Guanine quadruplexes in the RNA genome of the tick-borne encephalitis virus: their role as a new antiviral target and in virus biology
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
PubMed
35420134
PubMed Central
PMC9071444
DOI
10.1093/nar/gkac225
PII: 6568495
Knihovny.cz E-zdroje
- MeSH
- antivirové látky * farmakologie terapeutické užití MeSH
- G-kvadruplexy * MeSH
- klíšťová encefalitida farmakoterapie genetika MeSH
- lidé MeSH
- ligandy MeSH
- RNA virová genetika MeSH
- RNA-dependentní RNA-polymerasa genetika MeSH
- viry klíšťové encefalitidy * účinky léků genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antivirové látky * MeSH
- ligandy MeSH
- RNA virová MeSH
- RNA-dependentní RNA-polymerasa MeSH
We have identified seven putative guanine quadruplexes (G4) in the RNA genome of tick-borne encephalitis virus (TBEV), a flavivirus causing thousands of human infections and numerous deaths every year. The formation of G4s was confirmed by biophysical methods on synthetic oligonucleotides derived from the predicted TBEV sequences. TBEV-5, located at the NS4b/NS5 boundary and conserved among all known flaviviruses, was tested along with its mutated variants for interactions with a panel of known G4 ligands, for the ability to affect RNA synthesis by the flaviviral RNA-dependent RNA polymerase (RdRp) and for effects on TBEV replication fitness in cells. G4-stabilizing TBEV-5 mutations strongly inhibited RdRp RNA synthesis and exhibited substantially reduced replication fitness, different plaque morphology and increased sensitivity to G4-binding ligands in cell-based systems. In contrast, strongly destabilizing TBEV-5 G4 mutations caused rapid reversion to the wild-type genotype. Our results suggest that there is a threshold of stability for G4 sequences in the TBEV genome, with any deviation resulting in either dramatic changes in viral phenotype or a rapid return to this optimal level of G4 stability. The data indicate that G4s are critical elements for efficient TBEV replication and are suitable targets to tackle TBEV infection.
Zobrazit více v PubMed
Neidle S., Balasubramanian S.. Quadruplex Nucleic Acids. 2006; London, Cambridge: Royal Society of Chemistry.
Huppert J.L., Balasubramanian S.. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005; 33:2908–2916. PubMed PMC
Varshney D., Spiegel J., Zyner K., Tannahill D., Balasubramanian S.. The regulation and functions of DNA and RNA G-quadruplexes. Nat. Rev. Mol. Cell Biol. 2020; 21:459–474. PubMed PMC
Ruggiero E., Richter S.N.. G-quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy. Nucleic Acids Res. 2018; 46:3270–3283. PubMed PMC
Bohálová N., Cantara A., Bartas M., Kaura P., Šťastný J., Pečinka P., Fojta M., Mergny J.L., Brázda V.. Analyses of viral genomes for G-quadruplex forming sequences reveal their correlation with the type of infection. Biochimie. 2021; 186:13–27. PubMed
Artusi S., Nadai M., Perrone R., Biasolo M.A., Palù G., Flamand L., Calistri A., Richter S.N.. The herpes simplex virus-1 genome contains multiple clusters of repeated G-quadruplex: implications for the antiviral activity of a G-quadruplex ligand. Antiviral Res. 2015; 118:123–131. PubMed PMC
