Developmental expression of catecholamine system in the human placenta and rat fetoplacental unit
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-13017S
Grantová Agentura České Republiky
PubMed
38521816
PubMed Central
PMC10960862
DOI
10.1038/s41598-024-57481-5
PII: 10.1038/s41598-024-57481-5
Knihovny.cz E-zdroje
- Klíčová slova
- In vitro models, Metabolism, Monoamines, Placenta, Trophoblast,
- MeSH
- dopamin * MeSH
- katecholaminy * MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- noradrenalin MeSH
- placenta MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dopamin * MeSH
- katecholaminy * MeSH
- noradrenalin MeSH
Catecholamines norepinephrine and dopamine have been implicated in numerous physiological processes within the central nervous system. Emerging evidence has highlighted the importance of tightly regulated monoamine levels for placental functions and fetal development. However, the complexities of synthesis, release, and regulation of catecholamines in the fetoplacental unit have not been fully unraveled. In this study, we investigated the expression of enzymes and transporters involved in synthesis, degradation, and transport of norepinephrine and dopamine in the human placenta and rat fetoplacental unit. Quantitative PCR and Western blot analyses were performed in early-to-late gestation in humans (first trimester vs. term placenta) and mid-to-late gestation in rats (placenta and fetal brain, intestines, liver, lungs, and heart). In addition, we analyzed the gene expression patterns in isolated primary trophoblast cells from the human placenta and placenta-derived cell lines (HRP-1, BeWo, JEG-3). In both human and rat placentas, the study identifies the presence of only PNMT, COMT, and NET at the mRNA and protein levels, with the expression of PNMT and NET showing gestational age dependency. On the other hand, rat fetal tissues consistently express the catecholamine pathway genes, revealing distinct developmental expression patterns. Lastly, we report significant transcriptional profile variations in different placental cell models, emphasizing the importance of careful model selection for catecholamine metabolism/transport studies. Collectively, integrating findings from humans and rats enhances our understanding of the dynamic regulatory mechanisms that underlie catecholamine dynamics during pregnancy. We identified similar patterns in both species across gestation, suggesting conserved molecular mechanisms and potentially shedding light on shared biological processes influencing placental development.
Zobrazit více v PubMed
Thomas SA, Matsumoto AM, Palmiter RD. Noradrenaline is essential for mouse fetal development. Nature. 1995;374:643–646. doi: 10.1038/374643a0. PubMed DOI
Johansson S, et al. Increased catecholamines and heart rate in children with low birth weight: Perinatal contributions to sympathoadrenal overactivity. J. Intern. Med. 2007;261:480–487. doi: 10.1111/j.1365-2796.2007.01776.x. PubMed DOI
Franco MC, et al. Circulating renin-angiotensin system and catecholamines in childhood: Is there a role for birthweight? Clin. Sci. (Lond) 2008;114:375–380. doi: 10.1042/cs20070284. PubMed DOI
Rosenfeld CS. The placenta-brain-axis. J. Neurosci. Res. 2021;99:271–283. doi: 10.1002/jnr.24603. PubMed DOI PMC
Maslen, C. L. recent advances in placenta–heart interactions. Front. Physiol.9 (2018). 10.3389/fphys.2018.00735 PubMed PMC
Chen X, et al. Gut dysbiosis induces the development of pre-eclampsia through bacterial translocation. Gut. 2020;69:513. doi: 10.1136/gutjnl-2019-319101. PubMed DOI
Karahoda, R. et al. Dynamics of tryptophan metabolic pathways in human placenta and placental-derived cells: Effect of gestation age and trophoblast differentiation. Front. Cell Dev. Biol.8, 1. 10.3389/fcell.2020.574034 (2020) PubMed PMC
Bonnin A, et al. A transient placental source of serotonin for the fetal forebrain. Nature. 2011;472:347–350. doi: 10.1038/nature09972. PubMed DOI PMC
Karahoda R, et al. Serotonin homeostasis in the materno-foetal interface at term: Role of transporters (SERT/SLC6A4 and OCT3/SLC22A3) and monoamine oxidase A (MAO-A) in uptake and degradation of serotonin by human and rat term placenta. Acta Physiol. 2020;229:e13478. doi: 10.1111/apha.13478. PubMed DOI PMC
Bzoskie L, et al. Placental norepinephrine clearance: In vivo measurement and physiological role. Am. J. Physiol. 1995;269:E145–149. doi: 10.1152/ajpendo.1995.269.1.E145. PubMed DOI
Ramamoorthy S, et al. Expression of a cocaine-sensitive norepinephrine transporter in the human placental syncytiotrophoblast. Biochemistry. 1993;32:1346–1353. doi: 10.1021/bi00056a021. PubMed DOI
Belisle, S. et al. Endocrine control of hPL and hCG production by the human placenta. Placenta13, 163–172. 10.1016/S0143-4004(05)80313-3 (1992).
