Development of a Rat Model of Intra-Amniotic Inflammation via Ultrasound-Guided Administration of a Triggering Agent in the Gestational Sac to Enable Analysis of Individual Amniotic Fluid Samples
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35496265
PubMed Central
PMC9039461
DOI
10.3389/fphar.2022.871193
PII: 871193
Knihovny.cz E-zdroje
- Klíčová slova
- amniocentesis, animal model, lipopolysaccharide, minimally invasive, preterm birth, preterm delivery,
- Publikační typ
- časopisecké články MeSH
Objectives: To develop a rat model of intra-amniotic inflammation, characterized by the concentration of interleukin-6 in the amniotic fluid, induced by an ultrasound-guided transabdominal administration of lipopolysaccharide into individual gestational sacs. Methods: An ultrasound-guided transabdominal intra-amniotic administration of lipopolysaccharide or phosphate-buffered saline (PBS) as control was performed in rats on embryonic day 18. Only accessible gestational sacs with precise recording of their positions were injected. Twenty-four hours later, individual amniotic fluid samples were collected from the gestational sacs of laparotomized animals. The gestational sacs were divided into four subgroups: (i) with lipopolysaccharide: injected gestational sacs from rats undergoing lipopolysaccharide administration; (ii) without lipopolysaccharide: non-injected gestational sacs from rats undergoing lipopolysaccharide administration; (iii) with PBS: injected gestational sacs from rats undergoing PBS administration; and (iv) without PBS: non-injected gestational sacs from rats undergoing PBS administration. The concentration of interleukin-6 in individual amniotic fluid samples was assessed using ELISA. Results: In the group of five animals receiving lipopolysaccharide, 24 (33%) and 48 (77%) gestational sacs were and were not injected, respectively. The amniotic fluid was obtained from 21 (88%) injected and 46 (95%) non-injected sacs. In the control group of five animals receiving phosphate-buffered saline, 28 (35%) and 52 (75%) gestational sacs were and were not injected, respectively. The amniotic fluid was obtained from 18 (64%) injected and 50 (96%) non-injected sacs. No labor occurred, and only one fetal death was observed in a gestational sac injected with lipopolysaccharide. Differences in concentrations of interleukin-6 in the amniotic fluid were found among the subgroups of the gestational sacs (with lipopolysaccharide: median 762 pg/ml; without lipopolysaccharide: median 35.6 pg/ml; with PBS: median 35.6 pg/ml; and without PBS: median 35.6 pg/ml; p < 0.0001). Concentrations of interleukin-6 in the amniotic fluid from the gestational sacs with lipopolysaccharide were significantly higher than those in the three remaining subgroups (p < 0.0001). No differences in concentrations of interleukin-6 in the amniotic fluid were identified between the three remaining subgroups. Conclusion: The ultrasound-guided transabdominal intra-amniotic administration of lipopolysaccharide with a subsequent collection and analysis of amniotic fluid samples is feasible in rats. The intra-amniotic administration of lipopolysaccharide led to the development of intra-amniotic inflammation without leading to fetal mortality or induction of labor.
