that were originally designed for plant samples and tested their feasibility in extracts of six frequently used mammalian cell lines (Caco2, HaCaT, C2C12, HEK293, HepG2 and INS-1E). RESULTS: Enzyme activities for aldolase, hexokinase, glucose-6-phosphate dehydrogenase, phosphoglucoisomerase, phosphoglucomutase, phosphofructokinase could be detected in samples of one or more mammalian cell lines. We characterized effects of sample dilution, assay temperature and repeated freeze-thaw cycles causing potential biases. After careful selection of experimental parameters, the presented semi-high throughput methods could be established as useful tool for physiological phenotyping of cultured mammalian cells.

Zobrazit více v PubMed

Jammer A, Gasperl A, Luschin-Ebengreuth N, Heyneke E, Chu H, Cantero-Navarro E, et al. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants. J Exp Bot. 2015;66:5531–5542. doi: 10.1093/jxb/erv228. PubMed DOI

Großkinsky DK, Svensgaard J, Christensen S, Roitsch T. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. J Exp Bot. 2015;66:5429–5440. doi: 10.1093/jxb/erv345. PubMed DOI

Merglen A, Theander S, Rubi B, Chaffard G, Wollheim CB, Maechler P. Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology. 2004;145:667–678. doi: 10.1210/en.2003-1099. PubMed DOI

Zweibaum A, Triadou N, Kedinger M, Augeron C, Robine-Léon S, Pinto M, et al. Sucrase–isomaltase: a marker of foetal and malignant epithelial cells of the human colon. Int J Cancer. 1983;32(4):407–412. doi: 10.1002/ijc.2910320403. PubMed DOI

Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol. 1988;106(3):761–771. doi: 10.1083/jcb.106.3.761. PubMed DOI PMC

Yaffe D, Saxel O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature. 1977;270(5639):725. doi: 10.1038/270725a0. PubMed DOI

Graham FL, Smiley J, Russell WC, Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977;36(1):59–72. doi: 10.1099/0022-1317-36-1-59. PubMed DOI

Aden DP, Fogel A, Plotkin S, Damjanov I, Knowles BB. Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line [15] Nature. 1979;282(5739):615–616. doi: 10.1038/282615a0. PubMed DOI

Asfari M, Janjic D, Meda P, Li G, Halban PA, Wollheim CB. Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology. 1992;130:167–178. doi: 10.1210/endo.130.1.1370150. PubMed DOI

Olsen AK, Coskun M, Bzorek M, Kristensen MH, Danielsen ET, Jørgensen S, et al. Regulation of APC and AXIN2 expression by intestinal tumor suppressor CDX2 in colon cancer cells. Carcinogenesis. 2013;34(6):1361–1369. doi: 10.1093/carcin/bgt037. PubMed DOI

Erdogan CS, Mørup-Lendal M, Dalgaard LT, Vang O. Sirtuin 1 independent effects of resveratrol in INS-1E β-cells. Chem Biol Interact. 2017;264:52–60. doi: 10.1016/j.cbi.2017.01.008. PubMed DOI

Prentki M, Matschinsky FM, Madiraju SRM. Metabolic signaling in fuel-induced insulin secretion. Cell Metab. 2013;18:162–185. doi: 10.1016/j.cmet.2013.05.018. PubMed DOI

Malmgren S, Spégel P, Danielsson APH, Nagorny CL, Andersson LE, Nitert MD, et al. Coordinate changes in histone modifications, mRNA levels, and metabolite profiles in clonal INS-1 832/13 beta-cells accompany functional adaptations to lipotoxicity. J Biol Chem. 2013;288:11973–11987. doi: 10.1074/jbc.M112.422527. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...