Profiling of Tryptophan Metabolic Pathways in the Rat Fetoplacental Unit During Gestation

. 2020 Oct 14 ; 21 (20) : . [epub] 20201014

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33066440

Grantová podpora
NU20-01-0026 Agentura Pro Zdravotnický Výzkum České Republiky
SVV 2020/260414 Grantová Agentura, Univerzita Karlova
CZ.02.1.01/0.0/0.0/16_019/0000841 EFSA-CDN

Placental homeostasis of tryptophan is essential for fetal development and programming. The two main metabolic pathways (serotonin and kynurenine) produce bioactive metabolites with immunosuppressive, neurotoxic, or neuroprotective properties and their concentrations in the fetoplacental unit must be tightly regulated throughout gestation. Here, we investigated the expression/function of key enzymes/transporters involved in tryptophan pathways during mid-to-late gestation in rat placenta and fetal organs. Quantitative PCR and heatmap analysis revealed the differential expression of several genes involved in serotonin and kynurenine pathways. To identify the flux of substrates through these pathways, Droplet Digital PCR, western blot, and functional analyses were carried out for the rate-limiting enzymes and transporters. Our findings show that placental tryptophan metabolism to serotonin is crucial in mid-gestation, with a subsequent switch to fetal serotonin synthesis. Concurrently, at term, the close interplay between transporters and metabolizing enzymes of both placenta and fetal organs orchestrates serotonin homeostasis and prevents hyper/hypo-serotonemia. On the other hand, the placental production of kynurenine increases during pregnancy, with a low contribution of fetal organs throughout gestation. Any external insult to this tightly regulated harmony of transporters and enzymes within the fetoplacental unit may affect optimal in utero conditions and have a negative impact on fetal programming.

Zobrazit více v PubMed

Sedlmayr P., Blaschitz A., Stocker R. The Role of Placental Tryptophan Catabolism. Front. Immunol. 2014;5:230. doi: 10.3389/fimmu.2014.00230. PubMed DOI PMC

Yudilevich D.L., Sweiry J.H. Transport of amino acids in the placenta. Biochim. Biophys. Acta (BBA)—Rev. Biomembr. 1985;822:169–201. doi: 10.1016/0304-4157(85)90007-3. PubMed DOI

Badawy A.A.-B. Tryptophan metabolism, disposition and utilization in pregnancy. Biosci. Rep. 2015;35:e00261. doi: 10.1042/BSR20150197. PubMed DOI PMC

Teshigawara T., Mouri A., Kubo H., Nakamura Y., Shiino T., Okada T., Morikawa M., Nabeshima T., Ozaki N., Yamamoto Y., et al. Changes in tryptophan metabolism during pregnancy and postpartum periods: Potential involvement in postpartum depressive symptoms. J. Affect. Disord. 2019;255:168–176. doi: 10.1016/j.jad.2019.05.028. PubMed DOI

Zardoya-Laguardia P., Blaschitz A., Hirschmugl B., Lang I., A Herzog S., Nikitina L., Gauster M., Hausler M., Cervar-Zivkovic M., Karpf E., et al. Endothelial indoleamine 2,3-dioxygenase-1 regulates the placental vascular tone and is deficient in intrauterine growth restriction and pre-eclampsia. Sci. Rep. 2018;8:5488. doi: 10.1038/s41598-018-23896-0. PubMed DOI PMC

Alwasel S.H., Bagby S.P., Boyd R., Boyd R., Burdge G., Carter A.M., Cetin I., Cole Z., Cooper C., Critchley H., et al. The Placenta and Human Developmental Programming. Cambridge University Press (CUP); Cambridge, UK: 2009.