Zobrazit více v PubMed
Awad N., Khatib N., Ginsberg Y., Weiner Z., Maravi N., Thaler I., et al. (2011). N-acetyl-cysteine (NAC) Attenuates LPS-Induced Maternal and Amniotic Fluid Oxidative Stress and Inflammatory Responses in the Preterm Gestation. Am. J. Obstet. Gynecol. 204, 450.e15-20. 10.1016/j.ajog.2011.01.030 PubMed DOI
Beloosesky R., Gayle D. A., Amidi F., Nunez S. E., Babu J., Desai M., et al. (2006). N-acetyl-cysteine Suppresses Amniotic Fluid and Placenta Inflammatory Cytokine Responses to Lipopolysaccharide in Rats. Am. J. Obstet. Gynecol. 194, 268–273. 10.1016/j.ajog.2005.06.082 PubMed DOI
Blencowe H., Cousens S., Oestergaard M. Z., Chou D., Moller A. B., Narwal R., et al. (2012). National, Regional, and Worldwide Estimates of Preterm Birth Rates in the Year 2010 with Time Trends since 1990 for Selected Countries: a Systematic Analysis and Implications. Lancet 379, 2162–2172. 10.1016/S0140-6736(12)60820-4 PubMed DOI
Brown A. G., Maubert M. E., Anton L., Heiser L. M., Elovitz M. A. (2019). The Tracking of Lipopolysaccharide through the Feto-Maternal Compartment and the Involvement of Maternal TLR4 in Inflammation-Induced Fetal Brain Injury. Am. J. Reprod. Immunol. 82, e13189. 10.1111/aji.13189 PubMed DOI PMC
Cookson M. W., Ryan S. L., Seedorf G. J., Dodson R. B., Abman S. H., Mandell E. W. (2018). Antenatal Vitamin D Preserves Placental Vascular and Fetal Growth in Experimental Chorioamnionitis Due to Intra-amniotic Endotoxin Exposure. Am. J. Perinatol 35, 1260–1270. 10.1055/s-0038-1642033 PubMed DOI
Dedja A., Gucciardi A., Giordano G., Maria Di Gangi I., Porzionato A., Navaglia F., et al. (2018). Lipopolysaccharide-induced Chorioamnionitis and Postnatal Lung Injury: The Beneficial Effects of L-Citrulline in Newborn Rats. Exp. Lung Res. 44, 226–240. 10.1080/01902148.2018.1497730 PubMed DOI
Elovitz M. A., Mrinalini C. (2004). Animal Models of Preterm Birth. Trends Endocrinol. Metab. 15, 479–487. 10.1016/j.tem.2004.10.009 PubMed DOI
Faro J., Romero R., Schwenkel G., Garcia-Flores V., Arenas-Hernandez M., Leng Y., et al. (2019). Intra-amniotic Inflammation Induces Preterm Birth by Activating the NLRP3 Inflammasome†. Biol. Reprod. 100, 1290–1305. 10.1093/biolre/ioy261 PubMed DOI PMC
Galaz J., Romero R., Arenas-Hernandez M., Panaitescu B., Garcia-Flores V., Gomez-Lopez N. (2020). A Protocol for Evaluating Vital Signs and Maternal-Fetal Parameters Using High-Resolution Ultrasound in Pregnant Mice. STAR Protoc. 1, 100134. 10.1016/j.xpro.2020.100134 PubMed DOI PMC
Garcia-Flores V., Romero R., Miller D., Xu Y., Done B., Veerapaneni C., et al. (2018). Inflammation-Induced Adverse Pregnancy and Neonatal Outcomes Can Be Improved by the Immunomodulatory Peptide Exendin-4. Front. Immunol. 9, 1291. 10.3389/fimmu.2018.01291 PubMed DOI PMC
Gisslen T., Singh G., Georgieff M. K. (2019). Fetal Inflammation Is Associated with Persistent Systemic and Hippocampal Inflammation and Dysregulation of Hippocampal Glutamatergic Homeostasis. Pediatr. Res. 85, 703–710. 10.1038/s41390-019-0330-y PubMed DOI PMC
Gomez-lopez N., Romero R., Arenas-Hernandez M., Panaitescu B., Garcia-Flores V., Mial T. N., et al. (2018). Intra-amniotic Administration of Lipopolysaccharide Induces Spontaneous Preterm Labor and Birth in the Absence of a Body Temperature Change. J. Matern. Fetal Neonatal. Med. 31, 439–446. 10.1080/14767058.2017.1287894 PubMed DOI PMC