Vaillancourt C, et al. Labelling of D2-dopaminergic and 5-HT2-serotonergic binding sites in human trophoblastic cells using [3H]-spiperone. J. Recept Res. 1994;14:11–22. doi: 10.3109/10799899409066993. PubMed DOI
Shi CZ, Zhuang LZ. Norepinephrine regulates human chorionic gonadotrophin production by first trimester trophoblast tissue in vitro. Placenta. 1993;14:683–693. doi: 10.1016/s0143-4004(05)80385-6. PubMed DOI
Ganapathy, V., Ramamoorthy, S. & Leibach, F. H. Transport and metabolism of monoamines in the human placenta: A review. Placenta14, 35–51. 10.1016/S0143-4004(05)80281-4 (1993).
Carter AM. Animal models of human placentation—a review. Placenta. 2007;28(Suppl A):S41–47. doi: 10.1016/j.placenta.2006.11.002. PubMed DOI
Chau K, Welsh M, Makris A, Hennessy A. Progress in preeclampsia: The contribution of animal models. J. Hum. Hypertension. 2022;36:705–710. doi: 10.1038/s41371-021-00637-x. PubMed DOI PMC
Rosario FJ, Kanai Y, Powell TL, Jansson T. Increased placental nutrient transport in a novel mouse model of maternal obesity with fetal overgrowth. Obesity (Silver Spring) 2015;23:1663–1670. doi: 10.1002/oby.21165. PubMed DOI PMC
Winterhager, E. & Gellhaus, A. Transplacental nutrient transport mechanisms of intrauterine growth restriction in rodent models and humans. Front. Physiol.8. 10.3389/fphys.2017.00951 (2017). PubMed PMC
Furukawa S, Tsuji N, Sugiyama A. Morphology and physiology of rat placenta for toxicological evaluation. J. Toxicol. Pathol. 2019;32:1–17. doi: 10.1293/tox.2018-0042. PubMed DOI PMC
Boyd, J. D. & Hamilton, W. J. The Human Placenta. (Macmillan Press, 1975).
Benirschke K, Kaufmann P, Baergen R. Pathology of the human placenta. Springer; 2016.