Staud F., Karahoda R. Trophoblast: The central unit of fetal growth, protection and programming. Int. J. Biochem. Cell Biol. 2018;105:35–40. doi: 10.1016/j.biocel.2018.09.016. PubMed DOI

Billett E.E. Monoamine Oxidase (MAO) in Human Peripheral Tissues. Neurotoxicology. 2004;25:139–148. doi: 10.1016/S0161-813X(03)00094-9. PubMed DOI

Laurent L., DeRoy K., St-Pierre J., Côté F., Sanderson J.T., Vaillancourt C. Human placenta expresses both peripheral and neuronal isoform of tryptophan hydroxylase. Biochimie. 2017;140:159–165. doi: 10.1016/j.biochi.2017.07.008. PubMed DOI

Viau M., Lafond J., Vaillancourt C. Expression of placental serotonin transporter and 5-HT 2A receptor in normal and gestational diabetes mellitus pregnancies. Reprod. Biomed. Online. 2009;19:207–215. doi: 10.1016/S1472-6483(10)60074-0. PubMed DOI

Mitchell J.A. Serotonin-induced disruption of implantation in the rat: I. Serum progesterone, implantation site blood flow, and intrauterine pO2. Biol. Reprod. 1983;28:830–835. doi: 10.1095/biolreprod28.4.830. PubMed DOI

Mitchell J.A. Serotonin-induced disruption of implantation in the rat: II. Suppression of decidualization. Biol. Reprod. 1983;29:151–156. doi: 10.1095/biolreprod29.1.151. PubMed DOI

Bonnin A., Levitt P. Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience. 2011;197:1–7. doi: 10.1016/j.neuroscience.2011.10.005. PubMed DOI PMC

Yavarone M.S., Shuey D.L., Tamir H., Sadler T.W., Lauder J.M. Serotonin and cardiac morphogenesis in the mouse embryo. Teratology. 1993;47:573–584. doi: 10.1002/tera.1420470609. PubMed DOI

Côté F., Fligny C., Bayard E., Launay J.-M., Gershon M.D., Mallet J., Vodjdani G. Maternal serotonin is crucial for murine embryonic development. Proc. Natl. Acad. Sci. USA. 2006;104:329–334. doi: 10.1073/pnas.0606722104. PubMed DOI PMC

Bonnin A., Goeden N., Chen K., Wilson M.L., King J., Shih J.C., Blakely R.D., Deneris E.S., Levitt P. A transient placental source of serotonin for the fetal forebrain. Nat. Cell Biol. 2011;472:347–350. doi: 10.1038/nature09972. PubMed DOI PMC

Kliman H.J., Quaratella S.B., Setaro A.C., Siegman E.C., Subha Z.T., Tal R., Milano K.M., Steck T.L. Pathway of Maternal Serotonin to the Human Embryo and Fetus. Endocrinology. 2018;159:1609–1629. doi: 10.1210/en.2017-03025. PubMed DOI

Arevalo R., Afonso D., Castro R., Rodriguez M. Fetal brain serotonin synthesis and catabolism is under control by mother intake of tryptophan. Life Sci. 1991;49:53–66. doi: 10.1016/0024-3205(91)90579-Z. PubMed DOI

Karahoda R., Horackova H., Kastner P., Matthios A., Cerveny L., Kucera R., Kacerovsky M., Duintjer Tebbens J., Bonnin A., Abad C., et al. Serotonin homeostasis in the materno-foetal interface at term: Role of transporters (SERT/SLC6A4 and OCT3/SLC22A3) and monoamine oxidase A (MAO-A) in uptake and degradation of serotonin by human and rat term placenta. Acta Physiol. 2020;229:e13478. doi: 10.1111/apha.13478. PubMed DOI PMC

Ranzil S., Walker D.W., Borg A.J., Wallace E.M., Ebeling P.R., Murthi P. The relationship between the placental serotonin pathway and fetal growth restriction. Biochimie. 2018;161:80–87. doi: 10.1016/j.biochi.2018.12.016. PubMed DOI

Robson J.M., Sullivan F.M. Mechanism of lethal action of 5-hydroxytryptamine on the foetus. J. Endocrinol. 1963;25:553–554. doi: 10.1677/joe.0.0250553. PubMed DOI

Munn D.H., Zhou M., Attwood J.T., Bondarev I., Conway S.J., Marshall B., Brown C., Mellor A.L. Prevention of Allogeneic Fetal Rejection by Tryptophan Catabolism. Science. 1998;281:1191–1193. doi: 10.1126/science.281.5380.1191. PubMed DOI

