IgGFc-binding protein in pregnancies complicated by spontaneous preterm delivery: a retrospective cohort study
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33731725
PubMed Central
PMC7969627
DOI
10.1038/s41598-021-85473-2
PII: 10.1038/s41598-021-85473-2
Knihovny.cz E-zdroje
- MeSH
- biologické markery metabolismus MeSH
- dospělí MeSH
- infekční komplikace v těhotenství metabolismus MeSH
- lidé MeSH
- molekuly buněčné adheze metabolismus MeSH
- plodová voda metabolismus MeSH
- předčasný porod metabolismus MeSH
- retrospektivní studie MeSH
- těhotenství MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- FCGBP protein, human MeSH Prohlížeč
- molekuly buněčné adheze MeSH
To determine the IgGFc-binding protein (FcgammaBP) concentration in amniotic and cervical fluids in preterm prelabor rupture of membranes (PPROM) and preterm labor with intact membranes (PTL) and to assess the diagnostic indices of FcgammaBP to predict intra-amniotic infection (the presence of both microbial invasion of the amniotic cavity and intra-amniotic inflammation). In this study, we included 170 and 79 women with PPROM and PTL, respectively. Paired cervical and amniotic fluid samples were obtained using a Dacron polyester swab and transabdominal amniocentesis, respectively. The FcgammaBP concentrations in the samples were assessed using an enzyme-linked immunosorbent assay. The presence of intra-amniotic infection was associated with elevated FcgammaBP concentrations in pregnancies with PPROM and PTL [PPROM-presence: 86 ng/mL vs. absence: 13 ng/mL, p < 0.0001, area under receiver operating characteristic curve (AUC) = 0.94; PTL-presence: 140 ng/mL vs. absence: 22 ng/mL, p < 0.0001, AUC = 0.86]. In cervical fluid, the concentrations of FcgammaBP were elevated in the presence of intra-amniotic infection in pregnancies with PPROM only (presence: 345 ng/mL vs. absence: 60 ng/mL, p < 0.0001, AUC = 0.93). FcgammaBP in amniotic fluid might be a marker of intra-amniotic infection in women with both PPROM and PTL However, in cervical fluid, it is only observed in women with PPROM.
Zobrazit více v PubMed
Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84. doi: 10.1016/S0140-6736(08)60074-4. PubMed DOI PMC
Romero R, Dey SK, Fisher SJ. Preterm labor: One syndrome, many causes. Science. 2014;345:760–765. doi: 10.1126/science.1251816. PubMed DOI PMC
Pacora P, et al. Lactoferrin in intrauterine infection, human parturition, and rupture of fetal membranes. Am. J. Obstet. Gynecol. 2000;183:904–910. doi: 10.1067/mob.2000.108882. PubMed DOI
Maymon E, et al. A role for the 72 kDa gelatinase (MMP-2) and its inhibitor (TIMP-2) in human parturition, premature rupture of membranes and intraamniotic infection. J. Perinat. Med. 2001;29:308–316. doi: 10.1515/JPM.2001.044. PubMed DOI
Espinoza J, et al. Antimicrobial peptides in amniotic fluid: Defensins, calprotectin and bacterial/permeability-increasing protein in patients with microbial invasion of the amniotic cavity, intra-amniotic inflammation, preterm labor and premature rupture of membranes. J. Matern. Fetal Neonatal Med. 2003;13:2–21. doi: 10.1080/jmf.13.1.2.21. PubMed DOI
Jacobsson B, et al. Microbial invasion and cytokine response in amniotic fluid in a Swedish population of women with preterm prelabor rupture of membranes. Acta Obstet. Gynecol. Scand. 2003;82:423–431. doi: 10.1034/j.1600-0412.2003.00157.x. PubMed DOI