Gomez-lopez N., Romero R., Garcia-Flores V., Leng Y., Miller D., Hassan S. S., et al. (2019). Inhibition of the NLRP3 Inflammasome Can Prevent Sterile Intra-amniotic Inflammation, Preterm Labor/birth, and Adverse Neonatal Outcomes†. Biol. Reprod. 100, 1306–1318. 10.1093/biolre/ioy264 PubMed DOI PMC
Gomez-lopez N., Romero R., Plazyo O., Panaitescu B., Furcron A. E., Miller D., et al. (2016). Intra-Amniotic Administration of HMGB1 Induces Spontaneous Preterm Labor and Birth. Am. J. Reprod. Immunol. 75, 3–7. 10.1111/aji.12443 PubMed DOI PMC
Greco A., Ragucci M., Coda A. R., Rosa A., Gargiulo S., Liuzzi R., et al. (2013). High Frequency Ultrasound for In Vivo Pregnancy Diagnosis and Staging of Placental and Fetal Development in Mice. PLoS One 8, e77205. 10.1371/journal.pone.0077205 PubMed DOI PMC
Jantzie L. L., Oppong A. Y., Conteh F. S., Yellowhair T. R., Kim J., Fink G., et al. (2018). Repetitive Neonatal Erythropoietin and Melatonin Combinatorial Treatment Provides Sustained Repair of Functional Deficits in a Rat Model of Cerebral Palsy. Front. Neurol. 9, 233. 10.3389/fneur.2018.00233 PubMed DOI PMC
Kacerovsky M., Holeckova M., Stepan M., Gregor M., Vescicik P., Lesko D., et al. (2020a). Amniotic Fluid Glucose Level in PPROM Pregnancies: a Glance at the Old Friend. J. Matern. Fetal Neonatal. Med., 1–13. 10.1080/14767058.2020.1783232 PubMed DOI
Kacerovsky M., Musilova I., Hornychova H., Kutova R., Pliskova L., Kostal M., et al. (2014). Bedside Assessment of Amniotic Fluid Interleukin-6 in Preterm Prelabor Rupture of Membranes. Am. J. Obstet. Gynecol. 211, 385–389. 10.1016/j.ajog.2014.03.069 PubMed DOI
Kacerovsky M., Romero R., Stepan M., Stranik J., Maly J., Pliskova L., et al. (2020b). Antibiotic Administration Reduces the Rate of Intraamniotic Inflammation in Preterm Prelabor Rupture of the Membranes. Am. J. Obstet. Gynecol. 223, 114–e20. 10.1016/j.ajog.2020.01.043 PubMed DOI PMC
Kacerovsky M., Stranik J., Kukla R., Bolehovska R., Bostik P., Matulova J., et al. (2021). Intra-amniotic Infection and Sterile Intra-amniotic Inflammation in Women with Preterm Labor with Intact Membranes Are Associated with a Higher Rate of Ureaplasma Species DNA Presence in the Cervical Fluid. J. Maternal-Fetal Neonatal Med., 1–9. 10.1080/14767058.2021.1947231 PubMed DOI
Kemp M. W., Saito M., Newnham J. P., Nitsos I., Okamura K., Kallapur S. G. (2010). Preterm Birth, Infection, and Inflammation Advances from the Study of Animal Models. Reprod. Sci. 17, 619–628. 10.1177/1933719110373148 PubMed DOI
Migale R., Herbert B. R., Lee Y. S., Sykes L., Waddington S. N., Peebles D., et al. (2015). Specific Lipopolysaccharide Serotypes Induce Differential Maternal and Neonatal Inflammatory Responses in a Murine Model of Preterm Labor. Am. J. Pathol. 185, 2390–2401. 10.1016/j.ajpath.2015.05.015 PubMed DOI PMC
Motomura K., Romero R., Xu Y., Theis K. R., Galaz J., Winters A. D., et al. (2020). Intra-Amniotic Infection with Ureaplasma Parvum Causes Preterm Birth and Neonatal Mortality that Are Prevented by Treatment with Clarithromycin. mBio 11. 10.1128/mBio.00797-20 PubMed DOI PMC
