Prenatal inflammation as a link between placental expression signature of tryptophan metabolism and preterm birth

. 2021 Nov 01 ; 30 (22) : 2053-2067.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34169316

Spontaneous preterm birth is a serious medical condition responsible for substantial perinatal morbidity and mortality. Its phenotypic characteristics, preterm labor with intact membranes (PTL) and preterm premature rupture of the membranes (PPROM), are associated with significantly increased risks of neurological and behavioral alterations in childhood and later life. Recognizing the inflammatory milieu associated with PTL and PPROM, here, we examined expression signatures of placental tryptophan metabolism, an important pathway in prenatal brain development and immunotolerance. The study was performed in a well-characterized clinical cohort of healthy term pregnancies (n = 39) and 167 preterm deliveries (PTL, n = 38 and PPROM, n = 129). Within the preterm group, we then investigated potential mechanistic links between differential placental tryptophan pathway expression, preterm birth and both intra-amniotic markers (such as amniotic fluid interleukin-6) and maternal inflammatory markers (such as maternal serum C-reactive protein and white blood cell count). We show that preterm birth is associated with significant changes in placental tryptophan metabolism. Multifactorial analysis revealed similarities in expression patterns associated with multiple phenotypes of preterm delivery. Subsequent correlation computations and mediation analyses identified links between intra-amniotic and maternal inflammatory markers and placental serotonin and kynurenine pathways of tryptophan catabolism. Collectively, the findings suggest that a hostile inflammatory environment associated with preterm delivery underlies the mechanisms affecting placental endocrine/transport functions and may contribute to disruption of developmental programming of the fetal brain.

Zobrazit více v PubMed

Chawanpaiboon, S., Vogel, J.P., Moller, A.B., Lumbiganon, P., Petzold, M., Hogan, D., Landoulsi, S., Jampathong, N., Kongwattanakul, K., Laopaiboon, M.  et al. (2019) Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob. Health, 7, e37–e46. PubMed PMC

Goldenberg, R.L., Culhane, J.F., Iams, J.D. and Romero, R. (2008) Epidemiology and causes of preterm birth. Lancet, 371, 75–84. PubMed PMC

Romero, R., Dey, S.K. and Fisher, S.J. (2014) Preterm labor: one syndrome, many causes. Science, 345, 760–765. PubMed PMC

Kacerovsky, M., Musilova, I., Andrys, C., Hornychova, H., Pliskova, L., Kostal, M. and Jacobsson, B. (2014) Prelabor rupture of membranes between 34 and 37 weeks: the intraamniotic inflammatory response and neonatal outcomes. Am. J. Obstet. Gynecol., 210, 325.e321–325.e310. PubMed

Saigal, S. and Doyle, L.W. (2008) An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet, 371, 261–269. PubMed

Nosarti, C., Reichenberg, A., Murray, R.M., Cnattingius, S., Lambe, M.P., Yin, L., MacCabe, J., Rifkin, L. and Hultman, C.M. (2012) Preterm birth and psychiatric disorders in young adult life. Arch. Gen. Psychiatry, 69, E1–E8. PubMed

Staud, F. and Karahoda, R. (2018) Trophoblast: the central unit of fetal growth, protection and programming. Int. J. Biochem. Cell Biol., 105, 35–40. PubMed

Bonnin, A. and Levitt, P. (2011) Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience, 197, 1–7. PubMed PMC

Goeden, N., Velasquez, J.C. and Bonnin, A. (2013) Placental tryptophan metabolism as a potential novel pathway for the developmental origins of mental diseases. Transl. Dev. Psychiatry, 1, 20593.