Kusanovic JP, et al. Amniotic fluid soluble human leukocyte antigen-G in term and preterm parturition, and intra-amniotic infection/inflammation. J. Matern. Fetal Neonatal Med. 2009;22:1151–1166. doi: 10.3109/14767050903019684. PubMed DOI PMC
Erez O, et al. Differential expression pattern of genes encoding for anti-microbial peptides in the fetal membranes of patients with spontaneous preterm labor and intact membranes and those with preterm prelabor rupture of the membranes. J. Matern. Fetal Neonatal Med. 2009;22:1103–1115. doi: 10.3109/14767050902994796. PubMed DOI PMC
Lee SE, Park IS, Romero R, Yoon BH. Amniotic fluid prostaglandin F2 increases even in sterile amniotic fluid and is an independent predictor of impending delivery in preterm premature rupture of membranes. J. Matern. Fetal Neonatal Med. 2009;22:880–886. doi: 10.1080/14767050902994648. PubMed DOI PMC
Pacora P, et al. Amniotic fluid angiopoietin-2 in term and preterm parturition, and intra-amniotic infection/inflammation. J. Perinat. Med. 2009;37:503–511. doi: 10.1515/JPM.2009.093. PubMed DOI PMC
Romero R, et al. Evidence of perturbations of the cytokine network in preterm labor. Am. J. Obstet. Gynecol. 2015;213:836.e831–836.e818. doi: 10.1016/j.ajog.2015.07.037. PubMed DOI PMC
Romero R, et al. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J. Matern. Fetal Neonatal Med. 2015;28:1394–1409. doi: 10.3109/14767058.2014.958463. PubMed DOI PMC
Musilova I, et al. Intraamniotic inflammation in women with preterm prelabor rupture of membranes. PLoS ONE. 2015;10:e0133929. doi: 10.1371/journal.pone.0133929. PubMed DOI PMC
Romero R, et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am. J. Reprod. Immunol. 2014;72:458–474. doi: 10.1111/aji.12296. PubMed DOI PMC
Romero R, et al. Sterile intra-amniotic inflammation in asymptomatic patients with a sonographic short cervix: Prevalence and clinical significance. J. Matern. Fetal Neonatal Med. 2015;28:1343–1359. doi: 10.3109/14767058.2014.954243. PubMed DOI PMC
Shim SS, et al. Clinical significance of intra-amniotic inflammation in patients with preterm premature rupture of membranes. Am. J. Obstet. Gynecol. 2004;191:1339–1345. doi: 10.1016/j.ajog.2004.06.085. PubMed DOI
Kim KW, et al. A rapid matrix metalloproteinase-8 bedside test for the detection of intraamniotic inflammation in women with preterm premature rupture of membranes. Am. J. Obstet. Gynecol. 2007;197(292):e291–295. doi: 10.1016/j.ajog.2007.06.040. PubMed DOI
Kacerovsky M, et al. Bedside assessment of amniotic fluid interleukin-6 in preterm prelabor rupture of membranes. Am. J. Obstet. Gynecol. 2014;211(385):e381–389. doi: 10.1016/j.ajog.2014.03.069. PubMed DOI
Chaemsaithong P, et al. A point of care test for the determination of amniotic fluid interleukin-6 and the chemokine CXCL-10/IP-10. J. Matern. Fetal Neonatal Med. 2015;28:1510–1519. doi: 10.3109/14767058.2014.961417. PubMed DOI PMC
Chaemsaithong P, et al. A point of care test for interleukin-6 in amniotic fluid in preterm prelabor rupture of membranes: A step toward the early treatment of acute intra-amniotic inflammation/infection. J. Matern. Fetal Neonatal Med. 2016;29:360–367. doi: 10.3109/14767058.2015.1006621. PubMed DOI PMC
