Characterization of a human placental clearance system to regulate serotonin levels in the fetoplacental unit
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-13017S
Grantová Agentura České Republiky
PubMed
37612712
PubMed Central
PMC10464227
DOI
10.1186/s12958-023-01128-z
PII: 10.1186/s12958-023-01128-z
Knihovny.cz E-zdroje
- Klíčová slova
- Clearance, Fetal development, Homeostasis, Placenta, Serotonin,
- MeSH
- aminy MeSH
- kinetika MeSH
- kyselina hydroxyindoloctová MeSH
- lidé MeSH
- placenta * MeSH
- serotonin * MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminy MeSH
- kyselina hydroxyindoloctová MeSH
- serotonin * MeSH
BACKGROUND: Serotonin (5-HT) is a biogenic monoamine with diverse functions in multiple human organs and tissues. During pregnancy, tightly regulated levels of 5-HT in the fetoplacental unit are critical for proper placental functions, fetal development, and programming. Despite being a non-neuronal organ, the placenta expresses a suite of homeostatic proteins, membrane transporters and metabolizing enzymes, to regulate monoamine levels. We hypothesized that placental 5-HT clearance is important for maintaining 5-HT levels in the fetoplacental unit. We therefore investigated placental 5-HT uptake from the umbilical circulation at physiological and supraphysiological levels as well as placental metabolism of 5-HT to 5-hydroxyindoleacetic acid (5-HIAA) and 5-HIAA efflux from trophoblast cells. METHODS: We employed a systematic approach using advanced organ-, tissue-, and cellular-level models of the human placenta to investigate the transport and metabolism of 5-HT in the fetoplacental unit. Human placentas from uncomplicated term pregnancies were used for perfusion studies, culturing explants, and isolating primary trophoblast cells. RESULTS: Using the dually perfused placenta, we observed a high and concentration-dependent placental extraction of 5-HT from the fetal circulation. Subsequently, within the placenta, 5-HT was metabolized to 5-hydroxyindoleacetic acid (5-HIAA), which was then unidirectionally excreted to the maternal circulation. In the explant cultures and primary trophoblast cells, we show concentration- and inhibitor-dependent 5-HT uptake and metabolism and subsequent 5-HIAA release into the media. Droplet digital PCR revealed that the dominant gene in all models was MAO-A, supporting the crucial role of 5-HT metabolism in placental 5-HT clearance. CONCLUSIONS: Taken together, we present transcriptional and functional evidence that the human placenta has an efficient 5-HT clearance system involving (1) removal of 5-HT from the fetal circulation by OCT3, (2) metabolism to 5-HIAA by MAO-A, and (3) selective 5-HIAA excretion to the maternal circulation via the MRP2 transporter. This synchronized mechanism is critical for regulating 5-HT in the fetoplacental unit; however, it can be compromised by external insults such as antidepressant drugs.
Zobrazit více v PubMed
Barker DJP, Thornburg KL. Placental programming of chronic diseases, cancer and lifespan: a review. Placenta. 2013;34(10):841–5. PubMed
Balkovetz DF, Tiruppathi C, Leibach FH, Mahesh VB, Ganapathy V. Evidence for an imipramine-sensitive serotonin transporter in human placental brush-border membranes. J Biol Chem. 1989;264(4):2195–8. PubMed
Karahoda R, Horackova H, Kastner P, Matthios A, Cerveny L, Kucera R, et al. Serotonin homeostasis in the materno-foetal interface at term: role of transporters (SERT/SLC6A4 and OCT3/SLC22A3) and monoamine oxidase A (MAO-A) in uptake and degradation of serotonin by human and rat term placenta. Acta Physiol. 2020;229(4):e13478. PubMed PMC
Bonnin A, Goeden N, Chen K, Wilson ML, King J, Shih JC, et al. A transient placental source of serotonin for the fetal forebrain. Nature. 2011;472(7343):347–50. PubMed PMC
Laurent L, Deroy K, St-Pierre J, Cote F, Sanderson JT, Vaillancourt C. Human placenta expresses both peripheral and neuronal isoform of tryptophan hydroxylase. Biochimie. 2017;140:159–65. PubMed
Chen CH, Klein DC, Robinson JC. Monoamine oxidase in rat placenta, human placenta, and cultured choriocarcinoma. J Reprod Infertil. 1976;46(2):477–9. PubMed
Carrasco G, Cruz MA, Dominguez A, Gallardo V, Miguel P, Gonzalez C. The expression and activity of monoamine oxidase A, but not of the serotonin transporter, is decreased in human placenta from pre-eclamptic pregnancies. Life Sci. 2000;67(24):2961–9. PubMed
Koren Z, Pfeifer Y, Sulman FG. Distribution and placental transfer of C-14-serotonin in pregnant rats. Am J Obstet Gynecol. 1966;95(2):290–5. PubMed
Cote F, Fligny C, Bayard E, Launay JM, Gershon MD, Mallet J, et al. Maternal serotonin is crucial for murine embryonic development. Proc Natl Acad Sci U S A. 2007;104(1):329–34. PubMed PMC
Chen Y, Palm F, Lesch K-P, Gerlach M, Moessner R, Sommer C. 5-hydroxyindolacetic acid (5-HIAA), a main metabolite of serotonin, is responsible for complete Freund’s adjuvant-induced thermal hyperalgesia in mice. Mol Pain. 2011;7:21. PubMed PMC
Klein C, Roussel G, Brun S, Rusu C, Patte-Mensah C, Maitre M, et al. 5-HIAA induces neprilysin to ameliorate pathophysiology and symptoms in a mouse model for Alzheimer’s disease. Acta Neuropathol Commun. 2018;6(1):136. PubMed PMC
Schmid T, Snoek LB, Fröhli E, van der Bent ML, Kammenga J, Hajnal A. Systemic regulation of RAS/MAPK signaling by the Serotonin Metabolite 5-HIAA. PLoS Genet. 2015;11(5):e1005236. PubMed PMC
Emanuelsson BM, Paalzow L, Sunzel M. Probenecid-induced accumulation of 5-hydroxyindoleacetic acid and homovanillic acid in rat brain. J Pharm Pharmacol. 1987;39(9):705–10. PubMed
Perel JM, Levitt M, Dunner DL. Plasma and cerebrospinal fluid probenecid concentrations as related to accumulation of acidic biogenic amine metabolites in man. Psychopharmacologia. 1974;35(1):83–90.