Uyttenhove C., Pilotte L., Théate I., Stroobant V., Colau D., Parmentier N., Boon T., Eynde B.J.V.D. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 2003;9:1269–1274. doi: 10.1038/nm934. PubMed DOI

Yamazaki F., Kuroiwa T., Takikawa O., Kido R. Human indolylamine 2,3-dioxygenase. Its tissue distribution, and characterization of the placental enzyme. Biochem. J. 1985;230:635–638. doi: 10.1042/bj2300635. PubMed DOI PMC

Manuelpillai U., Wallace E.M., Nicholls T., Guillemin G., Phillips D.J., Walker D. Increased mRNA Expression of Kynurenine Pathway Enzymes in Human Placentae Exposed to Bacterial Endotoxin. Adv. Exp. Med. Biol. 2003;527:85–89. doi: 10.1007/978-1-4615-0135-0_9. PubMed DOI

Ligam P., Manuelpillai U., Wallace E., Walker D. Localisation of Indoleamine 2,3-dioxygenase and Kynurenine Hydroxylase in the Human Placenta and Decidua: Implications for Role of the Kynurenine Pathway in Pregnancy. Placenta. 2005;26:498–504. doi: 10.1016/j.placenta.2004.08.009. PubMed DOI

Foster A.C., Vezzani A., French E.D., Schwarcz R. Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neurosci. Lett. 1984;48:273–278. doi: 10.1016/0304-3940(84)90050-8. PubMed DOI

Pocivavsek A., Thomas M.A.R., Elmer G.I., Bruno J.P., Schwarcz R. Continuous kynurenine administration during the prenatal period, but not during adolescence, causes learning and memory deficits in adult rats. Psychopharmacology. 2014;231:2799–2809. doi: 10.1007/s00213-014-3452-2. PubMed DOI PMC

Pershing M.L., Bortz D.M., Pocivavsek A., Fredericks P.J., Jørgensen C.V., Vunck S.A., Leuner B., Schwarcz R., Bruno J. Elevated levels of kynurenic acid during gestation produce neurochemical, morphological, and cognitive deficits in adulthood: Implications for schizophrenia. Neuropharmacol. 2015;90:33–41. doi: 10.1016/j.neuropharm.2014.10.017. PubMed DOI PMC

Forrest C., Khalil O., Pisar M., McNair K., Kornisiuk E., Snitcofsky M., Gonzalez N., Jerusalinsky D., Darlington L., Stone T.W. Changes in synaptic transmission and protein expression in the brains of adult offspring after prenatal inhibition of the kynurenine pathway. Neuroscience. 2013;254:241–259. doi: 10.1016/j.neuroscience.2013.09.034. PubMed DOI

Alexander K.S., Pocivavsek A., Wu H.-Q., Pershing M.L., Schwarcz R., Bruno J. Early Developmental Elevations of Brain Kynurenic Acid Impair Cognitive Flexibility in Adults: Reversal with Galantamine. Neuroscience. 2013;238:19–28. doi: 10.1016/j.neuroscience.2013.01.063. PubMed DOI PMC

Goeden N., Notarangelo F.M., Pocivavsek A., Beggiato S., Bonnin A., Schwarcz R. Prenatal Dynamics of Kynurenine Pathway Metabolism in Mice: Focus on Kynurenic Acid. Dev. Neurosci. 2017;39:519–528. doi: 10.1159/000481168. PubMed DOI PMC

Karahoda R., Abad C., Horackova H., Kastner P., Zaugg J., Cerveny L., Kucera R., Albrecht C., Staud F. Dynamics of Tryptophan Metabolic Pathways in Human Placenta and Placental-Derived Cells: Effect of Gestation Age and Trophoblast Differentiation. Front. Cell Dev. Biol. 2020;8:937. doi: 10.3389/fcell.2020.574034. PubMed DOI PMC

Mateos S.S., Sánchez C.L., Paredes S.D., Barriga C., Rodríguez A.B. Circadian Levels of Serotonin in Plasma and Brain after Oral Administration of Tryptophan in Rats. Basic Clin. Pharmacol. Toxicol. 2009;104:52–59. doi: 10.1111/j.1742-7843.2008.00333.x. PubMed DOI