Chaemsaithong P, et al. Comparison of rapid MMP-8 and interleukin-6 point-of-care tests to identify intra-amniotic inflammation/infection and impending preterm delivery in patients with preterm labor and intact membranes() J. Matern. Fetal Neonatal Med. 2018;31:228–244. doi: 10.1080/14767058.2017.1281904. PubMed DOI PMC
Musilova I, et al. Interleukin-6 measured using the automated electrochemiluminescence immunoassay method for the identification of intra-amniotic inflammation in preterm prelabor rupture of membranes. J. Matern. Fetal Neonatal Med. 2018 doi: 10.1080/14767058.2018.1533947. PubMed DOI
Soucy-Giguere L, et al. Intra-amniotic inflammation and child neurodevelopment: A systematic review protocol. Syst. Rev. 2018;7:12. doi: 10.1186/s13643-018-0683-z. PubMed DOI PMC
Rodriguez-Trujillo A, et al. Influence of perinatal inflammation on the neurodevelopmental outcome of premature infants. J. Matern. Fetal Neonatal Med. 2019;32:1069–1077. doi: 10.1080/14767058.2017.1399118. PubMed DOI
Archabald KL, et al. Limiting the exposure of select fetuses to intrauterine infection/inflammation improves short-term neonatal outcomes in preterm premature rupture of membranes. Fetal Diagn. Ther. 2017;42:99–110. doi: 10.1159/000450997. PubMed DOI
Rodriguez-Trujillo A, et al. Gestational age is more important for short-term neonatal outcome than microbial invasion of the amniotic cavity or intra-amniotic inflammation in preterm prelabor rupture of membranes. Acta Obstet. Gynecol. Scand. 2016;95:926–933. doi: 10.1111/aogs.12905. PubMed DOI
Lee J, et al. A new anti-microbial combination prolongs the latency period, reduces acute histologic chorioamnionitis as well as funisitis, and improves neonatal outcomes in preterm PROM. J. Matern. Fetal Neonatal Med. 2016;29:707–720. doi: 10.3109/14767058.2015.1020293. PubMed DOI PMC
Cobo T, et al. Intra-amniotic inflammation predicts microbial invasion of the amniotic cavity but not spontaneous preterm delivery in preterm prelabor membrane rupture. Acta Obstet. Gynecol. Scand. 2012;91:930–935. doi: 10.1111/j.1600-0412.2012.01427.x. PubMed DOI
Gravett MG, et al. Diagnosis of intra-amniotic infection by proteomic profiling and identification of novel biomarkers. JAMA. 2004;292:462–469. doi: 10.1001/jama.292.4.462. PubMed DOI
Buhimschi IA, Christner R, Buhimschi CS. Proteomic biomarker analysis of amniotic fluid for identification of intra-amniotic inflammation. BJOG. 2005;112:173–181. doi: 10.1111/j.1471-0528.2004.00340.x. PubMed DOI
Klein LL, et al. Detection of intra-amniotic infection in a rabbit model by proteomics-based amniotic fluid analysis. Am. J. Obstet. Gynecol. 2005;193:1302–1306. doi: 10.1016/j.ajog.2005.06.017. PubMed DOI
Ruetschi U, et al. Proteomic analysis using protein chips to detect biomarkers in cervical and amniotic fluid in women with intra-amniotic inflammation. J. Proteome Res. 2005;4:2236–2242. doi: 10.1021/pr050139e. PubMed DOI
Gravett MG, et al. Proteomic analysis of cervical-vaginal fluid: Identification of novel biomarkers for detection of intra-amniotic infection. J. Proteome Res. 2007;6:89–96. doi: 10.1021/pr060149v. PubMed DOI PMC