Murat P., Zhong J., Lekieffre L., Cowieson N.P., Clancy J.L., Preiss T., Balasubramanian S., Khanna R., Tellam J.. G-quadruplexes regulate epstein-barr virus-encoded nuclear antigen 1 mRNA translation. Nat. Chem. Biol. 2014; 10:358–364. PubMed PMC
Gilbert-Girard S., Gravel A., Artusi S., Richter S.N., Wallaschek N., Kaufer B.B., Flamand L.. Stabilization of telomere G-Quadruplexes interferes with human herpesvirus 6A chromosomal integration. J. Virol. 2017; 91:e00402–, 17. PubMed PMC
Perrone R., Nadai M., Poe J.A., Frasson I., Palumbo M., Palù G., Smithgall T.E., Richter S.N.. Formation of a unique cluster of G-quadruplex structures in the HIV-1 nef coding region: implications for antiviral activity. PLoS One. 2013; 8:e73121. PubMed PMC
Wang S.-R., Zhang Q.-Y., Wang J.-Q., Ge X.-Y., Song Y.-Y., Wang Y.-F., Li X.-D., Fu B.-S., Xu G.-H., Shu B.et al. .. Chemical targeting of a G-Quadruplex RNA in the ebola virus l gene. Cell Chem. Biol. 2016; 23:1113–1122. PubMed
Wang S.-R., Min Y.-Q., Wang J.-Q., Liu C.-X., Fu B.-S., Wu F., Wu L.-Y., Qiao Z.-X., Song Y.-Y., Xu G.-H.et al. .. A highly conserved G-rich consensus sequence in hepatitis c virus core gene represents a new anti-hepatitis c target. Sci. Adv. 2016; 2:e1501535. PubMed PMC
Jaubert C., Bedrat A., Bartolucci L., Di Primo C., Ventura M., Mergny J.-L., Amrane S., Andreola M.-L.. RNA synthesis is modulated by G-quadruplex formation in hepatitis c virus negative RNA strand. Sci. Rep. 2018; 8:8120–8120. PubMed PMC
Bian W.-X., Xie Y., Wang X.-N., Xu G.-H., Fu B.-S., Li S., Long G., Zhou X., Zhang X.-L.. Binding of cellular nucleolin with the viral core RNA G-quadruplex structure suppresses HCV replication. Nucleic Acids Res. 2019; 47:56–68. PubMed PMC
Luo X., Xue B., Feng G., Zhang J., Lin B., Zeng P., Li H., Yi H., Zhang X.-L., Zhu H.et al. .. Lighting up the native viral RNA genome with a fluorogenic probe for the live-cell visualization of virus infection. J. Am. Chem. Soc. 2019; 141:5182–5191. PubMed
Fleming A.M., Ding Y., Alenko A., Burrows C.J.. Zika virus genomic RNA possesses conserved G-Quadruplexes characteristic of the flaviviridae family. ACS Infect. Dis. 2016; 2:674–681. PubMed PMC
Fleming A.M., Nguyen N.L.B., Burrows C.J.. Colocalization of m(6)A and G-Quadruplex-Forming sequences in viral RNA (HIV, zika, hepatitis b, and SV40) suggests topological control of adenosine N(6)-Methylation. ACS Central Sci. 2019; 5:218–228. PubMed PMC
Majee P., Pattnaik A., Sahoo B.R., Shankar U., Pattnaik A.K., Kumar A., Nayak D. Inhibition of zika virus replication by G-quadruplex-binding ligands. Mol. Ther. Nucleic Acids. 2021; 23:691–701. PubMed PMC
Zou M., Li J.Y., Zhang M.J., Li J.H., Huang J.T., You P.D., Liu S.W., Zhou C.Q.. G-quadruplex binder pyridostatin as an effective multi-target ZIKV inhibitor. Int. J. Biol. Macromol. 2021; 190:178–188. PubMed
Abiri A., Lavigne M., Rezaei M., Nikzad S., Zare P., Mergny J.-L., Rahimi H.-R.. Unlocking G-Quadruplexes as antiviral targets. Pharmacol. Rev. 2021; 73:897–923. PubMed
Ruggiero E., Zanin I., Terreri M., Richter S.N.. G-Quadruplex targeting in the fight against viruses: an update. Int. J. Mol. Sci. 2021; 22:10984. PubMed PMC
