Profiling of Tryptophan Metabolic Pathways in the Rat Fetoplacental Unit During Gestation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU20-01-0026
Agentura Pro Zdravotnický Výzkum České Republiky
SVV 2020/260414
Grantová Agentura, Univerzita Karlova
CZ.02.1.01/0.0/0.0/16_019/0000841
EFSA-CDN
PubMed
33066440
PubMed Central
PMC7589826
DOI
10.3390/ijms21207578
PII: ijms21207578
Knihovny.cz E-zdroje
- Klíčová slova
- fetal organs, fetal programming, placenta–brain axis, pregnancy, rat model, tryptophan metabolism,
- MeSH
- krysa rodu Rattus MeSH
- metabolické sítě a dráhy MeSH
- placenta embryologie metabolismus MeSH
- plod embryologie metabolismus MeSH
- potkani Wistar MeSH
- těhotenství MeSH
- transkriptom * MeSH
- tryptofan genetika metabolismus MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- tryptofan MeSH
Placental homeostasis of tryptophan is essential for fetal development and programming. The two main metabolic pathways (serotonin and kynurenine) produce bioactive metabolites with immunosuppressive, neurotoxic, or neuroprotective properties and their concentrations in the fetoplacental unit must be tightly regulated throughout gestation. Here, we investigated the expression/function of key enzymes/transporters involved in tryptophan pathways during mid-to-late gestation in rat placenta and fetal organs. Quantitative PCR and heatmap analysis revealed the differential expression of several genes involved in serotonin and kynurenine pathways. To identify the flux of substrates through these pathways, Droplet Digital PCR, western blot, and functional analyses were carried out for the rate-limiting enzymes and transporters. Our findings show that placental tryptophan metabolism to serotonin is crucial in mid-gestation, with a subsequent switch to fetal serotonin synthesis. Concurrently, at term, the close interplay between transporters and metabolizing enzymes of both placenta and fetal organs orchestrates serotonin homeostasis and prevents hyper/hypo-serotonemia. On the other hand, the placental production of kynurenine increases during pregnancy, with a low contribution of fetal organs throughout gestation. Any external insult to this tightly regulated harmony of transporters and enzymes within the fetoplacental unit may affect optimal in utero conditions and have a negative impact on fetal programming.
Zobrazit více v PubMed
Sedlmayr P., Blaschitz A., Stocker R. The Role of Placental Tryptophan Catabolism. Front. Immunol. 2014;5:230. doi: 10.3389/fimmu.2014.00230. PubMed DOI PMC
Yudilevich D.L., Sweiry J.H. Transport of amino acids in the placenta. Biochim. Biophys. Acta (BBA)—Rev. Biomembr. 1985;822:169–201. doi: 10.1016/0304-4157(85)90007-3. PubMed DOI
Badawy A.A.-B. Tryptophan metabolism, disposition and utilization in pregnancy. Biosci. Rep. 2015;35:e00261. doi: 10.1042/BSR20150197. PubMed DOI PMC
Teshigawara T., Mouri A., Kubo H., Nakamura Y., Shiino T., Okada T., Morikawa M., Nabeshima T., Ozaki N., Yamamoto Y., et al. Changes in tryptophan metabolism during pregnancy and postpartum periods: Potential involvement in postpartum depressive symptoms. J. Affect. Disord. 2019;255:168–176. doi: 10.1016/j.jad.2019.05.028. PubMed DOI
Zardoya-Laguardia P., Blaschitz A., Hirschmugl B., Lang I., A Herzog S., Nikitina L., Gauster M., Hausler M., Cervar-Zivkovic M., Karpf E., et al. Endothelial indoleamine 2,3-dioxygenase-1 regulates the placental vascular tone and is deficient in intrauterine growth restriction and pre-eclampsia. Sci. Rep. 2018;8:5488. doi: 10.1038/s41598-018-23896-0. PubMed DOI PMC
Alwasel S.H., Bagby S.P., Boyd R., Boyd R., Burdge G., Carter A.M., Cetin I., Cole Z., Cooper C., Critchley H., et al. The Placenta and Human Developmental Programming. Cambridge University Press (CUP); Cambridge, UK: 2009.