Musilova I., Andrys C., Hornychova H., Pliskova L., Drahosova M., Zednikova B., et al. (2018). Gastric Fluid Used to Assess Changes during the Latency Period in Preterm Prelabor Rupture of Membranes. Pediatr. Res. 84, 240–247. 10.1038/s41390-018-0073-1 PubMed DOI
Musilova I., Kutová R., Pliskova L., Stepan M., Menon R., Jacobsson B., et al. (2015). Intraamniotic Inflammation in Women with Preterm Prelabor Rupture of Membranes. PLoS One 10, e0133929. 10.1371/journal.pone.0133929 PubMed DOI PMC
Musilova I., Pliskova L., Gerychova R., Janku P., Simetka O., Matlak P., et al. (2017). Maternal white Blood Cell Count Cannot Identify the Presence of Microbial Invasion of the Amniotic Cavity or Intra-amniotic Inflammation in Women with Preterm Prelabor Rupture of Membranes. PLoS One 12, e0189394. 10.1371/journal.pone.0189394 PubMed DOI PMC
Nielsen B. W., Bonney E. A., Pearce B. D., Donahue L. R., Sarkar I. N., and PRETERM BIRTH INTERNATIONAL (2016). A Cross-Species Analysis of Animal Models for the Investigation of Preterm Birth Mechanisms. Reprod. Sci. 23, 482–491. 10.1177/1933719115604729 PubMed DOI PMC
Nien J. K., Yoon B. H., Espinoza J., Kusanovic J. P., Erez O., Soto E., et al. (2006). A Rapid MMP-8 Bedside Test for the Detection of Intra-amniotic Inflammation Identifies Patients at Risk for Imminent Preterm Delivery. Am. J. Obstet. Gynecol. 195, 1025–1030. 10.1016/j.ajog.2006.06.054 PubMed DOI
Oh K. J., Hong J. S., Romero R., Yoon B. H. (2019). The Frequency and Clinical Significance of Intra-amniotic Inflammation in Twin Pregnancies with Preterm Labor and Intact Membranes. J. Matern. Fetal Neonatal. Med. 32, 527–541. 10.1080/14767058.2017.1384460 PubMed DOI PMC
Oh K. J., Lee J., Romero R., Park H. S., Hong J. S., Yoon B. H. (2020). A New Rapid Bedside Test to Diagnose and Monitor Intraamniotic Inflammation in Preterm PROM Using Transcervically Collected Fluid. Am. J. Obstet. Gynecol. 223, 423–e15. 10.1016/j.ajog.2020.02.037 PubMed DOI PMC
Rinaldi S. F., Makieva S., Frew L., Wade J., Thomson A. J., Moran C. M., et al. (2015). Ultrasound-guided Intrauterine Injection of Lipopolysaccharide as a Novel Model of Preterm Birth in the Mouse. Am. J. Pathol. 185, 1201–1206. 10.1016/j.ajpath.2015.01.009 PubMed DOI PMC
Romero R., Dey S. K., Fisher S. J. (2014a). Preterm Labor: One Syndrome, many Causes. Science 345, 760–765. 10.1126/science.1251816 PubMed DOI PMC
Romero R., Gotsch F., Pineles B., Kusanovic J. P. (2007). Inflammation in Pregnancy: its Roles in Reproductive Physiology, Obstetrical Complications, and Fetal Injury. Nutr. Rev. 65, S194–S202. 10.1111/j.1753-4887.2007.tb00362.x PubMed DOI
Romero R., Kadar N., Miranda J., Korzeniewski S. J., Schwartz A. G., Chaemsaithong P., et al. (2014b). The Diagnostic Performance of the Mass Restricted (MR) Score in the Identification of Microbial Invasion of the Amniotic Cavity or Intra-amniotic Inflammation Is Not superior to Amniotic Fluid Interleukin-6. J. Matern. Fetal Neonatal. Med. 27, 757–769. 10.3109/14767058.2013.844123 PubMed DOI PMC