Ruzek D., Avšič Županc T., Borde J., Chrdle A., Eyer L., Karganova G., Kholodilov I., Knap N., Kozlovskaya L., Matveev A.et al. .. Tick-borne encephalitis in europe and russia: review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res. 2019; 164:23–51. PubMed
Deviatkin A.A., Karganova G.G., Vakulenko Y.A., Lukashev A.N.. TBEV subtyping in terms of genetic distance. Viruses. 2020; 12:1240. PubMed PMC
Füzik T., Formanová P., Růžek D., Yoshii K., Niedrig M., Plevka P.. Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat. Commun. 2018; 9:436–436. PubMed PMC
Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32:1792–1797. PubMed PMC
Okonechnikov K., Golosova O., Fursov M.team, t.U. . Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012; 28:1166–1167. PubMed
Kikin O., D’Antonio L., Bagga P.S.. QGRS mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 2006; 34:W676–W682. PubMed PMC
Hon J., Martínek T., Zendulka J., Lexa M.. pqsfinder: an exhaustive and imperfection-tolerant search tool for potential quadruplex-forming sequences in R. Bioinformatics. 2017; 33:3373–3379. PubMed
Bedrat A., Lacroix L., Mergny J.-L.. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016; 44:1746–1759. PubMed PMC
Garant J.-M., Perreault J.-P., Scott M.S.. Motif independent identification of potential RNA G-quadruplexes by G4RNA screener. Bioinformatics. 2017; 33:3532–3537. PubMed PMC
Lacroix L. G4HunterApps. Bioinformatics. 2019; 35:2311–2312. PubMed PMC
Crooks G.E., Hon G., Chandonia J.M., Brenner S.E.. WebLogo: a sequence logo generator. Genome Res. 2004; 14:1188–1190. PubMed PMC
Kejnovska I., Renciuk D., Palacky J., Vorlickova M.. Yang D., Lin C.. G-Quadruplex Nucleic Acids: Methods and Protocols. 2019; 2035:Totowa: Humana Press Inc; 25–44.
Rodriguez R., Müller S., Yeoman J.A., Trentesaux C., Riou J.-F., Balasubramanian S.. A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J. Am. Chem. Soc. 2008; 130:15758–15759. PubMed PMC
Travascio P., Bennet A.J., Wang D.Y., Sen D. A ribozyme and a catalytic DNA with peroxidase activity: active sites versus cofactor-binding sites. Chem. Biol. 1999; 6:779–787. PubMed
Chung W.J., Heddi B., Hamon F., Teulade-Fichou M.P., Phan A.T.. Solution structure of a G-quadruplex bound to the bisquinolinium compound phen-dc(3). Angew. Chem. Int. Ed. Engl. 2014; 53:999–1002. PubMed
Mohanty J., Barooah N., Dhamodharan V., Harikrishna S., Pradeepkumar P.I., Bhasikuttan A.C.. Thioflavin t as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA. J. Am. Chem. Soc. 2013; 135:367–376. PubMed
Monchaud D., Allain C., Teulade-Fichou M.P.. Development of a fluorescent intercalator displacement assay (G4-FID) for establishing quadruplex-DNA affinity and selectivity of putative ligands. Bioorg. Med. Chem. Lett. 2006; 16:4842–4845. PubMed
Kong D.M., Ma Y.E., Wu J., Shen H.X.. Discrimination of G-quadruplexes from duplex and single-stranded DNAs with fluorescence and energy-transfer fluorescence spectra of crystal violet. Chemistry. 2009; 15:901–909. PubMed
Gowan S.M., Harrison J.R., Patterson L., Valenti M., Read M.A., Neidle S., Kelland L.R.. A G-quadruplex-interactive potent small-molecule inhibitor of telomerase exhibiting in vitro and in vivo antitumor activity. Mol. Pharmacol. 2002; 61:1154–1162. PubMed