Bonnin, A., Goeden, N., Chen, K., Wilson, M.L., King, J., Shih, J.C., Blakely, R.D., Deneris, E.S. and Levitt, P. (2011) A transient placental source of serotonin for the fetal forebrain. Nature, 472, 347–350. PubMed PMC

Lanoix, D., Beghdadi, H., Lafond, J. and Vaillancourt, C. (2008) Human placental trophoblasts synthesize melatonin and express its receptors. J. Pineal Res., 45, 50–60. PubMed

Sedlmayr, P., Blaschitz, A. and Stocker, R. (2014) The role of placental tryptophan catabolism. Front. Immunol., 5, 230–230. PubMed PMC

Karahoda, R., Abad, C., Horackova, H., Kastner, P., Zaugg, J., Cerveny, L., Kucera, R., Albrecht, C. and Staud, F. (2020) Dynamics of tryptophan metabolic pathways in human placenta and placental-derived cells: effect of gestation age and trophoblast differentiation. Front. Cell Dev. Biol., 8, 574034. PubMed PMC

Williams, M., Zhang, Z., Nance, E., Drewes, J.L., Lesniak, W.G., Singh, S., Chugani, D.C., Rangaramanujam, K., Graham, D.R. and Kannan, S. (2017) Maternal inflammation results in altered tryptophan metabolism in rabbit placenta and Fetal brain. Dev. Neurosci., 39, 399–412. PubMed PMC

Manuelpillai, U., Ligam, P., Smythe, G., Wallace, E.M., Hirst, J. and Walker, D.W. (2005) Identification of kynurenine pathway enzyme mRNAs and metabolites in human placenta: up-regulation by inflammatory stimuli and with clinical infection. Am. J. Obstet. Gynecol., 192, 280–288. PubMed

Lanoix, D., Guerin, P. and Vaillancourt, C. (2012) Placental melatonin production and melatonin receptor expression are altered in preeclampsia: new insights into the role of this hormone in pregnancy. J. Pineal Res., 53, 417–425. PubMed

Carrasco, G., Cruz, M.A., Dominguez, A., Gallardo, V., Miguel, P. and Gonzalez, C. (2000) The expression and activity of monoamine oxidase A, but not of the serotonin transporter, is decreased in human placenta from pre-eclamptic pregnancies. Life Sci., 67, 2961–2969. PubMed

Keaton, S.A., Heilman, P., Bryleva, E.Y., Madaj, Z., Krzyzanowski, S., Grit, J., Miller, E.S., Jälmby, M., Kalapotharakos, G., Racicot, K.  et al. (2019) Altered tryptophan catabolism in placentas from women with pre-eclampsia. Int J Tryptophan Res, 12, 1178646919840321–1178646919840321. PubMed PMC

Kudo, Y., Boyd, C.A.R., Sargent, I.L. and Redman, C.W.G. (2003) Decreased tryptophan catabolism by placental indoleamine 2,3-dioxygenase in preeclampsia. Am. J. Obstet. Gynecol., 188, 719–726. PubMed

Murthi, P., Wallace, E.M. and Walker, D.W. (2017) Altered placental tryptophan metabolic pathway in human fetal growth restriction. Placenta, 52, 62–70. PubMed

Ranzil, S., Ellery, S., Walker, D.W., Vaillancourt, C., Alfaidy, N., Bonnin, A., Borg, A., Wallace, E.M., Ebeling, P.R., Erwich, J.J.  et al. (2019) Disrupted placental serotonin synthetic pathway and increased placental serotonin: potential implications in the pathogenesis of human fetal growth restriction. Placenta, 84, 74–83. PubMed PMC

Murthi, P. and Vaillancourt, C. (2020) Placental serotonin systems in pregnancy metabolic complications associated with maternal obesity and gestational diabetes mellitus. Biochim. Biophys. Acta Mol. basis Dis., 1866, 165391. PubMed

Notarangelo, F.M. and Schwarcz, R. (2016) Restraint stress during pregnancy rapidly raises Kynurenic acid levels in mouse placenta and Fetal brain. Dev. Neurosci., 38, 458–468. PubMed PMC

Notarangelo, F.M. and Pocivavsek, A. (2017) Elevated kynurenine pathway metabolism during neurodevelopment: implications for brain and behavior. Neuropharmacology, 112, 275–285. PubMed PMC