Badawy, A. A. B. Tryptophan metabolism, disposition and utilization in pregnancy. Biosci. Rep.35, e00261. 10.1042/BSR20150197 (2015). PubMed PMC
Abad C, et al. Profiling of tryptophan metabolic pathways in the rat fetoplacental unit during gestation. Int. J. Mol. Sci. 2020;21:1. doi: 10.3390/ijms21207578. PubMed DOI PMC
Horackova H, Vachalova V, Abad C, Karahoda R, Staud F. Perfused rat term placenta as a preclinical model to investigate placental dopamine and norepinephrine transport. Clin. Sci. 2023;137:149–161. doi: 10.1042/cs20220726. PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Kliman HJ, Nestler JE, Sermasi E, Sanger JM, Strauss JF., 3rd Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology. 1986;118:1567–1582. doi: 10.1210/endo-118-4-1567. PubMed DOI
Wice B, Menton D, Geuze H, Schwartz AL. Modulators of cyclic AMP metabolism induce syncytiotrophoblast formation in vitro. Exp. Cell Res. 1990;186:306–316. doi: 10.1016/0014-4827(90)90310-7. PubMed DOI
Macaron C, Famuyiwa O, Singh SP. In vitro effect of dopamine and pimozide on human chorionic somatomammotropin (hCS) secretion*. J. Clin. Endocrinol. Metab. 1978;47:168–170. doi: 10.1210/jcem-47-1-168. PubMed DOI
Petit A, et al. Presence of D2-dopamine receptors in human term placenta. J. Receptor Res. 1990;10:205–215. doi: 10.3109/10799899009064666. PubMed DOI
Vachalova V, et al. Functional reorganization of monoamine transport systems during villous trophoblast differentiation: Evidence of distinct differences between primary human trophoblasts and BeWo cells. Reprod. Biol. Endocrinol. 2022;20:112. doi: 10.1186/s12958-022-00981-8. PubMed DOI PMC
Hertz R. Choriocarcinoma of women maintained in serial passage in hamster and rat. Proc. Soc. Exp. Biol. Med. 1959;102:77–81. doi: 10.3181/00379727-102-25149. PubMed DOI
Li X, Li Z-H, Wang Y-X, Liu T-H. A comprehensive review of human trophoblast fusion models: Recent developments and challenges. Cell Death Discov. 2023;9:372. doi: 10.1038/s41420-023-01670-0. PubMed DOI PMC
Siaterli MZ, Vassilacopoulou D, Fragoulis EG. Cloning and expression of human placental L-Dopa decarboxylase. Neurochem. Res. 2003;28:797–803. doi: 10.1023/a:1023246620276. PubMed DOI
Manyonda IT, et al. A role for noradrenaline in pre-eclampsia: Towards a unifying hypothesis for the pathophysiology. Br. J. Obstet. Gynaecol. 1998;105:641–648. doi: 10.1111/j.1471-0528.1998.tb10179.x. PubMed DOI
Peleg D, Munsick RA, Diker D, Goldman JA, Ben-Jonathan N. Distribution of catecholamines between fetal and maternal compartments during human pregnancy with emphasis on L-dopa and dopamine. J. Clin. Endocrinol. Metab. 1986;62:911–914. doi: 10.1210/jcem-62-5-911. PubMed DOI
Herregodts P, et al. Development of monoaminergic neurotransmitters in fetal and postnatal rat brain: Analysis by HPLC with electrochemical detection. J. Neurochem. 1990;55:774–779. doi: 10.1111/j.1471-4159.1990.tb04559.x. PubMed DOI
Almqvist PM, et al. First trimester development of the human nigrostriatal dopamine system. Exp. Neurol. 1996;139:227–237. doi: 10.1006/exnr.1996.0096. PubMed DOI
Arevalo R, Castro R, Palarea MD, Rodriguez M. Tyrosine administration to pregnant rats induces persistent behavioral modifications in the male offspring. Physiol. Behav. 1987;39:477–481. doi: 10.1016/0031-9384(87)90376-3. PubMed DOI
Garabal MV, Arévalo RM, Díaz-Palarea MD, Castro R, Rodríguez M. Tyrosine availability and brain noradrenaline synthesis in the fetus: control by maternal tyrosine ingestion. Brain Res. 1988;457:330–337. doi: 10.1016/0006-8993(88)90703-2. PubMed DOI