Chan YL, Huang KC. Renal excretion of D-tryptophan, 5-hydroxytryptamine, and 5-hydroxyindoleacetic acid in rats. Am J Physiol. 1973;224(1):140–3. PubMed
Amin F, Stroe AE, Kahn T, Knott PJ, Kahn RS, Davidson M. Control of renal factors in plasma homovanillic acid measurements. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology. 1998;18(4):317–20. PubMed
Horackova H, Vachalova V, Abad C, Karahoda R, Staud F. Perfused rat term placenta as a preclinical model to investigate placental dopamine and norepinephrine transport. Clin Sci (Lond) 2023;137(2):149–61. PubMed
Vachalova V, Karahoda R, Ottaviani M, Anandam KY, Abad C, Albrecht C, et al. Functional reorganization of monoamine transport systems during villous trophoblast differentiation: evidence of distinct differences between primary human trophoblasts and BeWo cells. Reprod Biol Endocrinol. 2022;20(1):112. PubMed PMC
Horackova H, Karahoda R, Vachalova V, Turkova H, Abad C, Staud F. Functional characterization of dopamine and norepinephrine transport across the apical and basal plasma membranes of the human placental syncytiotrophoblast. Sci Rep. 2022;12(1):11603. PubMed PMC
Pastuschek J, Bär C, Göhner C, Budde U, Leidenmuehler P, Groten T, et al. Ex vivo human placental transfer study on recombinant Von Willebrand factor (rVWF) Placenta. 2021;111:69–75. PubMed
Schneider H, Panigel M, Dancis J. Transfer across the perfused human placenta of antipyrine, sodium and leucine. Am J Obstet Gynecol. 1972;114(6):822–8. PubMed
Mathiesen L, Mose T, Mørck TJ, Nielsen JKS, Nielsen LK, Maroun LL, et al. Quality assessment of a placental perfusion protocol. Reprod Toxicol. 2010;30(1):138–46. PubMed
Chiarello DI, Marín R, Proverbio F, Benzo Z, Piñero S, Botana D, et al. Effect of Hypoxia on the calcium and magnesium content, lipid peroxidation level, and ca < sup > 2+-ATPase activity of Syncytiotrophoblast plasma membranes from placental explants. Biomed Res Int. 2014;2014:597357. PubMed PMC
Castro-Parodi M, Szpilbarg N, Dietrich V, Sordelli M, Reca A, Abán C, et al. Oxygen tension modulates AQP9 expression in human placenta. Placenta. 2013;34(8):690–8. PubMed
Mirdamadi K, Kwok J, Nevo O, Berger H, Piquette-Miller M. Impact of Th-17 cytokines on the regulation of transporters in human placental explants. Pharmaceutics. 2021;13(6):881. PubMed PMC
Kliman HJ, Nestler JE, Sermasi E, Sanger JM, Strauss JF 3. Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology. 1986;118(4):1567–82. PubMed
Karahoda R, Abad C, Horackova H, Kastner P, Zaugg J, Cerveny L et al. Dynamics of Tryptophan Metabolic Pathways in Human Placenta and placental-derived cells: Effect of Gestation Age and Trophoblast differentiation. Front Cell Dev Biology. 2020;8(937). PubMed PMC
Finberg JPM, Rabey JM. Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology. Front Pharmacol. 2016;7. PubMed PMC
Roth M, Obaidat A, Hagenbuch B, OATPs OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012;165(5):1260–87. PubMed PMC
Gekeler V, Ise W, Sanders KH, Ulrich WR, Beck J. The leukotriene LTD4 receptor antagonist MK571 specifically modulates MRP associated multidrug resistance. Biochem Biophys Res Commun. 1995;208(1):345–52. PubMed
Rosenfeld CS. Placental serotonin signaling, pregnancy outcomes, and regulation of fetal brain development†. Biol Reprod. 2020;102(3):532–8. PubMed PMC
Yang CJ, Tan HP, Du YJ. The developmental disruptions of serotonin signaling may involved in autism during early brain development. Neuroscience. 2014;267:1–10. PubMed
Tu JB, Wong CY. Serotonin metabolism in normal and abnormal infants during the perinatal period. Biol Neonate. 1976;29(3–4):187–93. PubMed
Mathiesen L, Bay-Richter C, Wegener G, Liebenberg N, Knudsen LE. Maternal stress and placental function; ex vivo placental perfusion studying cortisol, cortisone, tryptophan and serotonin. PLoS ONE. 2020;15(6):e0233979. PubMed PMC