Staud F., Karahoda R. Trophoblast: The central unit of fetal growth, protection and programming. Int. J. Biochem. Cell Biol. 2018;105:35–40. doi: 10.1016/j.biocel.2018.09.016. PubMed DOI
Billett E.E. Monoamine Oxidase (MAO) in Human Peripheral Tissues. Neurotoxicology. 2004;25:139–148. doi: 10.1016/S0161-813X(03)00094-9. PubMed DOI
Laurent L., DeRoy K., St-Pierre J., Côté F., Sanderson J.T., Vaillancourt C. Human placenta expresses both peripheral and neuronal isoform of tryptophan hydroxylase. Biochimie. 2017;140:159–165. doi: 10.1016/j.biochi.2017.07.008. PubMed DOI
Viau M., Lafond J., Vaillancourt C. Expression of placental serotonin transporter and 5-HT 2A receptor in normal and gestational diabetes mellitus pregnancies. Reprod. Biomed. Online. 2009;19:207–215. doi: 10.1016/S1472-6483(10)60074-0. PubMed DOI
Mitchell J.A. Serotonin-induced disruption of implantation in the rat: I. Serum progesterone, implantation site blood flow, and intrauterine pO2. Biol. Reprod. 1983;28:830–835. doi: 10.1095/biolreprod28.4.830. PubMed DOI
Mitchell J.A. Serotonin-induced disruption of implantation in the rat: II. Suppression of decidualization. Biol. Reprod. 1983;29:151–156. doi: 10.1095/biolreprod29.1.151. PubMed DOI
Bonnin A., Levitt P. Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience. 2011;197:1–7. doi: 10.1016/j.neuroscience.2011.10.005. PubMed DOI PMC
Yavarone M.S., Shuey D.L., Tamir H., Sadler T.W., Lauder J.M. Serotonin and cardiac morphogenesis in the mouse embryo. Teratology. 1993;47:573–584. doi: 10.1002/tera.1420470609. PubMed DOI
Côté F., Fligny C., Bayard E., Launay J.-M., Gershon M.D., Mallet J., Vodjdani G. Maternal serotonin is crucial for murine embryonic development. Proc. Natl. Acad. Sci. USA. 2006;104:329–334. doi: 10.1073/pnas.0606722104. PubMed DOI PMC
Bonnin A., Goeden N., Chen K., Wilson M.L., King J., Shih J.C., Blakely R.D., Deneris E.S., Levitt P. A transient placental source of serotonin for the fetal forebrain. Nat. Cell Biol. 2011;472:347–350. doi: 10.1038/nature09972. PubMed DOI PMC
Kliman H.J., Quaratella S.B., Setaro A.C., Siegman E.C., Subha Z.T., Tal R., Milano K.M., Steck T.L. Pathway of Maternal Serotonin to the Human Embryo and Fetus. Endocrinology. 2018;159:1609–1629. doi: 10.1210/en.2017-03025. PubMed DOI
Arevalo R., Afonso D., Castro R., Rodriguez M. Fetal brain serotonin synthesis and catabolism is under control by mother intake of tryptophan. Life Sci. 1991;49:53–66. doi: 10.1016/0024-3205(91)90579-Z. PubMed DOI
Karahoda R., Horackova H., Kastner P., Matthios A., Cerveny L., Kucera R., Kacerovsky M., Duintjer Tebbens J., Bonnin A., Abad C., et al. Serotonin homeostasis in the materno-foetal interface at term: Role of transporters (SERT/SLC6A4 and OCT3/SLC22A3) and monoamine oxidase A (MAO-A) in uptake and degradation of serotonin by human and rat term placenta. Acta Physiol. 2020;229:e13478. doi: 10.1111/apha.13478. PubMed DOI PMC
Ranzil S., Walker D.W., Borg A.J., Wallace E.M., Ebeling P.R., Murthi P. The relationship between the placental serotonin pathway and fetal growth restriction. Biochimie. 2018;161:80–87. doi: 10.1016/j.biochi.2018.12.016. PubMed DOI