Romero R, et al. Proteomic analysis of amniotic fluid to identify women with preterm labor and intra-amniotic inflammation/infection: The use of a novel computational method to analyze mass spectrometric profiling. J. Matern. Fetal Neonatal Med. 2008;21:367–388. doi: 10.1080/14767050802045848. PubMed DOI PMC
Romero R, et al. Isobaric labeling and tandem mass spectrometry: A novel approach for profiling and quantifying proteins differentially expressed in amniotic fluid in preterm labor with and without intra-amniotic infection/inflammation. J. Matern. Fetal Neonatal Med. 2010;23:261–280. doi: 10.3109/14767050903067386. PubMed DOI PMC
Tambor V, et al. Amniotic fluid cathelicidin in PPROM pregnancies: From proteomic discovery to assessing its potential in inflammatory complications diagnosis. PLoS ONE. 2012;7:e41164. doi: 10.1371/journal.pone.0041164. PubMed DOI PMC
Tambor V, et al. Potential peripartum markers of infectious-inflammatory complications in spontaneous preterm birth. Biomed. Res. Int. 2015;2015:343501. doi: 10.1155/2015/343501. PubMed DOI PMC
Cobo T, et al. Cervical alpha-actinin-4 is upregulated in women with threatened preterm labor and microbial invasion of the amniotic cavity. Fetal Diagn. Ther. 2018;44:36–43. doi: 10.1159/000478259. PubMed DOI
Govia RNM, et al. Amniotic fluid proteomic signatures of cervical insufficiency and their association with length of latency. Am. J. Reprod. Immunol. 2018;80:e13030. doi: 10.1111/aji.13030. PubMed DOI
Zhao M, et al. A comparative proteomics analysis of five body fluids: Plasma, urine, cerebrospinal fluid, amniotic fluid, and saliva. Proteomics Clin. Appl. 2018;12:e1800008. doi: 10.1002/prca.201800008. PubMed DOI
Wang Y, et al. Placental protein 14 as a potential biomarker for diagnosis of preterm premature rupture of membranes. Mol. Med. Rep. 2018;18:113–122. doi: 10.3892/mmr.2018.8967. PubMed DOI PMC
Liu X, Song Y, Guo Z, Sun W, Liu J. A comprehensive profile and inter-individual variations analysis of the human normal amniotic fluid proteome. J. Proteomics. 2019;192:1–9. doi: 10.1016/j.jprot.2018.04.023. PubMed DOI
Hallingstrom M, et al. Proteomic analysis of early mid-trimester amniotic fluid does not predict spontaneous preterm delivery. PLoS ONE. 2016;11:e0155164. doi: 10.1371/journal.pone.0155164. PubMed DOI PMC
An D, et al. Identification of PCSK9 as a novel serum biomarker for the prenatal diagnosis of neural tube defects using iTRAQ quantitative proteomics. Sci. Rep. 2015;5:17559. doi: 10.1038/srep17559. PubMed DOI PMC
Dixon CL, et al. Amniotic fluid exosome proteomic profile exhibits unique pathways of term and preterm labor. Endocrinology. 2018;159:2229–2240. doi: 10.1210/en.2018-00073. PubMed DOI PMC
Liu Z, Yuan Z, Zhao Q. SELDI-TOF-MS proteomic profiling of serum, urine, and amniotic fluid in neural tube defects. PLoS ONE. 2014;9:e103276. doi: 10.1371/journal.pone.0103276. PubMed DOI PMC
Fotopoulou C, et al. Proteomic analysis of midtrimester amniotic fluid to identify novel biomarkers for preterm delivery. J. Matern. Fetal Neonatal Med. 2012;25:2488–2493. doi: 10.3109/14767058.2012.712565. PubMed DOI
Oh KJ, et al. Proteomic biomarkers in second trimester amniotic fluid that identify women who are destined to develop preeclampsia. Reprod. Sci. 2012;19:694–703. doi: 10.1177/1933719112438441. PubMed DOI
Tsangaris GT, et al. Application of proteomics for the identification of biomarkers in amniotic fluid: Are we ready to provide a reliable prediction? EPMA J. 2011;2:149–155. doi: 10.1007/s13167-011-0083-0. PubMed DOI PMC