Goeden, N., Velasquez, J., Arnold, K.A., Chan, Y., Lund, B.T., Anderson, G.M. and Bonnin, A. (2016) Maternal inflammation disrupts Fetal neurodevelopment via increased placental output of serotonin to the Fetal brain. J. Neurosci., 36, 6041–6049. PubMed PMC

Marley, P.B., Robson, J.M. and Sullivan, F.M. (1967) Embryotoxic and teratogenic action of 5-hydroxytryptamine: mechanism of action in the rat. Br. J. Pharmacol. Chemother., 31, 494–505. PubMed PMC

Faupel-Badger, J.M., Fichorova, R.N., Allred, E.N., Hecht, J.L., Dammann, O., Leviton, A. and McElrath, T.F. (2011) Cluster analysis of placental inflammatory proteins can distinguish preeclampsia from preterm labor and premature membrane rupture in singleton deliveries less than 28 weeks of gestation. Am. J. Reprod. Immunol., 66, 488–494. PubMed PMC

Romero, R., Avila, C., Santhanam, U. and Sehgal, P.B. (1990) Amniotic fluid interleukin 6 in preterm labor. Association with infection. J. Clin. Invest., 85, 1392–1400. PubMed PMC

Prins, J.R., Gomez-Lopez, N. and Robertson, S.A. (2012) Interleukin-6 in pregnancy and gestational disorders. J. Reprod. Immunol., 95, 1–14. PubMed

Canetta, S., Sourander, A., Surcel, H.M., Hinkka-Yli-Salomäki, S., Leiviskä, J., Kellendonk, C., McKeague, I.W. and Brown, A.S. (2014) Elevated maternal C-reactive protein and increased risk of schizophrenia in a national birth cohort. Am. J. Psychiatry, 171, 960–968. PubMed PMC

Brown, A.S., Sourander, A., Hinkka-Yli-Salomäki, S., McKeague, I.W., Sundvall, J. and Surcel, H.M. (2014) Elevated maternal C-reactive protein and autism in a national birth cohort. Mol. Psychiatry, 19, 259–264. PubMed PMC

Rudolph, M.D., Graham, A.M., Feczko, E., Miranda-Dominguez, O., Rasmussen, J.M., Nardos, R., Entringer, S., Wadhwa, P.D., Buss, C. and Fair, D.A. (2018) Maternal IL-6 during pregnancy can be estimated from newborn brain connectivity and predicts future working memory in offspring. Nat. Neurosci., 21, 765–772. PubMed PMC

Smith, S.E.P., Li, J., Garbett, K., Mirnics, K. and Patterson, P.H. (2007) Maternal immune activation alters Fetal brain development through Interleukin-6. J. Neurosci., 27, 10695–10702. PubMed PMC

Fricke, E.M., Elgin, T.G., Gong, H., Reese, J., Gibson-Corley, K.N., Weiss, R.M., Zimmerman, K., Bowdler, N.C., Kalantera, K.M., Mills, D.A.  et al. (2018) Lipopolysaccharide-induced maternal inflammation induces direct placental injury without alteration in placental blood flow and induces a secondary fetal intestinal injury that persists into adulthood. Am. J. Reprod. Immunol., 79, e12816. PubMed PMC

Hsiao, E.Y. and Patterson, P.H. (2011) Activation of the maternal immune system induces endocrine changes in the placenta via IL-6. Brain Behav. Immun., 25, 604–615. PubMed PMC

Zaretsky, M.V., Alexander, J.M., Byrd, W. and Bawdon, R.E. (2004) Transfer of inflammatory cytokines across the placenta. Obstet. Gynecol., 103, 546–550. PubMed

Malek, A., Bersinger, N.A., Di Santo, S., Mueller, M.D., Sager, R., Schneider, H., Ghezzi, F., Karousou, E., Passi, A., De Luca, G.  et al. (2006) C-reactive protein production in term human placental tissue. Placenta, 27, 619–625. PubMed