Robson J.M., Sullivan F.M. Mechanism of lethal action of 5-hydroxytryptamine on the foetus. J. Endocrinol. 1963;25:553–554. doi: 10.1677/joe.0.0250553. PubMed DOI
Munn D.H., Zhou M., Attwood J.T., Bondarev I., Conway S.J., Marshall B., Brown C., Mellor A.L. Prevention of Allogeneic Fetal Rejection by Tryptophan Catabolism. Science. 1998;281:1191–1193. doi: 10.1126/science.281.5380.1191. PubMed DOI
Uyttenhove C., Pilotte L., Théate I., Stroobant V., Colau D., Parmentier N., Boon T., Eynde B.J.V.D. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 2003;9:1269–1274. doi: 10.1038/nm934. PubMed DOI
Yamazaki F., Kuroiwa T., Takikawa O., Kido R. Human indolylamine 2,3-dioxygenase. Its tissue distribution, and characterization of the placental enzyme. Biochem. J. 1985;230:635–638. doi: 10.1042/bj2300635. PubMed DOI PMC
Manuelpillai U., Wallace E.M., Nicholls T., Guillemin G., Phillips D.J., Walker D. Increased mRNA Expression of Kynurenine Pathway Enzymes in Human Placentae Exposed to Bacterial Endotoxin. Adv. Exp. Med. Biol. 2003;527:85–89. doi: 10.1007/978-1-4615-0135-0_9. PubMed DOI
Ligam P., Manuelpillai U., Wallace E., Walker D. Localisation of Indoleamine 2,3-dioxygenase and Kynurenine Hydroxylase in the Human Placenta and Decidua: Implications for Role of the Kynurenine Pathway in Pregnancy. Placenta. 2005;26:498–504. doi: 10.1016/j.placenta.2004.08.009. PubMed DOI
Foster A.C., Vezzani A., French E.D., Schwarcz R. Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neurosci. Lett. 1984;48:273–278. doi: 10.1016/0304-3940(84)90050-8. PubMed DOI
Pocivavsek A., Thomas M.A.R., Elmer G.I., Bruno J.P., Schwarcz R. Continuous kynurenine administration during the prenatal period, but not during adolescence, causes learning and memory deficits in adult rats. Psychopharmacology. 2014;231:2799–2809. doi: 10.1007/s00213-014-3452-2. PubMed DOI PMC
Pershing M.L., Bortz D.M., Pocivavsek A., Fredericks P.J., Jørgensen C.V., Vunck S.A., Leuner B., Schwarcz R., Bruno J. Elevated levels of kynurenic acid during gestation produce neurochemical, morphological, and cognitive deficits in adulthood: Implications for schizophrenia. Neuropharmacol. 2015;90:33–41. doi: 10.1016/j.neuropharm.2014.10.017. PubMed DOI PMC
Forrest C., Khalil O., Pisar M., McNair K., Kornisiuk E., Snitcofsky M., Gonzalez N., Jerusalinsky D., Darlington L., Stone T.W. Changes in synaptic transmission and protein expression in the brains of adult offspring after prenatal inhibition of the kynurenine pathway. Neuroscience. 2013;254:241–259. doi: 10.1016/j.neuroscience.2013.09.034. PubMed DOI
Alexander K.S., Pocivavsek A., Wu H.-Q., Pershing M.L., Schwarcz R., Bruno J. Early Developmental Elevations of Brain Kynurenic Acid Impair Cognitive Flexibility in Adults: Reversal with Galantamine. Neuroscience. 2013;238:19–28. doi: 10.1016/j.neuroscience.2013.01.063. PubMed DOI PMC
Goeden N., Notarangelo F.M., Pocivavsek A., Beggiato S., Bonnin A., Schwarcz R. Prenatal Dynamics of Kynurenine Pathway Metabolism in Mice: Focus on Kynurenic Acid. Dev. Neurosci. 2017;39:519–528. doi: 10.1159/000481168. PubMed DOI PMC
