Circular dichroism and conformational polymorphism of DNA

. 2009 Apr ; 37 (6) : 1713-25. [epub] 20090203

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid19190094

Here we review studies that provided important information about conformational properties of DNA using circular dichroic (CD) spectroscopy. The conformational properties include the B-family of structures, A-form, Z-form, guanine quadruplexes, cytosine quadruplexes, triplexes and other less characterized structures. CD spectroscopy is extremely sensitive and relatively inexpensive. This fast and simple method can be used at low- as well as high-DNA concentrations and with short- as well as long-DNA molecules. The samples can easily be titrated with various agents to cause conformational isomerizations of DNA. The course of detected CD spectral changes makes possible to distinguish between gradual changes within a single DNA conformation and cooperative isomerizations between discrete structural states. It enables measuring kinetics of the appearance of particular conformers and determination of their thermodynamic parameters. In careful hands, CD spectroscopy is a valuable tool for mapping conformational properties of particular DNA molecules. Due to its numerous advantages, CD spectroscopy significantly participated in all basic conformational findings on DNA.

Zobrazit více v PubMed

Neidle S. Nucleic Acid Structure. New York: Oxford University Press Inc.; 1999.

Mirkin SM. Discovery of alternative DNA structures: a heroic decade (1979-1989) Front. Biosci. 2008;13:1064–1071. PubMed

Wells RD. Non-B DNA conformations, mutagenesis and disease. Trends Biochem. Sci. 2007;32:271–278. PubMed

Nakanishi K, Berova N, Woody RW. Circular Dichroism Principles and Applications. New York: VCH Publishers Inc.; 1991.

Woody RW. Circular dichroism. Methods Enzymol. 1995;246:34–71. PubMed

Lewis DG, Johnson WC. Circular dichroism of DNA in the vacuum ultraviolet. J. Mol. Biol. 1974;86:91–96. PubMed

Keiderling TA, Pančoška P. Structural studies of biological macromolecules using vibrational circular dichroism. In: Clark RJH, Hester RE, editors. Biomolecular Spectroscopy,. Vol. 21. New York: John Wiley & Sons; 1993. pp. 267–315.

Johnson WC. Determination of the Conformation of Nucleic Acids by Electronic CD. New York: Plenum Press; 1996.

Kypr J, Vorlickova M. Graphical analysis of circular dichroic spectra distinguishes between two-state and gradual alterations in DNA conformation. Gen. Physiol. Biophys. 1986;5:415–422. PubMed

Maestre MF. Circular dichroism of DNA films: reversibility studies. J. Mol. Biol. 1970;52:543–556. PubMed

Gray DM, Ratliff RL, Vaughan MR. Circular dichroism spectroscopy of DNA. Methods Enzymol. 1992;211:389–406. PubMed

Gray DM, Wen JD, Gray CW, Repges R, Repges C, Raabe G, Fleischhauer J. Measured and calculated CD spectra of G-quartets stacked with the same or opposite polarities. Chirality. 2008;20:431–440. PubMed

Ivanov VI, Minchenkova LE, Schyolkina AK, Poletayev AI. Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers. 1973;12:89–110. PubMed

Mitsui Y, Langridge R, Shortle BE, Cantor CR, Grant RC, Kodama M, Wells RD. Physical and enzymatic studies on poly d(I-C)-poly d(I-C), an unusual double-helical DNA. Nature. 1970;228:1166–1169. PubMed

Vorlickova M, Sagi J. Transitions of poly(dI-dC), poly(dI-methyl5dC) and poly(dI-bromo5dC) among and within the B-, Z-, A- and X-DNA families of conformations. Nucleic Acids Res. 1991;19:2343–2347. PubMed PMC

Nelson HCM, Finch JT, Luisi BF, Klug A. The structure of an oligo(dA)·oligo(dT) tract and its biological implications. Nature. 1987;330:221–226. PubMed

Alexeev DG, Lipanov AA, Skuratovskii IY. Poly(dA).poly(dT) is a B-type double helix with a distinctively narrow minor groove. Nature. 1987;325:821–823. PubMed

Trantirek L, Stefl R, Vorlickova M, Koca J, Sklenar V, Kypr J. An A-type double helix of DNA having B-type puckering of the deoxyribose rings. J. Mol. Biol. 2000;297:907–922. PubMed

Studdert DS, Patroni M, Davis RC. Circular dichroism of DNA: temperature and salt dependence. Biopolymers. 1972;11:761–779. PubMed

Marky LA, Breslauer KJ. Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers. 1987;26:1601–1620. PubMed

Mergny JL, Lacroix L. Analysis of thermal melting curves. Oligonucleotides. 2003;13:515–537. PubMed

Lane AN, Chaires JB, Gray RD, Trent JO. Stability and kinetics of G-quadruplex structures. Nucleic Acids Res. 2008;36:5482–5515. PubMed PMC

Pearson CE, Tam M, Wang YH, Montgomery SE, Dar AC, Cleary JD, Nichol K. Slipped-strand DNAs formed by long (CAG).(CTG) repeats: slipped-out repeats and slip-out junctions. Nucleic Acids Res. 2002;30:4534–4547. PubMed PMC

Pearson CE, Edamura KN, Cleary JD. Repeat instability: mechanisms of dynamic mutations. Nat. Rev. Genet. 2005;6:729–742. PubMed

Ivanov VI, Minchenkova LE, Minyat EE, Frank-Kamenetskii MD, Schyolkina AK. The B to A transition of DNA in solution. J. Mol. Biol. 1974;87:817–833. PubMed

Stefl R, Trantirek L, Vorlickova M, Koca J, Sklenar V, Kypr J. A-like guanine-guanine stacking in the aqueous DNA duplex of d(GGGGCCCC) J. Mol. Biol. 2001;307:513–524. PubMed

Vorlickova M, Sedlacek P, Kypr J, Sponar J. Conformational transitions of poly(dA-dT)·poly(dA-dT) in ethanolic solutions. Nucleic Acids Res. 1982;10:6969–6979. PubMed PMC

Ivanov VI, Krylov DY, Minyat EE. Three-state diagram for DNA. J. Biomol. Struct. Dyn. 1985;3:43–55. PubMed

Vorlickova M, Subirana JA, Chladkova J, Tejralova I, HuynhDinh T, Arnold L, Kypr J. Comparison of the solution and crystal conformations of (G+C)-rich fragments of DNA. Biophysical J. 1996;71:1530–1538. PubMed PMC

Kypr J, Chladkova J, Zimulova M, Vorlickova M. Aqueous trifluorethanol solutions simulate the environment of DNA in the crystalline state. Nucleic Acids Res. 1999;27:3466–3473. PubMed PMC

Vorlickova M, Minyat EE, Kypr J. Cooperative changes in the chiroptical properties of DNA induced by methanol. Biopolymers. 1984;23:1–4. PubMed

van Holde KE, Johnson WC, Ho PS. Principles of Physical Biochemistry. 3rd. Upper Saddle River, NJ: Pearson/Prentice Hall; 1998.

Pohl FM, Jovin TM. Salt-induced cooperative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly(dG-dC) J. Mol. Biol. 1972;67:375–396. PubMed

Ivanov VI, Minyat EE. The transitions between left- and right-handed forms of poly(dG-dC) Nucleic Acids Res. 1981;9:4783–4798. PubMed PMC

Hall KB, Maestre MF. Temperature-dependent reversible transition of poly(dCdG).poly(dCdG) in ethanolic and methanolic solutions. Biopolymers. 1984;23:2127–2139. PubMed

Harder ME, Johnson WC. Stabilization of the Z' form of poly(dGdC):poly(dGdC) in solution by multivalent ions relates to the ZII form in crystals. Nucleic Acids Res. 1990;18:2141–2148. PubMed PMC

Gray DM, Hung SH, Johnson KH. Absorption and circular dichroism spectroscopy of nucleic acid duplexes and triplexes. Methods Enzymol. 1995;246:19–34. PubMed

Xodo LE, Manzini G, Quadrifoglio F. Spectroscopic and calorimetric investigation on the DNA triplex formed by d(CTCTTCTTTCTTTTCTTTCTTCTC) and d(GAGAAGAAAGA) at acidic pH. Nucleic Acids Res. 1990;18:3557–3564. PubMed PMC

Khomyakova EB, Gousset H, Liquier J, Huynh-Dinh T, Gouyette C, Takahashi M, Florentiev VL, Taillandier E. Parallel intramolecular DNA triple helix with G and T bases in the third strand stabilized by Zn2+ ions. Nucleic Acids Res. 2000;28:3511–3516. PubMed PMC

Simon P, Cannata F, Concordet JP, Giovannangeli C. Targeting DNA with triplex-forming oligonucleotides to modify gene sequence. Biochimie. 2008;90:1109–1116. PubMed

Jain A, Wang G, Vasquez KM. DNA triple helices: biological consequences and therapeutic potential. Biochimie. 2008;90:1117–1130. PubMed PMC

Balagurumoorthy P, Brahmachari SK, Mohanty D, Bansal M, Sasisekharan V. Hairpin and parallel quartet structures for telomeric sequences. Nucleic Acids Res. 1992;20:4061–4067. PubMed PMC

Dapic V, Abdomerovic V, Marrington R, Peberdy J, Rodger A, Trent JO, Bates PJ. Biophysical and biological properties of quadruplex oligodeoxyribonucleotides. Nucleic Acids Res. 2003;31:2097–2107. PubMed PMC

Vorlickova M, Chladkova J, Kejnovska I, Fialova M, Kypr J. Guanine tetraplex topology of human telomere DNA is governed by the number of (TTAGGG) repeats. Nucleic Acids Res. 2005;33:5851–5860. PubMed PMC

Paramasivan S, Rujan I, Bolton PH. Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding. Methods. 2007;43:324–331. PubMed

Vorlickova M, Bednarova K, Kypr J. Ethanol is a better inducer of DNA guanine tetraplexes than potassium cations. Biopolymers. 2006;82:253–260. PubMed

Vorlickova M, Bednarova K, Kejnovska I, Kypr J. Intramolecular and intermolecular guanine quadruplexes of DNA in aqueous salt and ethanol solutions. Biopolymers. 2007;86:1–10. PubMed

Kypr J, Fialova M, Chladkova J, Tumova M, Vorlickova M. Conserved guanine-guanine stacking in tetraplex and duplex DNA. Eur. Biophys. J. 2001;30:555–558. PubMed

Kypr J, Vorlickova M. Circular dichroism spectroscopy reveals invariant conformation of guanine runs in DNA. Biopolymers. 2002;67:275–277. PubMed

Mergny JL, Lacroix L, Han XG, Leroy JL, Helene C. Intramolecular folding of pyrimidine oligodeoxynucleotides into a I-DNA motif. J. Am. Chem. Soc. 1995;117:8887–8898.

Gueron M, Leroy JL. The i-motif in nucleic acids. Curr. Opin. Struct. Biol. 2000;10:326–331. PubMed

Manzini G, Yathindra N, Xodo LE. Evidence for intramolecularly folded i-DNA structures in biologically relevant CCC-repeat sequences. Nucleic Acids Res. 1994;22:4634–4640. PubMed PMC

Simonsson T, Pribylova M, Vorlickova M. A nuclease hypersensitive element in the human c-myc promoter adopts several distinct i-tetraplex structures. Biochem. Biophys. Res. Commun. 2000;278:158–166. PubMed

Casasnovas JM, Huertas D, Ortiz-Lombardia M, Kypr J, Azorin F. Structural polymorphism of d(GA.TC)n DNA sequences. Intramolecular and intermolecular associations of the individual strands. J. Mol. Biol. 1993;233:671–681. PubMed

Ortiz-Lombardia M, Eritja R, Azorin F, Kypr J, Tejralova I, Vorlickova M. Divalent zinc cations induce the formation of two distinct homoduplexes of a d(GA)20 DNA sequence. Biochemistry. 1995;34:14408–14415. PubMed

Rippe K, Fritsch V, Westhof E, Jovin TM. Alternating d(G-A) sequences form a parallel-stranded DNA homoduplex. EMBO J. 1992;11:3777–3786. PubMed PMC

Kypr J, Vorlickova M. Dimethylsulfoxide-stabilized conformer of guanine-adenine repeat strand of DNA. Biopolymers. 2001;62:81–84. PubMed

Kejnovska I, Kypr J, Vondruskova J, Vorlickova M. Towards a better understanding of the unusual conformations of the alternating guanine-adenine repeat strands of DNA. Biopolymers. 2007;85:19–27. PubMed

Dolinnaya NG, Fresco JR. Single-stranded nucleic acid helical secondary structure stabilized by ionic bonds: d(A+-G)10. Proc. Natl Acad. Sci. USA. 1992;89:9242–9246. PubMed PMC

Dolinnaya NG, Ulku A, Fresco JR. Parallel-stranded linear homoduplexes of d(A+-G)n>10 and d(A-G)n>10 manifesting the contrasting ionic strength sensitivities of poly(A+·A+) and DNA. Nucleic Acids Res. 1997;25:1100–1107. PubMed PMC

Dolinnaya NG, Fresco JR. Conformational polymorphism of d(A-G)n and related oligonucleotide sequences. Prog. Nucleic. Acid. Res. 2003;75:321–347. PubMed

Vorlickova M, Kejnovska I, Kovanda J, Kypr J. Dimerization of the guanine-adenine repeat strands of DNA. Nucleic Acids Res. 1999;27:581–586. PubMed PMC

Vorlickova M, Kypr J, Sklenar V. Salt-induced conformational transition of poly[d(A-T)]·poly[d(A-T)] J. Mol. Biol. 1983;166:85–92. PubMed

Vorlickova M, Kypr J. Conformational variability of poly(dA-dT).poly(dA-dT) and some other deoxyribonucleic acids includes a novel type of double helix. J. Biomol. Struct. Dyn. 1985;3:67–83. PubMed

Kypr J, Chladkova J, Arnold L, Sagi J, Szemzo A, Vorlickova M. The unusual X-form DNA in oligodeoxynucleotides: dependence of stability on the base sequence and length. J. Biomol. Struct. Dyn. 1996;13:999–1006. PubMed

Abrescia NGA, Thompson A, Huynh-Dinh T, Subirana JA. Crystal structure of an antiparallel DNA fragment with Hoogsteen base pairing. Proc. Natl Acad. Sci. USA. 2002;99:2806–2811. PubMed PMC

Bourtayre P, Liquier J, Pizzorni L, Taillandier E. Z form of poly d(A-T).poly d(A-T) in solution studied by CD and UV spectroscopies. J. Biomol. Struct. Dyn. 1987;5:97–104. PubMed

Ridoux JP, Liquier J, Taillandier E. Raman spectroscopy of Z-form poly[d(A-T)].poly[d(A-T)] Biochemistry. 1988;27:3874–3878. PubMed

Vorlickova M, Chladkova J, Kypr J. Conformational transitions of poly(dA-bromo5dU) and poly(dA-iodo5dU) in solution. Nucleic Acids Res. 1992;20:1109–1112. PubMed PMC

Behe M, Felsenfeld G. Effects of methylation on a synthetic polynucleotide: the B-Z transition in poly(dG-m5dC).poly(dG-m5dC) Proc. Natl Acad. Sci. USA. 1981;78:1619–1623. PubMed PMC

Vorlickova M, Sagi J, Szabolcs A, Szemzo A, Otvos L, Kypr J. Poly(amino2dA-dT) isomerizes into the unusual X-DNA double helix at physiological conditions inducing Z-DNA in poly (dG-methyl5dC) J. Biomol. Struct. Dyn. 1988;6:503–510. PubMed

Borah B, Cohen JS, Howard FB, Miles HT. Poly(d2NH2A-dT): two-dimensional NMR shows a B to A conversion in high salt. Biochemistry. 1985;24:7456–7462. PubMed

Vorlickova M, Sagi J, Szabolcs A, Szemzo A, Otvos L, Kypr J. Conformation of the synthetic DNA poly(amino2dA-dT) duplex in high-salt and aqueous alcohol solutions. Nucleic Acids Res. 1988;16:279–289. PubMed PMC

Tinoco I, Mickols W, Maestre MF, Bustamante C. Absorption, scattering, and imaging of biomolecular structures by polarized-light. Ann. Rev. Biophys. Biophys. Chem. 1987;16:319–349. PubMed

Jordan CF, Lerman LS, Venable JH. Structure and circular dichroism of DNA in concentrated polymer solutions. Nat. New Biol. 1972;236:67–70. PubMed

Andrushchenko V, Leonenko Z, Cramb D, van de Sande JH, Wieser H. Vibrational CD (VCD) and atomic force microscopy (AFM) study of DNA interaction with Cr3+ ions: VCD and AFM evidence of DNA condensation. Biopolymers. 2001;61:243–260. PubMed

Protozanova E, MacGregor RB. Circular dichroism of DNA frayed wires. Biophys. J. 1998;75:982–989. PubMed PMC

Ito Y, Fukusaki E. DNA as a ‘nanomaterial’. J. Mol. Catal. B-Enzym. 2004;28:155–166.