Kim, E.N., Yoon, B.H., Jeon, E.J., Lee, J.B., Hong, J.S., Lee, J.Y., Hwang, D., Kim, K.C., Kim, J.S. and Kim, C.J. (2015) Placental deposition of C-reactive protein is a common feature of human pregnancy. Placenta, 36, 704–707. PubMed

Romero, R., Espinoza, J., Gonçalves, L.F., Kusanovic, J.P., Friel, L.A. and Nien, J.K. (2006) Inflammation in preterm and term labour and delivery. Semin. Fetal Neonatal Med., 11, 317–326. PubMed PMC

Brown, A.G., Tulina, N.M., Barila, G.O., Hester, M.S. and Elovitz, M.A. (2017) Exposure to intrauterine inflammation alters metabolomic profiles in the amniotic fluid, fetal and neonatal brain in the mouse. PLoS One, 12, e0186656. PubMed PMC

Fukui, S., Schwarcz, R., Rapoport, S.I., Takada, Y. and Smith, Q.R. (1991) Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J. Neurochem., 56, 2007–2017. PubMed

Karahoda, R., Horackova, H., Kastner, P., Matthios, A., Cerveny, L., Kucera, R., Kacerovsky, M., Duintjer Tebbens, J., Bonnin, A., Abad, C.  et al. (2020) Serotonin homeostasis in the materno-foetal interface at term: role of transporters (SERT/SLC6A4 and OCT3/SLC22A3) and monoamine oxidase A (MAO-A) in uptake and degradation of serotonin by human and rat term placenta. Acta Physiol., 229, e13478. PubMed PMC

Masson, J. and Hamon, M. (2009) In Squire, L.R. (ed), Encyclopedia of Neuroscience. Academic Press, Oxford, pp. 921–929.

Kelly, R., Holzman, C., Senagore, P., Wang, J., Tian, Y., Rahbar, M.H. and Chung, H. (2009) Placental vascular pathology findings and pathways to preterm delivery. Am. J. Epidemiol., 170, 148–158. PubMed PMC

Weckman, A.M., Ngai, M., Wright, J., McDonald, C.R. and Kain, K.C. (2019) The impact of infection in pregnancy on placental vascular development and adverse birth outcomes. Front. Microbiol., 10, 1924–1924. PubMed PMC

Ranzil, S., Walker, D.W., Borg, A.J., Wallace, E.M., Ebeling, P.R. and Murthi, P. (2019) The relationship between the placental serotonin pathway and fetal growth restriction. Biochimie, 161, 80–87. PubMed

Riley, L.A., Waguespack, M.A. and Denney, R.M. (1989) Characterization and quantitation of monoamine oxidases A and B in mitochondria from human placenta. Mol. Pharmacol., 36, 54–60. PubMed

Auda, G.R., Kirk, S.H., Billett, M.A. and Billett, E.E. (1998) Localization of monoamine oxidase mRNA in human placenta. J. Histochem. Cytochem., 46, 1393–1400. PubMed

van  Baaren, G.J., Vis, J.Y., Wilms, F.F., Oudijk, M.A., Kwee, A., Porath, M.M., Oei, G., Scheepers, H.C.J., Spaanderman, M.E.A., Bloemenkamp, K.W.M.  et al. (2014) Predictive value of cervical length measurement and fibronectin testing in threatened preterm labor. Obstet. Gynecol., 123, 1185–1192. PubMed

Stranik, J., Kacerovsky, M., Soucek, O., Kolackova, M., Musilova, I., Pliskova, L., Bolehovska, R., Bostik, P., Matulova, J., Jacobsson, B.  et al. (2021) IgGFc-binding protein in pregnancies complicated by spontaneous preterm delivery: a retrospective cohort study. Sci. Rep., 11, 6107. PubMed PMC

Kacerovsky, M., Pliskova, L., Bolehovska, R., Gerychova, R., Janku, P., Matlak, P., Simetka, O., Faist, T., Mls, J., Vescicik, P.  et al. (2020) Lactobacilli-dominated cervical microbiota in women with preterm prelabor rupture of membranes. Pediatr. Res., 87, 952–960. PubMed