Wang S., Yan W.W., He M., Wei D., Long Z.J., Tao Y.M.. Aloe emodin inhibits telomerase activity in breast cancer cells: transcriptional and enzymological mechanism. Pharmacol. Rep. 2020; 72:1383–1396. PubMed
Franceschin M., Rossetti L., D’Ambrosio A., Schirripa S., Bianco A., Ortaggi G., Savino M., Schultes C., Neidle S. Natural and synthetic G-quadruplex interactive berberine derivatives. Bioorg. Med. Chem. Lett. 2006; 16:1707–1711. PubMed
Arthanari H., Basu S., Kawano T.L., Bolton P.H.. Fluorescent dyes specific for quadruplex DNA. Nucleic Acids Res. 1998; 26:3724–3728. PubMed PMC
Yett A., Lin L., Beseiso D., Miao J., Yatsunyk L.. N-methyl mesoporphyrin IX as a highly selective light-up probe for G-quadruplex DNA. J. Porphyrins Phthalocyanines. 2019; 23:1195–1215. PubMed PMC
Izbicka E., Wheelhouse R.T., Raymond E., Davidson K.K., Lawrence R.A., Sun D.Y., Windle B.E., Hurley L.H., Von Hoff D.D. Effects of cationic porphyrins as G-quadruplex interactive agents in human tumor cells. Cancer Res. 1999; 59:639–644. PubMed
Di Antonio M., Biffi G., Mariani A., Raiber E.A., Rodriguez R., Balasubramanian S.. Selective RNA versus DNA G-quadruplex targeting by in situ click chemistry. Angew. Chem. Int. Ed. Engl. 2012; 51:11073–11078. PubMed PMC
Rocca R., Talarico C., Moraca F., Costa G., Romeo I., Ortuso F., Alcaro S., Artese A.. Molecular recognition of a carboxy pyridostatin toward G-quadruplex structures: why does it prefer RNA. Chem. Biol. Drug Des. 2017; 90:919–925. PubMed
Granotier C., Pennarun G., Riou L., Hoffschir F., Gauthier L.R., De Cian A., Gomez D., Mandine E., Riou J.F., Mergny J.L.et al. .. Preferential binding of a G-quadruplex ligand to human chromosome ends. Nucleic Acids Res. 2005; 33:4182–4190. PubMed PMC
Xu H., Di Antonio M., McKinney S., Mathew V., Ho B., O’Neil N.J., Santos N.D., Silvester J., Wei V., Garcia J.et al. .. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat. Commun. 2017; 8:14432–14432. PubMed PMC
Tran P.L., Largy E., Hamon F., Teulade-Fichou M.P., Mergny J.L.. Fluorescence intercalator displacement assay for screening G4 ligands towards a variety of G-quadruplex structures. Biochimie. 2011; 93:1288–1296. PubMed
Carvalho J., Lopes-Nunes J., Paula Cabral Campello M., Paulo A., Milici J., Meyers C., Mergny J.L., Salgado G.F., Queiroz J.A., Cruz C.. Human papillomavirus G-Rich regions as potential antiviral drug targets. Nucleic Acid Ther. 2020; 31:68–81. PubMed
Mergny J.L., Lacroix L.. Analysis of thermal melting curves. Oligonucleotides. 2003; 13:515–537. PubMed
Kozuch O., Mayer V.. Pig kidney epithelial (PS) cells: a perfect tool for the study of flaviviruses and some other arboviruses. Acta Virol. 1975; 19:498. PubMed
Aubry F., Nougairède A., de Fabritus L., Querat G., Gould E.A., de Lamballerie X.. Single-stranded positive-sense RNA viruses generated in days using infectious subgenomic amplicons. J. Gen. Virol. 2014; 95:2462–2467. PubMed PMC
Driouich J.S., Ali S.M., Amroun A., Aubry F., de Lamballerie X., Nougairède A.. SuPReMe: a rapid reverse genetics method to generate clonal populations of recombinant RNA viruses. Emerg. Microbes Infect. 2018; 7:40. PubMed PMC