Karahoda R., Abad C., Horackova H., Kastner P., Zaugg J., Cerveny L., Kucera R., Albrecht C., Staud F. Dynamics of Tryptophan Metabolic Pathways in Human Placenta and Placental-Derived Cells: Effect of Gestation Age and Trophoblast Differentiation. Front. Cell Dev. Biol. 2020;8:937. doi: 10.3389/fcell.2020.574034. PubMed DOI PMC
Mateos S.S., Sánchez C.L., Paredes S.D., Barriga C., Rodríguez A.B. Circadian Levels of Serotonin in Plasma and Brain after Oral Administration of Tryptophan in Rats. Basic Clin. Pharmacol. Toxicol. 2009;104:52–59. doi: 10.1111/j.1742-7843.2008.00333.x. PubMed DOI
Kubesova A., Tejkalova H., Syslova K., Kacer P., Vondrousova J., Tyls F., Fujakova M., Palenicek T., Horacek J. Biochemical, Histopathological and Morphological Profiling of a Rat Model of Early Immune Stimulation: Relation to Psychopathology. PLoS ONE. 2015;10:e0115439. doi: 10.1371/journal.pone.0115439. PubMed DOI PMC
Robson J.M., Senior J.B. THE 5-HYDROXYTRYPTAMINE CONTENT OF THE PLACENTA AND FOETUS DURING PREGNANCY IN MICE. Br. J. Pharmacol. Chemother. 1964;22:380–391. doi: 10.1111/j.1476-5381.1964.tb02043.x. PubMed DOI PMC
Sano M., Ferchaud-Roucher V., Kaeffer B., Poupeau G., Castellano B., Darmaun D. Maternal and fetal tryptophan metabolism in gestating rats: Effects of intrauterine growth restriction. Amino Acids. 2015;48:281–290. doi: 10.1007/s00726-015-2072-4. PubMed DOI
Koepsell H. Organic Cation Transporters in Health and Disease. Pharmacol. Rev. 2019;72:253–319. doi: 10.1124/pr.118.015578. PubMed DOI
Ahmadimoghaddam D., Hofman J., Zemankova L., Nachtigal P., Dolezelova E., Cerveny L., Ceckova M., Micuda S., Staud F. Synchronized activity of organic cation transporter 3 (Oct3/Slc22a3) and multidrug and toxin extrusion 1 (Mate1/Slc47a1) transporter in transplacental passage of MPP+ in rat. Toxicol. Sci. 2012;128:471–481. doi: 10.1093/toxsci/kfs160. PubMed DOI
Ahmadimoghaddam D., Staud F. Transfer of metformin across the rat placenta is mediated by organic cation transporter 3 (OCT3/SLC22A3) and multidrug and toxin extrusion 1 (MATE1/SLC47A1) protein. Reprod. Toxicol. 2013;39:17–22. doi: 10.1016/j.reprotox.2013.03.001. PubMed DOI
Wu H.-H., Choi S., Levitt P. Differential patterning of genes involved in serotonin metabolism and transport in extra-embryonic tissues of the mouse. Placenta. 2016;42:74–83. doi: 10.1016/j.placenta.2016.03.013. PubMed DOI PMC
Kono H., Lin Y.C., Yamaguchi M., Zuspan F.P., O’Shaughnessy R.W., Lee A.C., Furuhashi N., Yokaichiya T., Takayama K., Yajima A. Monoamine Oxidase Activity in Rat Organs during Pregnancy. Tohoku J. Exp. Med. 1994;172:1–8. doi: 10.1620/tjem.172.1. PubMed DOI
Chen C.H., Klein D.C., Robinson J.C. Monoamine oxidase in rat placenta, human placenta, and cultured choriocarcinoma. Reproduction. 1976;46:477–479. doi: 10.1530/jrf.0.0460477. PubMed DOI