Nigam SK, Bush KT, Martovetsky G, Ahn S-Y, Liu HC, Richard E, et al. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev. 2015;95(1):83–123. PubMed PMC
Miller RK, Genbacev O, Turner MA, Aplin JD, Caniggia I, Huppertz B. Human placental explants in culture: approaches and assessments. Placenta. 2005;26(6):439–48. PubMed
Gerk PM, Vore M. Regulation of expression of the multidrug resistance-associated protein 2 (MRP2) and its role in drug disposition. J Pharmacol Exp Ther. 2002;302(2):407–15. PubMed
St-Pierre MV, Serrano MA, Macias RI, Dubs U, Hoechli M, Lauper U, et al. Expression of members of the multidrug resistance protein family in human term placenta. Am J Physiol Regul Integr Comp Physiol. 2000;279(4):R1495–503. PubMed
Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12(1):9–18. PubMed
Deacon AC. The measurement of 5-hydroxyindoleacetic acid in urine. Ann Clin Biochem. 1994;31(Pt 3):215–32. PubMed
Meyer zu Schwabedissen HE, Jedlitschky G, Gratz M, Haenisch S, Linnemann K, Fusch C, et al. Variable expression of MRP2 (ABCC2) in human placenta: influence of gestational age and cellular differentiation. Drug Metab Dispos. 2005;33(7):896–904. PubMed
Abad C, Karahoda R, Kastner P, Portillo R, Horackova H, Kucera R et al. Profiling of Tryptophan Metabolic Pathways in the Rat Fetoplacental Unit during Gestation. Int J Mol Sci. 2020;21(20). PubMed PMC
Pehme PM, Zhang W, Finik J, Pritchett A, Buthmann J, Dana K, et al. Placental MAOA expression mediates prenatal stress effects on temperament in 12-month-olds. Infant Child Dev. 2018;27(4):e2094. PubMed PMC
Sivasubramaniam SD, Finch CC, Billett MA, Baker PN, Billett EE. Monoamine oxidase expression and activity in human placentae from pre-eclamptic and normotensive pregnancies. Placenta. 2002;23(2–3):163–71. PubMed
Charlton RA, Jordan S, Pierini A, Garne E, Neville AJ, Hansen AV, et al. Selective serotonin reuptake inhibitor prescribing before, during and after pregnancy: a population-based study in six european regions. BJOG. 2015;122(7):1010–20. PubMed
Hagberg KW, Robijn AL, Jick S. Maternal depression and antidepressant use during pregnancy and the risk of autism spectrum disorder in offspring. Clin Epidemiol. 2018;10:1599–612. PubMed PMC
Zhu HJ, Appel DI, Grundemann D, Richelson E, Markowitz JS. Evaluation of organic cation transporter 3 (SLC22A3) inhibition as a potential mechanism of antidepressant action. Pharmacol Res. 2012;65(4):491–6. PubMed
Horackova H, Karahoda R, Cerveny L, Vachalova V, Ebner R, Abad C et al. Effect of selected antidepressants on placental homeostasis of serotonin: maternal and fetal perspectives. Pharmaceutics. 2021;13(8). PubMed PMC
Koepsell H. Organic Cation Transporters in Health and Disease. Pharmacol Rev. 2020;72(1):253–319. PubMed
Ahmadimoghaddam D, Staud F. Transfer of metformin across the rat placenta is mediated by organic cation transporter 3 (OCT3/SLC22A3) and multidrug and toxin extrusion 1 (MATE1/SLC47A1) protein. Reprod Toxicol. 2013;39:17–22. PubMed
Bertrand C, St-Louis J. Reactivities to serotonin and histamine in umbilical and placental vessels during the third trimester after normotensive pregnancies and pregnancies complicated by preeclampsia. Am J Obstet Gynecol. 1999;180(3 Pt 1):650–9. PubMed
Gujrati VR, Shanker K, Vrat S, Chandravati, Parmar SS. Novel appearance of placental nuclear monoamine oxidase: biochemical and histochemical evidence for hyperserotonomic state in preeclampsia-eclampsia. Am J Obstet Gynecol. 1996;175(6):1543–50. PubMed
MacLean MMR. The serotonin hypothesis in pulmonary hypertension revisited: targets for novel therapies (2017 Grover Conference Series) Pulm Circ. 2018;8(2):2045894018759125. PubMed PMC
de Caestecker M. Serotonin Signaling in Pulmonary Hypertension. Circul Res. 2006;98(10):1229–31. PubMed