Kubesova A., Tejkalova H., Syslova K., Kacer P., Vondrousova J., Tyls F., Fujakova M., Palenicek T., Horacek J. Biochemical, Histopathological and Morphological Profiling of a Rat Model of Early Immune Stimulation: Relation to Psychopathology. PLoS ONE. 2015;10:e0115439. doi: 10.1371/journal.pone.0115439. PubMed DOI PMC

Robson J.M., Senior J.B. THE 5-HYDROXYTRYPTAMINE CONTENT OF THE PLACENTA AND FOETUS DURING PREGNANCY IN MICE. Br. J. Pharmacol. Chemother. 1964;22:380–391. doi: 10.1111/j.1476-5381.1964.tb02043.x. PubMed DOI PMC

Sano M., Ferchaud-Roucher V., Kaeffer B., Poupeau G., Castellano B., Darmaun D. Maternal and fetal tryptophan metabolism in gestating rats: Effects of intrauterine growth restriction. Amino Acids. 2015;48:281–290. doi: 10.1007/s00726-015-2072-4. PubMed DOI

Koepsell H. Organic Cation Transporters in Health and Disease. Pharmacol. Rev. 2019;72:253–319. doi: 10.1124/pr.118.015578. PubMed DOI

Ahmadimoghaddam D., Hofman J., Zemankova L., Nachtigal P., Dolezelova E., Cerveny L., Ceckova M., Micuda S., Staud F. Synchronized activity of organic cation transporter 3 (Oct3/Slc22a3) and multidrug and toxin extrusion 1 (Mate1/Slc47a1) transporter in transplacental passage of MPP+ in rat. Toxicol. Sci. 2012;128:471–481. doi: 10.1093/toxsci/kfs160. PubMed DOI

Ahmadimoghaddam D., Staud F. Transfer of metformin across the rat placenta is mediated by organic cation transporter 3 (OCT3/SLC22A3) and multidrug and toxin extrusion 1 (MATE1/SLC47A1) protein. Reprod. Toxicol. 2013;39:17–22. doi: 10.1016/j.reprotox.2013.03.001. PubMed DOI

Wu H.-H., Choi S., Levitt P. Differential patterning of genes involved in serotonin metabolism and transport in extra-embryonic tissues of the mouse. Placenta. 2016;42:74–83. doi: 10.1016/j.placenta.2016.03.013. PubMed DOI PMC

Kono H., Lin Y.C., Yamaguchi M., Zuspan F.P., O’Shaughnessy R.W., Lee A.C., Furuhashi N., Yokaichiya T., Takayama K., Yajima A. Monoamine Oxidase Activity in Rat Organs during Pregnancy. Tohoku J. Exp. Med. 1994;172:1–8. doi: 10.1620/tjem.172.1. PubMed DOI

Chen C.H., Klein D.C., Robinson J.C. Monoamine oxidase in rat placenta, human placenta, and cultured choriocarcinoma. Reproduction. 1976;46:477–479. doi: 10.1530/jrf.0.0460477. PubMed DOI

Ahmadimoghaddam D., Zemankova L., Nachtigal P., Dolezelova E., Neumanova Z., Cerveny L., Ceckova M., Kacerovsky M., Micuda S., Staud F. Organic cation transporter 3 (OCT3/SLC22A3) and multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter in the placenta and fetal tissues: Expression profile and fetus protective role at different stages of gestation. Biol. Reprod. 2013;88:55. doi: 10.1095/biolreprod.112.105064. PubMed DOI

Verhaagh S., Barlow D.P., Zwart R. The extraneuronal monoamine transporter Slc22a3/Orct3 co-localizes with the Maoa metabolizing enzyme in mouse placenta. Mech. Dev. 2001;100:127–130. doi: 10.1016/S0925-4773(00)00510-4. PubMed DOI

Behura S.K., Dhakal P., Kelleher A.M., Balboula A., Patterson A., Spencer T.E. The brain-placental axis: Therapeutic and pharmacological relevancy to pregnancy. Pharmacol. Res. 2019;149:104468. doi: 10.1016/j.phrs.2019.104468. PubMed DOI PMC