Kolialexi A, Tounta G, Mavrou A, Tsangaris GT. Proteomic analysis of amniotic fluid for the diagnosis of fetal aneuploidies. Expert Rev. Proteomics. 2011;8:175–185. doi: 10.1586/epr.10.112. PubMed DOI
Park J, et al. Comparative proteomic analysis of human amniotic fluid supernatants with Down syndrome using mass spectrometry. J. Microbiol. Biotechnol. 2010;20:959–967. doi: 10.4014/jmb.0912.12035. PubMed DOI
Lee J, et al. Identification and characterization of proteins in amniotic fluid that are differentially expressed before and after antenatal corticosteroid administration. Am. J. Obstet. Gynecol. 2010;202:388.e381–388.e388. doi: 10.1016/j.ajog.2010.01.056. PubMed DOI
Park JS, et al. Identification of proteomic biomarkers of preeclampsia in amniotic fluid using SELDI-TOF mass spectrometry. Reprod. Sci. 2008;15:457–468. doi: 10.1177/1933719108316909. PubMed DOI
Mavrou A, et al. Proteomic analysis of amniotic fluid in pregnancies with Turner syndrome fetuses. J. Proteome Res. 2008;7:1862–1866. doi: 10.1021/pr700588u. PubMed DOI
Kolialexi A, Mavrou A, Tsangaris GT. Proteomic analysis of human reproductive fluids. Proteomics Clin. Appl. 2007;1:853–860. doi: 10.1002/prca.200700040. PubMed DOI
Michaels JE, et al. Comprehensive proteomic analysis of the human amniotic fluid proteome: Gestational age-dependent changes. J. Proteome Res. 2007;6:1277–1285. doi: 10.1021/pr060543t. PubMed DOI
Queloz PA, et al. Proteomic analyses of amniotic fluid: Potential applications in health and diseases. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007;850:336–342. doi: 10.1016/j.jchromb.2006.12.006. PubMed DOI
Tsangaris GT, et al. The normal human amniotic fluid supernatant proteome. In Vivo. 2006;20:479–490. PubMed
Michel PE, et al. Proteome analysis of human plasma and amniotic fluid by Off-Gel isoelectric focusing followed by nano-LC-MS/MS. Electrophoresis. 2006;27:1169–1181. doi: 10.1002/elps.200500680. PubMed DOI
Park SJ, et al. Proteome analysis of human amnion and amniotic fluid by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proteomics. 2006;6:349–363. doi: 10.1002/pmic.200500084. PubMed DOI
Bujold E, et al. Proteomic profiling of amniotic fluid in preterm labor using two-dimensional liquid separation and mass spectrometry. J. Matern. Fetal Neonatal Med. 2008;21:697–713. doi: 10.1080/14767050802053289. PubMed DOI PMC
Harada N, et al. Human IgGFc binding protein (FcgammaBP) in colonic epithelial cells exhibits mucin-like structure. J. Biol. Chem. 1997;272:15232–15241. doi: 10.1074/jbc.272.24.15232. PubMed DOI
O'Donovan N, et al. Differential expression of IgG Fc binding protein (FcgammaBP) in human normal thyroid tissue, thyroid adenomas and thyroid carcinomas. J. Endocrinol. 2002;174:517–524. doi: 10.1677/joe.0.1740517. PubMed DOI
Kobayashi K, et al. Detection of Fcgamma binding protein antigen in human sera and its relation with autoimmune diseases. Immunol. Lett. 2001;79:229–235. doi: 10.1016/S0165-2478(01)00288-7. PubMed DOI
Kobayashi K, Blaser MJ, Brown WR. Identification of a unique IgG Fc binding site in human intestinal epithelium. J. Immunol. 1989;143:2567–2574. PubMed