Chaemsaithong, P., Romero, R., Korzeniewski, S.J., Martinez-Varea, A., Dong, Z., Yoon, B.H., Hassan, S.S., Chaiworapongsa, T. and Yeo, L. (2016) A rapid interleukin-6 bedside test for the identification of intra-amniotic inflammation in preterm labor with intact membranes. J. Matern. Fetal Neonatal Med., 29, 349–359. PubMed PMC

Chaemsaithong, P., Romero, R., Korzeniewski, S.J., Martinez-Varea, A., Dong, Z., Yoon, B.H., Hassan, S.S., Chaiworapongsa, T. and Yeo, L. (2016) A point of care test for interleukin-6 in amniotic fluid in preterm prelabor rupture of membranes: a step toward the early treatment of acute intra-amniotic inflammation/infection. J. Matern. Fetal Neonatal Med., 29, 360–367. PubMed PMC

Musilova, I., Andrys, C., Holeckova, M., Kolarova, V., Pliskova, L., Drahosova, M., Bolehovska, R., Pilka, R., Huml, K., Cobo, T.  et al. (2020) Interleukin-6 measured using the automated electrochemiluminescence immunoassay method for the identification of intra-amniotic inflammation in preterm prelabor rupture of membranes. J. Matern. Fetal Neonatal Med., 33, 1919–1926. PubMed

Kacerovsky, M., Tothova, L., Menon, R., Vlkova, B., Musilova, I., Hornychova, H., Prochazka, M. and Celec, P. (2015) Amniotic fluid markers of oxidative stress in pregnancies complicated by preterm prelabor rupture of membranes. J. Matern. Fetal Neonatal Med., 28, 1250–1259. PubMed

Salafia, C.M., Weigl, C. and Silberman, L. (1989) The prevalence and distribution of acute placental inflammation in uncomplicated term pregnancies. Obstet. Gynecol., 73, 383–389. PubMed

Xie, F., Sun, G., Stiller, J.W. and Zhang, B. (2011) Genome-wide functional analysis of the cotton transcriptome by creating an integrated EST database. PLoS One, 6, e26980. PubMed PMC

Silver, N., Best, S., Jiang, J. and Thein, S.L. (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol., 7, 33. PubMed PMC

Pfaffl, M.W., Tichopad, A., Prgomet, C. and Neuvians, T.P. (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—excel-based tool using pair-wise correlations. Biotechnol. Lett., 26, 509–515. PubMed

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. and Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol., 3, research0034.1. PubMed PMC

Andersen, C.L., Jensen, J.L. and Ørntoft, T.F. (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res., 64, 5245–5250. PubMed

Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L.  et al. (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem., 55, 611–622. PubMed

Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L.  et al. (2011) Primer sequence disclosure: a clarification of the MIQE guidelines. Clin. Chem., 57, 919–921. PubMed

Fox, J. and Weisberg, S. (2018) An R Companion to Applied Regression. SAGE Publications.

Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.

Kolde, R. (2019) R Package Version 1.0.12.

Josse, J. and Husson, F. (2016) missMDA: a package for handling missing values in multivariate data analysis. 70, 31.

Lê, S., Josse, J. and Husson, F. (2008) FactoMineR: an R package for multivariate analysis. 25, 18.

Kassambara, A. and Mundt, F. (2020) R Package Version 1.0.7.

Harrell, F.E.J. (2020) R Package Version 4.4–1.

Kuhn, M., Jackson, S. and Cimentada, J. (2020) R Package Version 0.4.2.

Tingley, D., Yamamoto, T., Hirose, K., Keele, L. and Imai, K. (2014) Mediation: R package for causal mediation analysis. 59, 38.

Wei, T. and Simko, V. (2017) R Package ``Corrplot'': Visualization of a Correlation Matrix (Version 0.84).

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace