Guanine quadruplexes in the RNA genome of the tick-borne encephalitis virus: their role as a new antiviral target and in virus biology

. 2022 May 06 ; 50 (8) : 4574-4600.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35420134

We have identified seven putative guanine quadruplexes (G4) in the RNA genome of tick-borne encephalitis virus (TBEV), a flavivirus causing thousands of human infections and numerous deaths every year. The formation of G4s was confirmed by biophysical methods on synthetic oligonucleotides derived from the predicted TBEV sequences. TBEV-5, located at the NS4b/NS5 boundary and conserved among all known flaviviruses, was tested along with its mutated variants for interactions with a panel of known G4 ligands, for the ability to affect RNA synthesis by the flaviviral RNA-dependent RNA polymerase (RdRp) and for effects on TBEV replication fitness in cells. G4-stabilizing TBEV-5 mutations strongly inhibited RdRp RNA synthesis and exhibited substantially reduced replication fitness, different plaque morphology and increased sensitivity to G4-binding ligands in cell-based systems. In contrast, strongly destabilizing TBEV-5 G4 mutations caused rapid reversion to the wild-type genotype. Our results suggest that there is a threshold of stability for G4 sequences in the TBEV genome, with any deviation resulting in either dramatic changes in viral phenotype or a rapid return to this optimal level of G4 stability. The data indicate that G4s are critical elements for efficient TBEV replication and are suitable targets to tackle TBEV infection.

Zobrazit více v PubMed

Neidle S., Balasubramanian S.. Quadruplex Nucleic Acids. 2006; London, Cambridge: Royal Society of Chemistry.

Huppert J.L., Balasubramanian S.. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005; 33:2908–2916. PubMed PMC

Varshney D., Spiegel J., Zyner K., Tannahill D., Balasubramanian S.. The regulation and functions of DNA and RNA G-quadruplexes. Nat. Rev. Mol. Cell Biol. 2020; 21:459–474. PubMed PMC

Ruggiero E., Richter S.N.. G-quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy. Nucleic Acids Res. 2018; 46:3270–3283. PubMed PMC

Bohálová N., Cantara A., Bartas M., Kaura P., Šťastný J., Pečinka P., Fojta M., Mergny J.L., Brázda V.. Analyses of viral genomes for G-quadruplex forming sequences reveal their correlation with the type of infection. Biochimie. 2021; 186:13–27. PubMed

Artusi S., Nadai M., Perrone R., Biasolo M.A., Palù G., Flamand L., Calistri A., Richter S.N.. The herpes simplex virus-1 genome contains multiple clusters of repeated G-quadruplex: implications for the antiviral activity of a G-quadruplex ligand. Antiviral Res. 2015; 118:123–131. PubMed PMC

Murat P., Zhong J., Lekieffre L., Cowieson N.P., Clancy J.L., Preiss T., Balasubramanian S., Khanna R., Tellam J.. G-quadruplexes regulate epstein-barr virus-encoded nuclear antigen 1 mRNA translation. Nat. Chem. Biol. 2014; 10:358–364. PubMed PMC

Gilbert-Girard S., Gravel A., Artusi S., Richter S.N., Wallaschek N., Kaufer B.B., Flamand L.. Stabilization of telomere G-Quadruplexes interferes with human herpesvirus 6A chromosomal integration. J. Virol. 2017; 91:e00402–, 17. PubMed PMC

Perrone R., Nadai M., Poe J.A., Frasson I., Palumbo M., Palù G., Smithgall T.E., Richter S.N.. Formation of a unique cluster of G-quadruplex structures in the HIV-1 nef coding region: implications for antiviral activity. PLoS One. 2013; 8:e73121. PubMed PMC

Wang S.-R., Zhang Q.-Y., Wang J.-Q., Ge X.-Y., Song Y.-Y., Wang Y.-F., Li X.-D., Fu B.-S., Xu G.-H., Shu B.et al. .. Chemical targeting of a G-Quadruplex RNA in the ebola virus l gene. Cell Chem. Biol. 2016; 23:1113–1122. PubMed

Wang S.-R., Min Y.-Q., Wang J.-Q., Liu C.-X., Fu B.-S., Wu F., Wu L.-Y., Qiao Z.-X., Song Y.-Y., Xu G.-H.et al. .. A highly conserved G-rich consensus sequence in hepatitis c virus core gene represents a new anti-hepatitis c target. Sci. Adv. 2016; 2:e1501535. PubMed PMC

Jaubert C., Bedrat A., Bartolucci L., Di Primo C., Ventura M., Mergny J.-L., Amrane S., Andreola M.-L.. RNA synthesis is modulated by G-quadruplex formation in hepatitis c virus negative RNA strand. Sci. Rep. 2018; 8:8120–8120. PubMed PMC

Bian W.-X., Xie Y., Wang X.-N., Xu G.-H., Fu B.-S., Li S., Long G., Zhou X., Zhang X.-L.. Binding of cellular nucleolin with the viral core RNA G-quadruplex structure suppresses HCV replication. Nucleic Acids Res. 2019; 47:56–68. PubMed PMC

Luo X., Xue B., Feng G., Zhang J., Lin B., Zeng P., Li H., Yi H., Zhang X.-L., Zhu H.et al. .. Lighting up the native viral RNA genome with a fluorogenic probe for the live-cell visualization of virus infection. J. Am. Chem. Soc. 2019; 141:5182–5191. PubMed

Fleming A.M., Ding Y., Alenko A., Burrows C.J.. Zika virus genomic RNA possesses conserved G-Quadruplexes characteristic of the flaviviridae family. ACS Infect. Dis. 2016; 2:674–681. PubMed PMC

Fleming A.M., Nguyen N.L.B., Burrows C.J.. Colocalization of m(6)A and G-Quadruplex-Forming sequences in viral RNA (HIV, zika, hepatitis b, and SV40) suggests topological control of adenosine N(6)-Methylation. ACS Central Sci. 2019; 5:218–228. PubMed PMC

Majee P., Pattnaik A., Sahoo B.R., Shankar U., Pattnaik A.K., Kumar A., Nayak D. Inhibition of zika virus replication by G-quadruplex-binding ligands. Mol. Ther. Nucleic Acids. 2021; 23:691–701. PubMed PMC

Zou M., Li J.Y., Zhang M.J., Li J.H., Huang J.T., You P.D., Liu S.W., Zhou C.Q.. G-quadruplex binder pyridostatin as an effective multi-target ZIKV inhibitor. Int. J. Biol. Macromol. 2021; 190:178–188. PubMed

Abiri A., Lavigne M., Rezaei M., Nikzad S., Zare P., Mergny J.-L., Rahimi H.-R.. Unlocking G-Quadruplexes as antiviral targets. Pharmacol. Rev. 2021; 73:897–923. PubMed

Ruggiero E., Zanin I., Terreri M., Richter S.N.. G-Quadruplex targeting in the fight against viruses: an update. Int. J. Mol. Sci. 2021; 22:10984. PubMed PMC

Ruzek D., Avšič Županc T., Borde J., Chrdle A., Eyer L., Karganova G., Kholodilov I., Knap N., Kozlovskaya L., Matveev A.et al. .. Tick-borne encephalitis in europe and russia: review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res. 2019; 164:23–51. PubMed

Deviatkin A.A., Karganova G.G., Vakulenko Y.A., Lukashev A.N.. TBEV subtyping in terms of genetic distance. Viruses. 2020; 12:1240. PubMed PMC

Füzik T., Formanová P., Růžek D., Yoshii K., Niedrig M., Plevka P.. Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat. Commun. 2018; 9:436–436. PubMed PMC

Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32:1792–1797. PubMed PMC

Okonechnikov K., Golosova O., Fursov M.team, t.U. . Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012; 28:1166–1167. PubMed

Kikin O., D’Antonio L., Bagga P.S.. QGRS mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 2006; 34:W676–W682. PubMed PMC

Hon J., Martínek T., Zendulka J., Lexa M.. pqsfinder: an exhaustive and imperfection-tolerant search tool for potential quadruplex-forming sequences in R. Bioinformatics. 2017; 33:3373–3379. PubMed

Bedrat A., Lacroix L., Mergny J.-L.. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016; 44:1746–1759. PubMed PMC

Garant J.-M., Perreault J.-P., Scott M.S.. Motif independent identification of potential RNA G-quadruplexes by G4RNA screener. Bioinformatics. 2017; 33:3532–3537. PubMed PMC

Lacroix L. G4HunterApps. Bioinformatics. 2019; 35:2311–2312. PubMed PMC

Crooks G.E., Hon G., Chandonia J.M., Brenner S.E.. WebLogo: a sequence logo generator. Genome Res. 2004; 14:1188–1190. PubMed PMC

Kejnovska I., Renciuk D., Palacky J., Vorlickova M.. Yang D., Lin C.. G-Quadruplex Nucleic Acids: Methods and Protocols. 2019; 2035:Totowa: Humana Press Inc; 25–44.

Rodriguez R., Müller S., Yeoman J.A., Trentesaux C., Riou J.-F., Balasubramanian S.. A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J. Am. Chem. Soc. 2008; 130:15758–15759. PubMed PMC

Travascio P., Bennet A.J., Wang D.Y., Sen D. A ribozyme and a catalytic DNA with peroxidase activity: active sites versus cofactor-binding sites. Chem. Biol. 1999; 6:779–787. PubMed

Chung W.J., Heddi B., Hamon F., Teulade-Fichou M.P., Phan A.T.. Solution structure of a G-quadruplex bound to the bisquinolinium compound phen-dc(3). Angew. Chem. Int. Ed. Engl. 2014; 53:999–1002. PubMed

Mohanty J., Barooah N., Dhamodharan V., Harikrishna S., Pradeepkumar P.I., Bhasikuttan A.C.. Thioflavin t as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA. J. Am. Chem. Soc. 2013; 135:367–376. PubMed

Monchaud D., Allain C., Teulade-Fichou M.P.. Development of a fluorescent intercalator displacement assay (G4-FID) for establishing quadruplex-DNA affinity and selectivity of putative ligands. Bioorg. Med. Chem. Lett. 2006; 16:4842–4845. PubMed

Kong D.M., Ma Y.E., Wu J., Shen H.X.. Discrimination of G-quadruplexes from duplex and single-stranded DNAs with fluorescence and energy-transfer fluorescence spectra of crystal violet. Chemistry. 2009; 15:901–909. PubMed

Gowan S.M., Harrison J.R., Patterson L., Valenti M., Read M.A., Neidle S., Kelland L.R.. A G-quadruplex-interactive potent small-molecule inhibitor of telomerase exhibiting in vitro and in vivo antitumor activity. Mol. Pharmacol. 2002; 61:1154–1162. PubMed

Wang S., Yan W.W., He M., Wei D., Long Z.J., Tao Y.M.. Aloe emodin inhibits telomerase activity in breast cancer cells: transcriptional and enzymological mechanism. Pharmacol. Rep. 2020; 72:1383–1396. PubMed

Franceschin M., Rossetti L., D’Ambrosio A., Schirripa S., Bianco A., Ortaggi G., Savino M., Schultes C., Neidle S. Natural and synthetic G-quadruplex interactive berberine derivatives. Bioorg. Med. Chem. Lett. 2006; 16:1707–1711. PubMed

Arthanari H., Basu S., Kawano T.L., Bolton P.H.. Fluorescent dyes specific for quadruplex DNA. Nucleic Acids Res. 1998; 26:3724–3728. PubMed PMC

Yett A., Lin L., Beseiso D., Miao J., Yatsunyk L.. N-methyl mesoporphyrin IX as a highly selective light-up probe for G-quadruplex DNA. J. Porphyrins Phthalocyanines. 2019; 23:1195–1215. PubMed PMC

Izbicka E., Wheelhouse R.T., Raymond E., Davidson K.K., Lawrence R.A., Sun D.Y., Windle B.E., Hurley L.H., Von Hoff D.D. Effects of cationic porphyrins as G-quadruplex interactive agents in human tumor cells. Cancer Res. 1999; 59:639–644. PubMed

Di Antonio M., Biffi G., Mariani A., Raiber E.A., Rodriguez R., Balasubramanian S.. Selective RNA versus DNA G-quadruplex targeting by in situ click chemistry. Angew. Chem. Int. Ed. Engl. 2012; 51:11073–11078. PubMed PMC

Rocca R., Talarico C., Moraca F., Costa G., Romeo I., Ortuso F., Alcaro S., Artese A.. Molecular recognition of a carboxy pyridostatin toward G-quadruplex structures: why does it prefer RNA. Chem. Biol. Drug Des. 2017; 90:919–925. PubMed

Granotier C., Pennarun G., Riou L., Hoffschir F., Gauthier L.R., De Cian A., Gomez D., Mandine E., Riou J.F., Mergny J.L.et al. .. Preferential binding of a G-quadruplex ligand to human chromosome ends. Nucleic Acids Res. 2005; 33:4182–4190. PubMed PMC

Xu H., Di Antonio M., McKinney S., Mathew V., Ho B., O’Neil N.J., Santos N.D., Silvester J., Wei V., Garcia J.et al. .. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat. Commun. 2017; 8:14432–14432. PubMed PMC

Tran P.L., Largy E., Hamon F., Teulade-Fichou M.P., Mergny J.L.. Fluorescence intercalator displacement assay for screening G4 ligands towards a variety of G-quadruplex structures. Biochimie. 2011; 93:1288–1296. PubMed

Carvalho J., Lopes-Nunes J., Paula Cabral Campello M., Paulo A., Milici J., Meyers C., Mergny J.L., Salgado G.F., Queiroz J.A., Cruz C.. Human papillomavirus G-Rich regions as potential antiviral drug targets. Nucleic Acid Ther. 2020; 31:68–81. PubMed

Mergny J.L., Lacroix L.. Analysis of thermal melting curves. Oligonucleotides. 2003; 13:515–537. PubMed

Kozuch O., Mayer V.. Pig kidney epithelial (PS) cells: a perfect tool for the study of flaviviruses and some other arboviruses. Acta Virol. 1975; 19:498. PubMed

Aubry F., Nougairède A., de Fabritus L., Querat G., Gould E.A., de Lamballerie X.. Single-stranded positive-sense RNA viruses generated in days using infectious subgenomic amplicons. J. Gen. Virol. 2014; 95:2462–2467. PubMed PMC

Driouich J.S., Ali S.M., Amroun A., Aubry F., de Lamballerie X., Nougairède A.. SuPReMe: a rapid reverse genetics method to generate clonal populations of recombinant RNA viruses. Emerg. Microbes Infect. 2018; 7:40. PubMed PMC

Eyer L., Nougairède A., Uhlířová M., Driouich J.S., Zouharová D., Valdés J.J., Haviernik J., Gould E.A., De Clercq E., de Lamballerie X.et al. .. An E460D substitution in the NS5 protein of tick-borne encephalitis virus confers resistance to the inhibitor galidesivir (BCX4430) and also attenuates the virus for mice. J. Virol. 2019; 93:e00367-19. PubMed PMC

De Madrid A.T., Porterfield J.S.. A simple micro-culture method for the study of group b arboviruses. Bull. World Health Organ. 1969; 40:113–121. PubMed PMC

Eyer L., Valdés J.J., Gil V.A., Nencka R., Hřebabecký H., Šála M., Salát J., Černý J., Palus M., De Clercq E.et al. .. Nucleoside inhibitors of tick-borne encephalitis virus. Antimicrob. Agents Chemother. 2015; 59:5483–5493. PubMed PMC

Konkolova E., Dejmek M., Hřebabecký H., Šála M., Böserle J., Nencka R., Boura E.. Remdesivir triphosphate can efficiently inhibit the RNA-dependent RNA polymerase from various flaviviruses. Antiviral Res. 2020; 182:104899. PubMed PMC

Lu G., Bluemling G.R., Collop P., Hager M., Kuiper D., Gurale B.P., Painter G.R., De La Rosa A., Kolykhalov A.A.. Analysis of ribonucleotide 5′-Triphosphate analogs as potential inhibitors of zika virus RNA-Dependent RNA polymerase by using nonradioactive polymerase assays. Antimicrob. Agents Chemother. 2017; 61:e01967-16. PubMed PMC

Niyomrattanakit P., Abas S.N., Lim C.C., Beer D., Shi P.Y., Chen Y.L.. A fluorescence-based alkaline phosphatase-coupled polymerase assay for identification of inhibitors of dengue virus RNA-dependent RNA polymerase. J. Biomol. Screen. 2011; 16:201–210. PubMed

Sáez-Álvarez Y., Arias A., Del Águila C., Agudo R.. Development of a fluorescence-based method for the rapid determination of zika virus polymerase activity and the screening of antiviral drugs. Sci. Rep. 2019; 9:5397. PubMed PMC

Lavezzo E., Berselli M., Frasson I., Perrone R., Palù G., Brazzale A.R., Richter S.N., Toppo S.. G-quadruplex forming sequences in the genome of all known human viruses: a comprehensive guide. PLoS Comput. Biol. 2018; 14:e1006675. PubMed PMC

Puig Lombardi E., Londoño-Vallejo A.. A guide to computational methods for G-quadruplex prediction. Nucleic Acids Res. 2019; 48:1603. PubMed PMC

Islam B., Stadlbauer P., Vorlíčková M., Mergny J.L., Otyepka M., Šponer J.. Stability of two-quartet G-Quadruplexes and their dimers in atomistic simulations. J. Chem. Theory Comput. 2020; 16:3447–3463. PubMed

Kejnovská I., Stadlbauer P., Trantírek L., Renčiuk D., Gajarský M., Krafčík D., Palacký J., Bednářová K., Šponer J., Mergny J.-L.et al. .. G-Quadruplex formation by DNA sequences deficient in guanines: two tetrad parallel quadruplexes do not fold intramolecularly. Chem. Eur. J. 2021; 27:12115–12125. PubMed

Kypr J., Kejnovska I., Renciuk D., Vorlickova M.. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009; 37:1713–1725. PubMed PMC

Majee P., Kumar Mishra S., Pandya N., Shankar U., Pasadi S., Muniyappa K., Nayak D., Kumar A.. Identification and characterization of two conserved G-quadruplex forming motifs in the nipah virus genome and their interaction with G-quadruplex specific ligands. Sci. Rep. 2020; 10:1477. PubMed PMC

Zhang A.Y.Q., Bugaut A., Balasubramanian S.. A sequence-independent analysis of the loop length dependence of intramolecular RNA G-quadruplex stability and topology. Biochemistry. 2011; 50:7251–7258. PubMed PMC

Kwok C.K., Marsico G., Sahakyan A.B., Chambers V.S., Balasubramanian S.. rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nat. Methods. 2016; 13:841. PubMed

Wallner G., Mandl C.W., Ecker M., Holzmann H., Stiasny K., Kunz C., Heinz F.X.. Characterization and complete genome sequences of high- and low- virulence variants of tick-borne encephalitis virus. J. Gen. Virol. 1996; 77:1035–1042. PubMed