Rosenfeld C.S. Author response for “The placenta-brain-axis”. J. Neurosci. Res. 2020 doi: 10.1002/jnr.24603. PubMed DOI PMC

Linask K.K. The Heart-Placenta Axis in the First Month of Pregnancy: Induction and Prevention of Cardiovascular Birth Defects. J. Pregnancy. 2013;2013:320413. doi: 10.1155/2013/320413. PubMed DOI PMC

Maslen C. Recent Advances in Placenta–Heart Interactions. Front. Physiol. 2018;9:735. doi: 10.3389/fphys.2018.00735. PubMed DOI PMC

Lewinsohn R., Glover V., Sandler M. Beta-phenylethylamine and benzylamine as substrates for human monoamine oxidase A: A source of some anomalies? Biochem. Pharm. 1980;29:777–781. doi: 10.1016/0006-2952(80)90556-0. PubMed DOI

Kono H., Lin Y.C., Gu Y., Yamaguchi M., Zuspan F.P., Furuhashi N., Takayama K., Yajima A. Gossypol effects on monoamine oxidase(MAO) activity in several organs of term rats. Tohoku J. Exp. Med. 1991;163:149–156. doi: 10.1620/tjem.163.149. PubMed DOI

Blaschitz A., Gauster M., Fuchs D., Lang I., Maschke P., Ulrich D., Karpf E., Takikawa O., Schimek M.G., Dohr G., et al. Vascular Endothelial Expression of Indoleamine 2,3-Dioxygenase 1 Forms a Positive Gradient towards the Feto-Maternal Interface. PLoS ONE. 2011;6:e21774. doi: 10.1371/journal.pone.0021774. PubMed DOI PMC

Notarangelo F.M., Beggiato S., Schwarcz R. Assessment of Prenatal Kynurenine Metabolism Using Tissue Slices: Focus on the Neosynthesis of Kynurenic Acid in Mice. Dev. Neurosci. 2019;41:102–111. doi: 10.1159/000499736. PubMed DOI PMC

Milart P., Urbanska E.M., Turski W.A., Paszkowski T., Sikorski R. Kynurenine Aminotransferase I Activity in Human Placenta. Placenta. 2001;22:259–261. doi: 10.1053/plac.2000.0611. PubMed DOI

Braidy N., Guillemin G.J., Mansour H., Chan-Ling T., Grant R.S. Changes in kynurenine pathway metabolism in the brain, liver and kidney of aged female Wistar rats. FEBS J. 2011;278:4425–4434. doi: 10.1111/j.1742-4658.2011.08366.x. PubMed DOI

Roper M.D., Franz J.M. Glucocorticoid control of the development of tryptophan oxygenase in the young rat. J. Biol. Chem. 1977;252:4354–4360. PubMed

Notarangelo F.M., Schwarcz R. Restraint Stress during Pregnancy Rapidly Raises Kynurenic Acid Levels in Mouse Placenta and Fetal Brain. Dev. Neurosci. 2016;38:458–468. doi: 10.1159/000455228. PubMed DOI PMC

Zorn A.M. Liver Development. StemBook; Cambridge, MA, USA: 2008.

Houwing D.J., Buwalda B., Van Der Zee E.A., De Boer S.F., Olivier J. The Serotonin Transporter and Early Life Stress: Translational Perspectives. Front. Cell. Neurosci. 2017;11:117. doi: 10.3389/fncel.2017.00117. PubMed DOI PMC

Sjaarda C.P., Hecht P., McNaughton A.J.M., Zhou A., Hudson M.L., Will M.J., Smith G., Ayub M., Liang P., Chen N., et al. Interplay between maternal Slc6a4 mutation and prenatal stress: A possible mechanism for autistic behavior development. Sci. Rep. 2017;7:1–12. doi: 10.1038/s41598-017-07405-3. PubMed DOI PMC