Eyer L., Nougairède A., Uhlířová M., Driouich J.S., Zouharová D., Valdés J.J., Haviernik J., Gould E.A., De Clercq E., de Lamballerie X.et al. .. An E460D substitution in the NS5 protein of tick-borne encephalitis virus confers resistance to the inhibitor galidesivir (BCX4430) and also attenuates the virus for mice. J. Virol. 2019; 93:e00367-19. PubMed PMC
De Madrid A.T., Porterfield J.S.. A simple micro-culture method for the study of group b arboviruses. Bull. World Health Organ. 1969; 40:113–121. PubMed PMC
Eyer L., Valdés J.J., Gil V.A., Nencka R., Hřebabecký H., Šála M., Salát J., Černý J., Palus M., De Clercq E.et al. .. Nucleoside inhibitors of tick-borne encephalitis virus. Antimicrob. Agents Chemother. 2015; 59:5483–5493. PubMed PMC
Konkolova E., Dejmek M., Hřebabecký H., Šála M., Böserle J., Nencka R., Boura E.. Remdesivir triphosphate can efficiently inhibit the RNA-dependent RNA polymerase from various flaviviruses. Antiviral Res. 2020; 182:104899. PubMed PMC
Lu G., Bluemling G.R., Collop P., Hager M., Kuiper D., Gurale B.P., Painter G.R., De La Rosa A., Kolykhalov A.A.. Analysis of ribonucleotide 5′-Triphosphate analogs as potential inhibitors of zika virus RNA-Dependent RNA polymerase by using nonradioactive polymerase assays. Antimicrob. Agents Chemother. 2017; 61:e01967-16. PubMed PMC
Niyomrattanakit P., Abas S.N., Lim C.C., Beer D., Shi P.Y., Chen Y.L.. A fluorescence-based alkaline phosphatase-coupled polymerase assay for identification of inhibitors of dengue virus RNA-dependent RNA polymerase. J. Biomol. Screen. 2011; 16:201–210. PubMed
Sáez-Álvarez Y., Arias A., Del Águila C., Agudo R.. Development of a fluorescence-based method for the rapid determination of zika virus polymerase activity and the screening of antiviral drugs. Sci. Rep. 2019; 9:5397. PubMed PMC
Lavezzo E., Berselli M., Frasson I., Perrone R., Palù G., Brazzale A.R., Richter S.N., Toppo S.. G-quadruplex forming sequences in the genome of all known human viruses: a comprehensive guide. PLoS Comput. Biol. 2018; 14:e1006675. PubMed PMC
Puig Lombardi E., Londoño-Vallejo A.. A guide to computational methods for G-quadruplex prediction. Nucleic Acids Res. 2019; 48:1603. PubMed PMC
Islam B., Stadlbauer P., Vorlíčková M., Mergny J.L., Otyepka M., Šponer J.. Stability of two-quartet G-Quadruplexes and their dimers in atomistic simulations. J. Chem. Theory Comput. 2020; 16:3447–3463. PubMed
Kejnovská I., Stadlbauer P., Trantírek L., Renčiuk D., Gajarský M., Krafčík D., Palacký J., Bednářová K., Šponer J., Mergny J.-L.et al. .. G-Quadruplex formation by DNA sequences deficient in guanines: two tetrad parallel quadruplexes do not fold intramolecularly. Chem. Eur. J. 2021; 27:12115–12125. PubMed
Kypr J., Kejnovska I., Renciuk D., Vorlickova M.. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009; 37:1713–1725. PubMed PMC
Majee P., Kumar Mishra S., Pandya N., Shankar U., Pasadi S., Muniyappa K., Nayak D., Kumar A.. Identification and characterization of two conserved G-quadruplex forming motifs in the nipah virus genome and their interaction with G-quadruplex specific ligands. Sci. Rep. 2020; 10:1477. PubMed PMC
Zhang A.Y.Q., Bugaut A., Balasubramanian S.. A sequence-independent analysis of the loop length dependence of intramolecular RNA G-quadruplex stability and topology. Biochemistry. 2011; 50:7251–7258. PubMed PMC
