Serotonin homeostasis in the materno-foetal interface at term: Role of transporters (SERT/SLC6A4 and OCT3/SLC22A3) and monoamine oxidase A (MAO-A) in uptake and degradation of serotonin by human and rat term placenta
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 MH106806
NIMH NIH HHS - United States
R01MH106806
NIMH NIH HHS - United States
PubMed
32311818
PubMed Central
PMC8345021
DOI
10.1111/apha.13478
Knihovny.cz E-zdroje
- Klíčová slova
- foetal development, pharmacotherapy, placenta, pregnancy, serotonin, transport,
- MeSH
- homeostáza MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- membránové transportní proteiny pro serotonin metabolismus MeSH
- monoaminoxidasa metabolismus MeSH
- placenta * metabolismus MeSH
- plod MeSH
- proteiny přenášející organické kationty metabolismus MeSH
- serotonin * metabolismus MeSH
- sexuální faktory MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- membránové transportní proteiny pro serotonin MeSH
- monoaminoxidasa MeSH
- proteiny přenášející organické kationty MeSH
- serotonin * MeSH
- SLC6A4 protein, human MeSH Prohlížeč
- solute carrier family 22 (organic cation transporter), member 3 MeSH Prohlížeč
AIM: Serotonin is crucial for proper foetal development, and the placenta has been described as a 'donor' of serotonin for the embryo/foetus. However, in later stages of gestation the foetus produces its own serotonin from maternally-derived tryptophan and placental supply is no longer needed. We propose a novel model of serotonin homeostasis in the term placenta with special focus on the protective role of organic cation transporter 3 (OCT3/SLC22A3). METHODS: Dually perfused rat term placenta was employed to quantify serotonin/tryptophan transport and metabolism. Placental membrane vesicles isolated from human term placenta were used to characterize serotonin transporters on both sides of the syncytiotrophoblast. RESULTS: We obtained the first evidence that serotonin is massively taken up from the foetal circulation by OCT3. This uptake is concentration-dependent and inhibitable by OCT3 blockers of endogenous (glucocorticoids) or exogenous (pharmaceuticals) origin. Population analyses in rat placenta revealed that foetal sex influences placental extraction of serotonin from foetal circulation. Negligible foetal serotonin levels were detected in maternal-to-foetal serotonin/tryptophan transport and metabolic studies. CONCLUSION: We demonstrate that OCT3, localized on the foetus-facing membrane of syncytiotrophoblast, is an essential component of foeto-placental homeostasis of serotonin. Together with serotonin degrading enzyme, monoamine oxidase-A, this offers a protective mechanism against local vasoconstriction effects of serotonin in the placenta. However, this system may be compromised by OCT3 inhibitory molecules, such as glucocorticoids or antidepressants. Our findings open new avenues to explore previously unsuspected/unexplained complications during pregnancy including prenatal glucocorticoid excess and pharmacotherapeutic risks of treating pregnant women with OCT3 inhibitors.
Zobrazit více v PubMed
Staud F, Karahoda R. Trophoblast: The central unit of fetal growth, protection and programming. Int J Biochem Cell Biol. 2018;105:35–40. PubMed
Bonnin A, Levitt P. Placental source for 5-HT that tunes fetal brain development. Neuropsychopharmacology. 2012;37(1):299–300. PubMed PMC
Robson JM, Senior JB. The 5-Hydroxytryptamine Content of the Placenta and Foetus during Pregnancy in Mice. Br J Pharmacol Chemother. 1964;22:380–391. PubMed PMC
Koren Z, Pfeifer Y, Sulman FG. Distribution and placental transfer of C-14-serotonin in pregnant rats. Am J Obstet Gynecol. 1966;95(2):290–295. PubMed
Cote F, Fligny C, Bayard E, et al. Maternal serotonin is crucial for murine embryonic development. Proc Natl Acad Sci USA. 2007;104(1):329–334. PubMed PMC
Laurent L, Deroy K, St-Pierre J, Cote F, Sanderson JT, Vaillancourt C. Human placenta expresses both peripheral and neuronal isoform of tryptophan hydroxylase. Biochimie. 2017;140:159–165. PubMed
Bonnin A, Goeden N, Chen K, et al. A transient placental source of serotonin for the fetal forebrain. Nature. 2011;472(7343):347–350. PubMed PMC
Kliman HJ, Quaratella SB, Setaro AC, et al. Pathway of maternal serotonin to the human embryo and fetus. Endocrinology. 2018;159(4):1609–1629. PubMed
Wu HH, Choi S, Levitt P. Differential patterning of genes involved in serotonin metabolism and transport in extra-embryonic tissues of the mouse. Placenta. 2016;42:74–83. PubMed PMC
Ganapathy V, Ramamoorthy S, Leibach FH. Transport and metabolism of monoamines in the human placenta: A review. Placenta. 1993;14:35–51.