Sakata T., Anzai N., Kimura T., Miura D., Fukutomi T., Takeda M., Sakurai H., Endou H. Functional Analysis of Human Organic Cation Transporter OCT3 (SLC22A3) Polymorphisms. J. Pharmacol. Sci. 2010;113:263–266. doi: 10.1254/jphs.09331SC. PubMed DOI

Sun H.S., Tsai H.-W., Ko H.-C., Chang F.-M., Yeh T.-L. Association of tryptophan hydroxylase gene polymorphism with depression, anxiety and comorbid depression and anxiety in a population-based sample of postpartum Taiwanese women. Genes, Brain Behav. 2004;3:328–336. doi: 10.1111/j.1601-183X.2004.00085.x. PubMed DOI

Duan K.-M., Wang S.-Y., Yin J.-Y., Li X., Ma J.-H., Huang Z.-D., Zhou Y.-Y., Yu H.-Y., Yang M., Zhou H.-H., et al. The IDO genetic polymorphisms and postpartum depressive symptoms: An association study in Chinese parturients who underwent cesarean section. Arch. Women’s Ment. Heal. 2018;22:339–348. doi: 10.1007/s00737-018-0898-y. PubMed DOI

Bortolato M., Shih J.C. Behavioral outcomes of monoamine oxidase deficiency: Preclinical and clinical evidence. Int. Rev. Neurobiol. 2011;100:13–42. doi: 10.1016/b978-0-12-386467-3.00002-9. PubMed DOI PMC

Achtyes E., Keaton S.A., Smart L., Burmeister A.R., Heilman P.L., Krzyzanowski S., Nagalla M., Guillemin G.J., Galvis M.L.E., Lim C.K., et al. Inflammation and kynurenine pathway dysregulation in post-partum women with severe and suicidal depression. Brain, Behav. Immun. 2020;83:239–247. doi: 10.1016/j.bbi.2019.10.017. PubMed DOI PMC

Keaton S.A., Heilman P., Bryleva E.Y., Madaj Z., Krzyzanowski S., Grit J., Miller E.S., Jälmby M., Kalapotharakos G., Racicot K., et al. Altered Tryptophan Catabolism in Placentas From Women With Pre-eclampsia. Int. J. Tryptophan Res. 2019;12:1178646919840321. doi: 10.1177/1178646919840321. PubMed DOI PMC

Murthi P., Wallace E.M., Walker D.W. Altered placental tryptophan metabolic pathway in human fetal growth restriction. Placenta. 2017;52:62–70. doi: 10.1016/j.placenta.2017.02.013. PubMed DOI

Lane R.H. Fetal Programming, Epigenetics, and Adult Onset Disease. Clin. Perinatol. 2014;41:815–831. doi: 10.1016/j.clp.2014.08.006. PubMed DOI

Mastorci F., Agrimi J. Fetal Programming of Adult Disease in a Translational Point of View. Springer Science and Business Media LLC; Cham, Switzerland: 2019. pp. 19–34.

Babicki S., Arndt D., Marcu A., Liang Y., Grant J.R., Maciejewski A., Wishart D.S. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 2016;44:W147–W153. doi: 10.1093/nar/gkw419. PubMed DOI PMC

Laemmli U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nat. Cell Biol. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI

Carrasco G., Cruz M.A., Dominguez A., Gallardo V., Miguel P., González C. The expression and activity of monoamine oxidase A, but not of the serotonin transporter, is decreased in human placenta from pre-eclamptic pregnancies. Life Sci. 2000;67:2961–2969. doi: 10.1016/S0024-3205(00)00883-3. PubMed DOI

Takikawa O., Kuroiwa T., Yamazaki F., Kido R. Mechanism of interferon-gamma action. Characterization of indoleamine 2,3-dioxygenase in cultured human cells induced by interferon-gamma and evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity. J. Biol. Chem. 1988;263:2041–2048. PubMed

Goeden N., Velasquez J., Arnold K.A., Chan Y., Lund B.T., Anderson G.M., Bonnin A. Maternal Inflammation Disrupts Fetal Neurodevelopment via Increased Placental Output of Serotonin to the Fetal Brain. J. Neurosci. 2016;36:6041–6049. doi: 10.1523/JNEUROSCI.2534-15.2016. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...