Kwok C.K., Marsico G., Sahakyan A.B., Chambers V.S., Balasubramanian S.. rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nat. Methods. 2016; 13:841. PubMed
Wallner G., Mandl C.W., Ecker M., Holzmann H., Stiasny K., Kunz C., Heinz F.X.. Characterization and complete genome sequences of high- and low- virulence variants of tick-borne encephalitis virus. J. Gen. Virol. 1996; 77:1035–1042. PubMed
Kepczyński M., Ehrenberg B.. Interaction of dicarboxylic metalloporphyrins with liposomes. The effect of pH on membrane binding revisited. Photochem. Photobiol. 2002; 76:486–492. PubMed
Kepczyński M., Pandian R.P., Smith K.M., Ehrenberg B.. Do liposome-binding constants of porphyrins correlate with their measured and predicted partitioning between octanol and water. Photochem. Photobiol. 2002; 76:127–134. PubMed
Assuncao-Miranda I., Cruz-Oliveira C., Neris R.L.S., Figueiredo C.M., Pereira L.P.S., Rodrigues D., Araujo D.F.F., Da Poian A.T., Bozza M.T.. Inactivation of dengue and yellow fever viruses by heme, cobalt-protoporphyrin IX and tin-protoporphyrin iX. J. Appl. Microbiol. 2016; 120:790–804. PubMed
Cruz-Oliveira C., Almeida A.F., Freire J.M., Caruso M.B., Morando M.A., Ferreira V.N.S., Assuncao-Miranda I., Gomes A.M.O., Castanho M., Poian Da. Mechanisms of vesicular stomatitis virus inactivation by protoporphyrin IX, zinc-protoporphyrin IX, and mesoporphyrin iX. Antimicrob. Agents Chemother. 2017; 61:14. PubMed PMC
Man D., Slota R., Broda M.A., Mele G., Li J.. Metalloporphyrin intercalation in liposome membranes: ESR study. J. Biol. Inorg. Chem. 2011; 16:173–181. PubMed PMC
Neris R.L.S., Figueiredo C.M., Higa L.M., Araujo D.F., Carvalho C.A.M., Vercoza B.R.F., Silva M.O.L., Carneiro F.A., Tanuri A., Gomes A.M.O.et al. .. Co-protoporphyrin IX and Sn-protoporphyrin IX inactivate zika, chikungunya and other arboviruses by targeting the viral envelope. Sci. Rep. 2018; 8:13. PubMed PMC
Schmidt W.N., Mathahs M.M., Zhu Z.W.. Herne and HO-1 inhibition of HCV, HBV, and HIV. Front. Pharmacol. 2012; 3:13. PubMed PMC
Chung S.W., Hall S.R., Perrella M.A.. Role of haem oxygenase-1 in microbial host defence. Cell. Microbiol. 2009; 11:199–207. PubMed PMC
Wegiel B., Nemeth Z., Correa-Costa M., Bulmer A.C., Otterbein L.E.. Heme oxygenase-1: a metabolic nike. Antioxid. Redox. Signal. 2014; 20:1709–1722. PubMed PMC
Costa L., Faustino M.A.F., Neves M., Cunha A., Almeida A.. Photodynamic inactivation of mammalian viruses and bacteriophages. Viruses-Basel. 2012; 4:1034–1074. PubMed PMC
Pushpan S.K., Venkatraman S., Anand V.G., Sankar J., Parmeswaran D., Ganesan S., Chandrashekar T.K.. Porphyrins in photodynamic therapy - a search for ideal photosensitizers. Curr. Med. Chem. Anticancer Agents. 2002; 2:187–207. PubMed
Wiehe A., O’Brien J.M., Senge M.O.. Trends and targets in antiviral phototherapy. Photochem. Photobiol. Sci. 2019; 18:2565–2612. PubMed
Maiti M., Kumar G.S.. Polymorphic nucleic acid binding of bioactive isoquinoline alkaloids and their role in cancer. J. Nucleic Acids. 2010; 2010:10.4061/2010/593408. PubMed DOI PMC
Warowicka A., Nawrot R., Gozdzicka-Jozefiak A.. Antiviral activity of berberine. Arch. Virol. 2020; 165:1935–1945. PubMed PMC