Kobayashi K, Hamada Y, Blaser MJ, Brown WR. The molecular configuration and ultrastructural locations of an IgG Fc binding site in human colonic epithelium. J. Immunol. 1991;146:68–74. PubMed
Racicot K, et al. Viral infection of the pregnant cervix predisposes to ascending bacterial infection. J. Immunol. 2013;191:934–941. doi: 10.4049/jimmunol.1300661. PubMed DOI PMC
Hein M, Valore EV, Helmig RB, Uldbjerg N, Ganz T. Antimicrobial factors in the cervical mucus plug. Am. J. Obstet. Gynecol. 2002;187:137–144. doi: 10.1067/mob.2002.123034. PubMed DOI
Hansen LK, et al. The cervical mucus plug inhibits, but does not block, the passage of ascending bacteria from the vagina during pregnancy. Acta Obstet. Gynecol. Scand. 2014;93:102–108. doi: 10.1111/aogs.12296. PubMed DOI PMC
Frew L, et al. Human cathelicidin production by the cervix. PLoS ONE. 2014;9:e103434. doi: 10.1371/journal.pone.0103434. PubMed DOI PMC
Musilova I, et al. Cervical fluid interleukin 6 and intra-amniotic complications of preterm prelabor rupture of membranes. J. Matern. Fetal Neonatal Med. 2018;31:827–836. doi: 10.1080/14767058.2017.1297792. PubMed DOI
Winram SB, Jonas M, Chi E, Rubens CE. Characterization of group B streptococcal invasion of human chorion and amnion epithelial cells in vitro. Infect. Immun. 1998;66:4932–4941. doi: 10.1128/IAI.66.10.4932-4941.1998. PubMed DOI PMC
Kjaergaard N, et al. Antibacterial properties of human amnion and chorion in vitro. Eur. J. Obstet. Gynecol. Reprod. Biol. 2001;94:224–229. doi: 10.1016/S0301-2115(00)00345-6. PubMed DOI
Kjaergaard N, et al. Chorioamniotic membranes constitute a competent barrier to group b streptococcus in vitro. Eur. J. Obstet. Gynecol. Reprod. Biol. 1999;83:165–169. doi: 10.1016/S0301-2115(99)00009-3. PubMed DOI
Azzarelli B, Lafuze J. Amniotic basement membrane: A barrier to neutrophil invasion. Am. J. Obstet. Gynecol. 1987;156:1130–1136. doi: 10.1016/0002-9378(87)90125-6. PubMed DOI
Turley E, Tretiak M, Tanguay K. Effect of glycosaminoglycans and enzymes on the integrity of human placental amnion as a barrier to cell invasion. J. Natl. Cancer Inst. 1987;78:787–795. PubMed
Kim YM, et al. Toll-like receptor-2 and -4 in the chorioamniotic membranes in spontaneous labor at term and in preterm parturition that are associated with chorioamnionitis. Am. J. Obstet. Gynecol. 2004;191:1346–1355. doi: 10.1016/j.ajog.2004.07.009. PubMed DOI
Abreu MT. Toll-like receptor signalling in the intestinal epithelium: How bacterial recognition shapes intestinal function. Nat. Rev. Immunol. 2010;10:131–144. doi: 10.1038/nri2707. PubMed DOI
Hayati AR, Mohamed AE, Tan GC. An immunohistochemical study of Toll-like receptors 2 and 4 in placenta with and without infection. Malays. J. Pathol. 2010;32:13–19. PubMed
van Baaren GJ, et al. Predictive value of cervical length measurement and fibronectin testing in threatened preterm labor. Obstet. Gynecol. 2014;123:1185–1192. doi: 10.1097/aog.0000000000000229. PubMed DOI
Fouhy F, et al. The effects of freezing on faecal microbiota as determined using MiSeq sequencing and culture-based investigations. PLoS ONE. 2015;10:e0119355. doi: 10.1371/journal.pone.0119355. PubMed DOI PMC
Greisen K, Loeffelholz M, Purohit A, Leong D. PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J. Clin. Microbiol. 1994;32:335–351. doi: 10.1128/JCM.32.2.335-351.1994. PubMed DOI PMC