Ohtani N, Goto T, Waeber C, Bhide PG. Dopamine modulates cell cycle in the lateral ganglionic eminence. J. Neurosci. 2003;23:2840–2850. doi: 10.1523/JNEUROSCI.23-07-02840.2003. PubMed DOI PMC
Nguyen TT, et al. Placental biogenic amine transporters: in vivo function, regulation and pathobiological significance. Placenta. 1999;20:3–11. doi: 10.1053/plac.1998.0348. PubMed DOI
Ebert SN, Thompson RP. Embryonic epinephrine synthesis in the rat heart before innervation: Association with pacemaking and conduction tissue development. Circ. Res. 2001;88:117–124. doi: 10.1161/01.res.88.1.117. PubMed DOI
Huang MH, et al. An intrinsic adrenergic system in mammalian heart. J. Clin. Invest. 1996;98:1298–1303. doi: 10.1172/jci118916. PubMed DOI PMC
Gennser G, Von Studnitz W. Noradrenaline synthesis in human fetal heart. Experientia. 1975;31:1422–1424. doi: 10.1007/bf01923223. PubMed DOI
Ebert SN, Taylor DG. Catecholamines and development of cardiac pacemaking: An intrinsically intimate relationship. Cardiovasc. Res. 2006;72:364–374. doi: 10.1016/j.cardiores.2006.08.013. PubMed DOI
Zhou Q-Y, Quaife CJ, Palmiter RD. Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature. 1995;374:640–643. doi: 10.1038/374640a0. PubMed DOI
Tanaka T, et al. Molecular cloning and sequencing of a cDNA of rat dopa decarboxylase: partial amino acid homologies with other enzymes synthesizing catecholamines. Proc. Natl. Acad. Sci. USA. 1989;86:8142–8146. doi: 10.1073/pnas.86.20.8142. PubMed DOI PMC
Mcnay JL, Mcdonald RH, Goldberg LI, Davis C. Direct renal vasodilatation produced by dopamine in the dog. Circ. Res. 1965;16:510–517. doi: 10.1161/01.RES.16.6.510. PubMed DOI
Chua BA, Perks AM. The effect of dopamine on lung liquid production by in vitro lungs from fetal guinea-pigs. J. Physiol. 1998;513(Pt 1):283–294. doi: 10.1111/j.1469-7793.1998.283by.x. PubMed DOI PMC
Padbury JF, Lam RW, Hobel CJ, Fisher DA. Identification and partial purification of phenylethanolamine N-methyl transferase in the developing ovine lung. Pediatr. Res. 1983;17:362–367. doi: 10.1203/00006450-198305000-00011. PubMed DOI
Axelrod J. Noradrenaline: Fate and control of its biosynthesis. Science. 1971;173:598–606. doi: 10.1126/science.173.3997.598. PubMed DOI
Meyer JS, Dupont SA. Prenatal cocaine administration stimulates fetal brain tyrosine hydroxylase activity. Brain Res. 1993;608:129–137. doi: 10.1016/0006-8993(93)90783-j. PubMed DOI
Field T, et al. Prenatal dopamine and neonatal behavior and biochemistry. Infant Behav. Dev. 2008;31:590–593. doi: 10.1016/j.infbeh.2008.07.007. PubMed DOI PMC
Martineau J, Barthélémy C, Jouve J, Muh JP, Lelord G. Monoamines (serotonin and catecholamines) and their derivatives in infantile autism: Age-related changes and drug effects. Dev. Med. Child Neurol. 1992;34:593–603. doi: 10.1111/j.1469-8749.1992.tb11490.x. PubMed DOI
Vuillermot S, Weber L, Feldon J, Meyer U. A longitudinal examination of the neurodevelopmental impact of prenatal immune activation in mice reveals primary defects in dopaminergic development relevant to schizophrenia. J. Neurosci. 2010;30:1270–1287. doi: 10.1523/jneurosci.5408-09.2010. PubMed DOI PMC
Kapoor A, Petropoulos S, Matthews SG. Fetal programming of hypothalamic-pituitary-adrenal (HPA) axis function and behavior by synthetic glucocorticoids. Brain Res. Rev. 2008;57:586–595. doi: 10.1016/j.brainresrev.2007.06.013. PubMed DOI