Romero R., Miranda J., Chaiworapongsa T., Korzeniewski S. J., Chaemsaithong P., Gotsch F., et al. (2014c). Prevalence and Clinical Significance of Sterile Intra-amniotic Inflammation in Patients with Preterm Labor and Intact Membranes. Am. J. Reprod. Immunol. 72, 458–474. 10.1111/aji.12296 PubMed DOI PMC
Romero R., Yoon B. H., Mazor M., Gomez R., Diamond M. P., Kenney J. S., et al. (1993a). The Diagnostic and Prognostic Value of Amniotic Fluid white Blood Cell Count, Glucose, Interleukin-6, and Gram Stain in Patients with Preterm Labor and Intact Membranes. Am. J. Obstet. Gynecol. 169, 805–816. 10.1016/0002-9378(93)90009-8 PubMed DOI
Romero R., Yoon B. H., Mazor M., Gomez R., Gonzalez R., Diamond M. P., et al. (1993b). A Comparative Study of the Diagnostic Performance of Amniotic Fluid Glucose, white Blood Cell Count, Interleukin-6, and Gram Stain in the Detection of Microbial Invasion in Patients with Preterm Premature Rupture of Membranes. Am. J. Obstet. Gynecol. 169, 839–851. 10.1016/0002-9378(93)90014-a PubMed DOI
Rounioja S., Räsänen J., Glumoff V., Ojaniemi M., Mäkikallio K., Hallman M. (2003). Intra-amniotic Lipopolysaccharide Leads to Fetal Cardiac Dysfunction. A Mouse Model for Fetal Inflammatory Response. Cardiovasc. Res. 60, 156–164. 10.1016/s0008-6363(03)00338-9 PubMed DOI
Shynlova O., Nadeem L., Dorogin A., Mesiano S., Lye S. J. (2021). The Selective Progesterone Receptor Modulator-Promegestone-Delays Term Parturition and Prevents Systemic Inflammation-Mediated Preterm Birth in Mice. Am. J. Obstet. Gynecol. 226, 249.e1–249.e21. PubMed PMC
Simões L. R., Sangiogo G., Tashiro M. H., Generoso J. S., Faller C. J., Dominguini D., et al. (2018). Maternal Immune Activation Induced by Lipopolysaccharide Triggers Immune Response in Pregnant Mother and Fetus, and Induces Behavioral Impairment in Adult Rats. J. Psychiatr. Res. 100, 71–83. 10.1016/j.jpsychires.2018.02.007 PubMed DOI
Soucy-Giguère L., Gasse C., Giguère Y., Demers S., Bujold E., Boutin A. (2018). Intra-amniotic Inflammation and Child Neurodevelopment: a Systematic Review Protocol. Syst. Rev. 7, 12. 10.1186/s13643-018-0683-z PubMed DOI PMC
Spencer N. R., Radnaa E., Baljinnyam T., Kechichian T., Tantengco O. A. G., Bonney E., et al. (2021). Development of a Mouse Model of Ascending Infection and Preterm Birth. PLoS One 16, e0260370. 10.1371/journal.pone.0260370 PubMed DOI PMC
Stranik J., Kacerovsky M., Soucek O., Kolackova M., Musilova I., Pliskova L., et al. (2021). IgGFc-binding Protein in Pregnancies Complicated by Spontaneous Preterm Delivery: a Retrospective Cohort Study. Sci. Rep. 11, 6107. 10.1038/s41598-021-85473-2 PubMed DOI PMC
Stranik J., Kacerovsky M., Vescicik P., Faist T., Jacobsson B., Musilova I. (2020). A Rodent Model of Intra-amniotic Inflammation/infection, Induced by the Administration of Inflammatory Agent in a Gestational Sac, Associated with Preterm Delivery: a Systematic Review. J. Matern. Fetal Neonatal. Med. 35, 1–9. 10.1080/14767058.2020.1757063 PubMed DOI
Urakubo A., Jarskog L. F., Lieberman J. A., Gilmore J. H. (2001). Prenatal Exposure to Maternal Infection Alters Cytokine Expression in the Placenta, Amniotic Fluid, and Fetal Brain. Schizophr Res. 47, 27–36. 10.1016/s0920-9964(00)00032-3 PubMed DOI
Walani S. R. (2020). Global burden of Preterm Birth. Int. J. Gynaecol. Obstet. 150, 31–33. 10.1002/ijgo.13195 PubMed DOI