Prasad PD, Hoffmans BJ, Moe AJ, Smith CH, Leibach FH, Ganapathy V. Functional expression of the plasma membrane serotonin transporter but not the vesicular monoamine transporter in human placental trophoblasts and choriocarcinoma cells. Placenta. 1996;17(4):201–207. PubMed
Muller CL, Anacker AMJ, Rogers TD, et al. Impact of maternal serotonin transporter genotype on placental serotonin, fetal forebrain serotonin, and neurodevelopment. Neuropsychopharmacol. 2017;42(2):427–436. PubMed PMC
Kono H, Lin YC, Yamaguchi M, et al. Monoamine oxidase activity in rat organs during pregnancy. Tohoku J Exp Med. 1994;172(1):1–8. PubMed
Chen CH, Klein DC, Robinson JC. Monoamine oxidase in rat placenta, human placenta, and cultured choriocarcinoma. J Reprod Fertil. 1976;46(2):477–479. PubMed
Branchek TA, Gershon MD. Time course of expression of neuropeptide Y, calcitonin gene-related peptide, and NADPH diaphorase activity in neurons of the developing murine bowel and the appearance of 5-hydroxytryptamine in mucosal enterochromaffin cells. J Comp Neurol. 1989;285(2):262–273. PubMed
Arevalo R, Afonso D, Castro R, Rodriguez M. Fetal brain serotonin synthesis and catabolism is under control by mother intake of tryptophan. Life Sci. 1991;49(1):53–66. PubMed
Sano M, Ferchaud-Roucher V, Kaeffer B, Poupeau G, Castellano B, Darmaun D. Maternal and fetal tryptophan metabolism in gestating rats: effects of intrauterine growth restriction. Amino Acids. 2016;48(1):281–290. PubMed
Bjoro K, Stray-Pedersen S. In vitro perfusion studies on human umbilical arteries. I. Vasoactive effects of serotonin, PGF2 alpha and PGE2. Acta Obstet Gynecol Scand. 1986;65(4):351–355. PubMed
Marley PB, Robson JM, Sullivan FM. Embryotoxic and teratogenic action of 5-hydroxytryptamine: mechanism of action in the rat. Br J Pharmacol Chemother. 1967;31(3):494–505. PubMed PMC
Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res. 2007;24(7):1227–1251. PubMed
Lee N, Hebert MF, Prasad B, et al. Effect of gestational age on mRNA and protein expression of polyspecific organic cation transporters during pregnancy. Drug metabolism and disposition: the biological fate of chemicals. 2013;41(12):2225–2232. PubMed PMC
Sata R, Ohtani H, Tsujimoto M, et al. Functional analysis of organic cation transporter 3 expressed in human placenta. The Journal of pharmacology and experimental therapeutics. 2005;315(2):888–895. PubMed
Ahmadimoghaddam D, Hofman J, Zemankova L, et al. Synchronized activity of organic cation transporter 3 (Oct3/Slc22a3) and multidrug and toxin extrusion 1 (Mate1/Slc47a1) transporter in transplacental passage of MPP+ in rat. Toxicol Sci. 2012;128(2):471–481. PubMed
Ahmadimoghaddam D, Zemankova L, Nachtigal P, et al. Organic cation transporter 3 (OCT3/SLC22A3) and multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter in the placenta and fetal tissues: expression profile and fetus protective role at different stages of gestation. Biol Reprod. 2013;88(3):55. PubMed
Balkovetz DF, Tiruppathi C, Leibach FH, Mahesh VB, Ganapathy V. Evidence for an imipramine-sensitive serotonin transporter in human placental brush-border membranes. The Journal of biological chemistry. 1989;264(4):2195–2198. PubMed
Jansson T, Illsley NP. Osmotic water permeabilities of human placental microvillous and basal membranes. J Membr Biol. 1993;132(2):147–155. PubMed
Carrasco G, Cruz MA, Gallardo V, Miguel P, Dominguez A, Gonzalez C. Transport and metabolism of serotonin in the human placenta from normal and severely pre-eclamptic pregnancies. Gynecol Obstet Invest. 2000;49(3):150–155. PubMed
Feng N, Mo B, Johnson PL, Orchinik M, Lowry CA, Renner KJ. Local inhibition of organic cation transporters increases extracellular serotonin in the medial hypothalamus. Brain Res. 2005;1063(1):69–76. PubMed
Baganz NL, Horton RE, Calderon AS, et al. Organic cation transporter 3: Keeping the brake on extracellular serotonin in serotonin-transporter-deficient mice. Proc Natl Acad Sci U S A. 2008;105(48):18976–18981. PubMed PMC
Schmitt A, Mössner R, Gossmann A, et al. Organic cation transporter capable of transporting serotonin is up-regulated in serotonin transporter-deficient mice. J Neurosci Res. 2003;71(5):701–709. PubMed
Wooding FBP, Burton G. Comparative Placentation: Structures, Functions, and Evolution. Berlin: Springer-Verlag; 2008.