Ahmadimoghaddam D., Zemankova L., Nachtigal P., Dolezelova E., Neumanova Z., Cerveny L., Ceckova M., Kacerovsky M., Micuda S., Staud F. Organic cation transporter 3 (OCT3/SLC22A3) and multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter in the placenta and fetal tissues: Expression profile and fetus protective role at different stages of gestation. Biol. Reprod. 2013;88:55. doi: 10.1095/biolreprod.112.105064. PubMed DOI
Verhaagh S., Barlow D.P., Zwart R. The extraneuronal monoamine transporter Slc22a3/Orct3 co-localizes with the Maoa metabolizing enzyme in mouse placenta. Mech. Dev. 2001;100:127–130. doi: 10.1016/S0925-4773(00)00510-4. PubMed DOI
Behura S.K., Dhakal P., Kelleher A.M., Balboula A., Patterson A., Spencer T.E. The brain-placental axis: Therapeutic and pharmacological relevancy to pregnancy. Pharmacol. Res. 2019;149:104468. doi: 10.1016/j.phrs.2019.104468. PubMed DOI PMC
Rosenfeld C.S. Author response for “The placenta-brain-axis”. J. Neurosci. Res. 2020 doi: 10.1002/jnr.24603. PubMed DOI PMC
Linask K.K. The Heart-Placenta Axis in the First Month of Pregnancy: Induction and Prevention of Cardiovascular Birth Defects. J. Pregnancy. 2013;2013:320413. doi: 10.1155/2013/320413. PubMed DOI PMC
Maslen C. Recent Advances in Placenta–Heart Interactions. Front. Physiol. 2018;9:735. doi: 10.3389/fphys.2018.00735. PubMed DOI PMC
Lewinsohn R., Glover V., Sandler M. Beta-phenylethylamine and benzylamine as substrates for human monoamine oxidase A: A source of some anomalies? Biochem. Pharm. 1980;29:777–781. doi: 10.1016/0006-2952(80)90556-0. PubMed DOI
Kono H., Lin Y.C., Gu Y., Yamaguchi M., Zuspan F.P., Furuhashi N., Takayama K., Yajima A. Gossypol effects on monoamine oxidase(MAO) activity in several organs of term rats. Tohoku J. Exp. Med. 1991;163:149–156. doi: 10.1620/tjem.163.149. PubMed DOI
Blaschitz A., Gauster M., Fuchs D., Lang I., Maschke P., Ulrich D., Karpf E., Takikawa O., Schimek M.G., Dohr G., et al. Vascular Endothelial Expression of Indoleamine 2,3-Dioxygenase 1 Forms a Positive Gradient towards the Feto-Maternal Interface. PLoS ONE. 2011;6:e21774. doi: 10.1371/journal.pone.0021774. PubMed DOI PMC
Notarangelo F.M., Beggiato S., Schwarcz R. Assessment of Prenatal Kynurenine Metabolism Using Tissue Slices: Focus on the Neosynthesis of Kynurenic Acid in Mice. Dev. Neurosci. 2019;41:102–111. doi: 10.1159/000499736. PubMed DOI PMC
Milart P., Urbanska E.M., Turski W.A., Paszkowski T., Sikorski R. Kynurenine Aminotransferase I Activity in Human Placenta. Placenta. 2001;22:259–261. doi: 10.1053/plac.2000.0611. PubMed DOI
Braidy N., Guillemin G.J., Mansour H., Chan-Ling T., Grant R.S. Changes in kynurenine pathway metabolism in the brain, liver and kidney of aged female Wistar rats. FEBS J. 2011;278:4425–4434. doi: 10.1111/j.1742-4658.2011.08366.x. PubMed DOI
Roper M.D., Franz J.M. Glucocorticoid control of the development of tryptophan oxygenase in the young rat. J. Biol. Chem. 1977;252:4354–4360. PubMed
Notarangelo F.M., Schwarcz R. Restraint Stress during Pregnancy Rapidly Raises Kynurenic Acid Levels in Mouse Placenta and Fetal Brain. Dev. Neurosci. 2016;38:458–468. doi: 10.1159/000455228. PubMed DOI PMC
Zorn A.M. Liver Development. StemBook; Cambridge, MA, USA: 2008.