Kepczyński M., Ehrenberg B.. Interaction of dicarboxylic metalloporphyrins with liposomes. The effect of pH on membrane binding revisited. Photochem. Photobiol. 2002; 76:486–492. PubMed

Kepczyński M., Pandian R.P., Smith K.M., Ehrenberg B.. Do liposome-binding constants of porphyrins correlate with their measured and predicted partitioning between octanol and water. Photochem. Photobiol. 2002; 76:127–134. PubMed

Assuncao-Miranda I., Cruz-Oliveira C., Neris R.L.S., Figueiredo C.M., Pereira L.P.S., Rodrigues D., Araujo D.F.F., Da Poian A.T., Bozza M.T.. Inactivation of dengue and yellow fever viruses by heme, cobalt-protoporphyrin IX and tin-protoporphyrin iX. J. Appl. Microbiol. 2016; 120:790–804. PubMed

Cruz-Oliveira C., Almeida A.F., Freire J.M., Caruso M.B., Morando M.A., Ferreira V.N.S., Assuncao-Miranda I., Gomes A.M.O., Castanho M., Poian Da. Mechanisms of vesicular stomatitis virus inactivation by protoporphyrin IX, zinc-protoporphyrin IX, and mesoporphyrin iX. Antimicrob. Agents Chemother. 2017; 61:14. PubMed PMC

Man D., Slota R., Broda M.A., Mele G., Li J.. Metalloporphyrin intercalation in liposome membranes: ESR study. J. Biol. Inorg. Chem. 2011; 16:173–181. PubMed PMC

Neris R.L.S., Figueiredo C.M., Higa L.M., Araujo D.F., Carvalho C.A.M., Vercoza B.R.F., Silva M.O.L., Carneiro F.A., Tanuri A., Gomes A.M.O.et al. .. Co-protoporphyrin IX and Sn-protoporphyrin IX inactivate zika, chikungunya and other arboviruses by targeting the viral envelope. Sci. Rep. 2018; 8:13. PubMed PMC

Schmidt W.N., Mathahs M.M., Zhu Z.W.. Herne and HO-1 inhibition of HCV, HBV, and HIV. Front. Pharmacol. 2012; 3:13. PubMed PMC

Chung S.W., Hall S.R., Perrella M.A.. Role of haem oxygenase-1 in microbial host defence. Cell. Microbiol. 2009; 11:199–207. PubMed PMC

Wegiel B., Nemeth Z., Correa-Costa M., Bulmer A.C., Otterbein L.E.. Heme oxygenase-1: a metabolic nike. Antioxid. Redox. Signal. 2014; 20:1709–1722. PubMed PMC

Costa L., Faustino M.A.F., Neves M., Cunha A., Almeida A.. Photodynamic inactivation of mammalian viruses and bacteriophages. Viruses-Basel. 2012; 4:1034–1074. PubMed PMC

Pushpan S.K., Venkatraman S., Anand V.G., Sankar J., Parmeswaran D., Ganesan S., Chandrashekar T.K.. Porphyrins in photodynamic therapy - a search for ideal photosensitizers. Curr. Med. Chem. Anticancer Agents. 2002; 2:187–207. PubMed

Wiehe A., O’Brien J.M., Senge M.O.. Trends and targets in antiviral phototherapy. Photochem. Photobiol. Sci. 2019; 18:2565–2612. PubMed

Maiti M., Kumar G.S.. Polymorphic nucleic acid binding of bioactive isoquinoline alkaloids and their role in cancer. J. Nucleic Acids. 2010; 2010:10.4061/2010/593408. PubMed DOI PMC

Warowicka A., Nawrot R., Gozdzicka-Jozefiak A.. Antiviral activity of berberine. Arch. Virol. 2020; 165:1935–1945. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...