Fraser-Spears R, Krause-Heuer AM, Basiouny M, et al. Comparative analysis of novel decynium-22 analogs to inhibit transport by the low-affinity, high-capacity monoamine transporters, organic cation transporters 2 and 3, and plasma membrane monoamine transporter. Eur J Pharmacol. 2019;842:351–364. PubMed PMC
Garbarino VR, Santos TA, Nelson AR, et al. Prenatal metformin exposure or organic cation transporter 3 knock-out curbs social interaction preference in male mice. Pharmacol Res. 2019;140:21–32. PubMed PMC
Gobinath AR, Workman JL, Chow C, Lieblich SE, Galea LAM. Sex-dependent effects of maternal corticosterone and SSRI treatment on hippocampal neurogenesis across development. Biol Sex Differ. 2017;8:20. PubMed PMC
Sivasubramaniam SD, Finch CC, Billett MA, Baker PN, Billett EE. Monoamine oxidase expression and activity in human placentae from pre-eclamptic and normotensive pregnancies. Placenta. 2002;23(2–3):163–171. PubMed
Verhaagh S, Barlow DP, Zwart R. The extraneuronal monoamine transporter Slc22a3/Orct3 co-localizes with the Maoa metabolizing enzyme in mouse placenta. Mech Dev. 2001;100(1):127–130. PubMed
Carrasco G, Cruz MA, Dominguez A, Gallardo V, Miguel P, Gonzalez C. The expression and activity of monoamine oxidase A, but not of the serotonin transporter, is decreased in human placenta from pre-eclamptic pregnancies. Life Sci. 2000;67(24):2961–2969. PubMed
Viau M, Lafond J, Vaillancourt C. Expression of placental serotonin transporter and 5-HT 2A receptor in normal and gestational diabetes mellitus pregnancies. Reproductive BioMedicine Online. 2009;19(2):207–215. PubMed
Koepsell H Organic cation transporters in health and disease. Pharmacol Rev. 2020;72(1):253–319. PubMed
Staud F, Mazancova K, Miksik I, Pavek P, Fendrich Z, Pacha J. Corticosterone transfer and metabolism in the dually perfused rat placenta: effect of 11beta-hydroxysteroid dehydrogenase type 2. Placenta. 2006;27(2–3):171–180. PubMed
van der Doelen RHA, Calabrese F, Guidotti G, et al. Early life stress and serotonin transporter gene variation interact to affect the transcription of the glucocorticoid and mineralocorticoid receptors, and the co-chaperone FKBP5, in the adult rat brain. Front Behav Neurosci. 2014;8:355. PubMed PMC
Lanfumey L, Mongeau R, Cohen-Salmon C, Hamon M. Corticosteroid-serotonin interactions in the neurobiological mechanisms of stress-related disorders. Neurosci Biobehav Rev. 2008;32(6):1174–1184. PubMed
Van de Kar LD. Neuroendocrine pharmacology of serotonergic (5-HT) neurons. Annu Rev Pharmacol Toxicol. 1991;31:289–320. PubMed
Cooper WO, Willy ME, Pont SJ, Ray WA. Increasing use of antidepressants in pregnancy. Am J Obstet Gynecol. 2007;196(6):544 e541–545. PubMed
Zhu HJ, Appel DI, Grundemann D, Richelson E, Markowitz JS. Evaluation of organic cation transporter 3 (SLC22A3) inhibition as a potential mechanism of antidepressant action. Pharmacol Res. 2012;65(4):491–496. PubMed
Townsend CL, Byrne L, Cortina-Borja M, et al. Earlier initiation of ART and further decline in mother-to-child HIV transmission rates, 2000–2011. AIDS (London, England). 2014;28(7):1049–1057. PubMed
Amphoux A, Vialou V, Drescher E, et al. Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology. 2006;50(8):941–952. PubMed
Staud F, Vackova Z, Pospechova K, et al. Expression and transport activity of breast cancer resistance protein (Bcrp/Abcg2) in dually perfused rat placenta and HRP-1 cell line. J Pharmacol Exp Ther. 2006;319(1):53–62. PubMed
Illsley NP, Wang ZQ, Gray A, Sellers MC, Jacobs MM. Simultaneous preparation of paired, syncytial, microvillous and basal membranes from human placenta. Biochim Biophys Acta. 1990;1029(2):218–226. PubMed
Karahoda R, Ceckova M, Staud F. The inhibitory effect of antiretroviral drugs on the L-carnitine uptake in human placenta. Toxicol Appl Pharmacol. 2019;368:18–25. PubMed
Farrugia W, de Gooyer T, Rice GE, Moseley JM, Wlodek ME. Parathyroid hormone(1–34) and parathyroid hormone-related protein(1–34) stimulate calcium release from human syncytiotrophoblast basal membranes via a common receptor. The Journal of endocrinology. 2000;166(3):689–695. PubMed
Dhakal P, Soares MJ. Single-step PCR-based genetic sex determination of rat tissues and cells. Biotechniques. 2017;62(5):232–233. PubMed PMC
Developmental expression of catecholamine system in the human placenta and rat fetoplacental unit
Revisiting Steroidogenic Pathways in the Human Placenta and Primary Human Trophoblast Cells
Profiling of Tryptophan Metabolic Pathways in the Rat Fetoplacental Unit During Gestation