Houwing D.J., Buwalda B., Van Der Zee E.A., De Boer S.F., Olivier J. The Serotonin Transporter and Early Life Stress: Translational Perspectives. Front. Cell. Neurosci. 2017;11:117. doi: 10.3389/fncel.2017.00117. PubMed DOI PMC
Sjaarda C.P., Hecht P., McNaughton A.J.M., Zhou A., Hudson M.L., Will M.J., Smith G., Ayub M., Liang P., Chen N., et al. Interplay between maternal Slc6a4 mutation and prenatal stress: A possible mechanism for autistic behavior development. Sci. Rep. 2017;7:1–12. doi: 10.1038/s41598-017-07405-3. PubMed DOI PMC
Sakata T., Anzai N., Kimura T., Miura D., Fukutomi T., Takeda M., Sakurai H., Endou H. Functional Analysis of Human Organic Cation Transporter OCT3 (SLC22A3) Polymorphisms. J. Pharmacol. Sci. 2010;113:263–266. doi: 10.1254/jphs.09331SC. PubMed DOI
Sun H.S., Tsai H.-W., Ko H.-C., Chang F.-M., Yeh T.-L. Association of tryptophan hydroxylase gene polymorphism with depression, anxiety and comorbid depression and anxiety in a population-based sample of postpartum Taiwanese women. Genes, Brain Behav. 2004;3:328–336. doi: 10.1111/j.1601-183X.2004.00085.x. PubMed DOI
Duan K.-M., Wang S.-Y., Yin J.-Y., Li X., Ma J.-H., Huang Z.-D., Zhou Y.-Y., Yu H.-Y., Yang M., Zhou H.-H., et al. The IDO genetic polymorphisms and postpartum depressive symptoms: An association study in Chinese parturients who underwent cesarean section. Arch. Women’s Ment. Heal. 2018;22:339–348. doi: 10.1007/s00737-018-0898-y. PubMed DOI
Bortolato M., Shih J.C. Behavioral outcomes of monoamine oxidase deficiency: Preclinical and clinical evidence. Int. Rev. Neurobiol. 2011;100:13–42. doi: 10.1016/b978-0-12-386467-3.00002-9. PubMed DOI PMC
Achtyes E., Keaton S.A., Smart L., Burmeister A.R., Heilman P.L., Krzyzanowski S., Nagalla M., Guillemin G.J., Galvis M.L.E., Lim C.K., et al. Inflammation and kynurenine pathway dysregulation in post-partum women with severe and suicidal depression. Brain, Behav. Immun. 2020;83:239–247. doi: 10.1016/j.bbi.2019.10.017. PubMed DOI PMC
Keaton S.A., Heilman P., Bryleva E.Y., Madaj Z., Krzyzanowski S., Grit J., Miller E.S., Jälmby M., Kalapotharakos G., Racicot K., et al. Altered Tryptophan Catabolism in Placentas From Women With Pre-eclampsia. Int. J. Tryptophan Res. 2019;12:1178646919840321. doi: 10.1177/1178646919840321. PubMed DOI PMC
Murthi P., Wallace E.M., Walker D.W. Altered placental tryptophan metabolic pathway in human fetal growth restriction. Placenta. 2017;52:62–70. doi: 10.1016/j.placenta.2017.02.013. PubMed DOI
Lane R.H. Fetal Programming, Epigenetics, and Adult Onset Disease. Clin. Perinatol. 2014;41:815–831. doi: 10.1016/j.clp.2014.08.006. PubMed DOI
Mastorci F., Agrimi J. Fetal Programming of Adult Disease in a Translational Point of View. Springer Science and Business Media LLC; Cham, Switzerland: 2019. pp. 19–34.
Babicki S., Arndt D., Marcu A., Liang Y., Grant J.R., Maciejewski A., Wishart D.S. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 2016;44:W147–W153. doi: 10.1093/nar/gkw419. PubMed DOI PMC
Laemmli U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nat. Cell Biol. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI
Carrasco G., Cruz M.A., Dominguez A., Gallardo V., Miguel P., González C. The expression and activity of monoamine oxidase A, but not of the serotonin transporter, is decreased in human placenta from pre-eclamptic pregnancies. Life Sci. 2000;67:2961–2969. doi: 10.1016/S0024-3205(00)00883-3. PubMed DOI
Takikawa O., Kuroiwa T., Yamazaki F., Kido R. Mechanism of interferon-gamma action. Characterization of indoleamine 2,3-dioxygenase in cultured human cells induced by interferon-gamma and evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity. J. Biol. Chem. 1988;263:2041–2048. PubMed
Goeden N., Velasquez J., Arnold K.A., Chan Y., Lund B.T., Anderson G.M., Bonnin A. Maternal Inflammation Disrupts Fetal Neurodevelopment via Increased Placental Output of Serotonin to the Fetal Brain. J. Neurosci. 2016;36:6041–6049. doi: 10.1523/JNEUROSCI.2534-15.2016. PubMed DOI PMC
Pathological shifts in tryptophan metabolism in human term placenta exposed to LPS or poly I:C†
Developmental expression of catecholamine system in the human placenta and rat fetoplacental unit