Neidle S, Balasubramanian S, editors. Quadruplex Nucleic Acids. London, Cambridge: Royal Society of Chemistry; 2006.

Li J, Correia JJ, Wang L, Trent JO, Chaires JB. Not so crystal clear: the structure of the human telomere G-quadruplex in solution differs from that present in a crystal. Nucleic Acids Res. 2005;33:4649–4659. PubMed PMC

Wang AHJ, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH, van der Marel G, Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979;282:680–686. PubMed

Todd AK, Johnston M, Neidle S. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res. 2005;33:2901–2907. PubMed PMC

Huppert JL, Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005;33:2908–2916. PubMed PMC

Mergny JL, Lacroix L, Teulade-Fichou MP, Hounsou C, Guittat L, Hoarau M, Arimondo PB, Vigneron JP, Lehn JM, Riou JF, et al. Telomerase inhibitors based on quadruplex ligands selected by a fluorescence assay. Proc. Natl Acad. Sci. USA. 2001;98:3062–3067. PubMed PMC

Dai J, Carver M, Yang D. Polymorphism of human telomeric quadruplex structures. Biochimie. 2008;90:1172–1183. PubMed PMC

De Cian A, Lacroix L, Douarre C, Temime-Smaali N, Trentesaux C, Riou JF, Mergny JL. Targeting telomeres and telomerase. Biochimie. 2008;90:131–155. PubMed

Balagurumoorthy P, Brahmachari SK. Structure and stability of human telomeric sequence. J. Biol. Chem. 1994;269:21858–21869. PubMed

Rujan IN, Meleney JC, Bolton PH. Vertebrate telomere repeat DNAs favor external loop propeller quadruplex structures in the presence of high concentrations of potassium. Nucleic Acids Res. 2005;33:2022–2031. PubMed PMC

Ambrus A, Chen D, Dai J, Bialis T, Jones RA, Yang D. Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res. 2006;34:2723–2735. PubMed PMC

Kaushik M, Bansal A, Saxena S, Kukreti S. Possibility of an antiparallel (tetramer) quadruplex exhibited by the double repeat of the human telomere. Biochemistry. 2007;46:7119–7131. PubMed

Antonacci C, Chaires JB, Sheardy RD. Biophysical characterization of the human telomeric (TTAGGG)4 repeat in a potassium solution. Biochemistry. 2007;46:4654–4660. PubMed

Wang Y, Patel DJ. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure. 1993;1:263–282. PubMed

Parkinson GN, Lee MPH, Neidle S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature. 2002;417:876–880. PubMed

Luu KN, Phan AT, Kuryavyi V, Lacroix L, Patel DJ. Structure of the human telomere in K+ solution: an intramolecular (3+1) G-quadruplex scaffold. J. Am. Chem. Soc. 2006;128:9963–9970. PubMed PMC

Phan AT, Luu KN, Patel DJ. Different loop arrangements of intramolecular human telomeric (3 + 1) G-quadruplexes in K+ solution. Nucleic Acids Res. 2006;34:5715–5719. PubMed PMC

Haider S, Parkinson GN, Neidle S. Molecular dynamics and principal components analysis of human telomeric quadruplex multimers. Biophysical J. 2008;95:296–311. PubMed PMC

Monchaud D, Allain C, Bertrand H, Smargiasso N, Rosu F, Gabelica V, De Cian A, Mergny JL, Teulade-Fichou MR. Ligands playing musical chairs with G-quadruplex DNA: a rapid and simple displacement assay for identifying selective G-quadruplex binders. Biochimie. 2008;90:1207–1223. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

RNA G-quadruplex formation in biologically important transcribed regions: can two-tetrad intramolecular RNA quadruplexes be formed?

. 2024 Nov 27 ; 52 (21) : 13224-13242.

Structural insights into i-motif DNA structures in sequences from the insulin-linked polymorphic region

. 2024 Aug 20 ; 15 (1) : 7119. [epub] 20240820

A sodium/potassium switch for G4-prone G/C-rich sequences

. 2024 Jan 11 ; 52 (1) : 448-461.

Superanionic DNA: enzymatic synthesis of hypermodified DNA bearing four different anionic substituents at all four nucleobases

. 2023 Nov 27 ; 51 (21) : 11428-11438.

Telomeric retrotransposons show propensity to form G-quadruplexes in various eukaryotic species

. 2023 Apr 10 ; 14 (1) : 3. [epub] 20230410

Guanine quadruplexes in the RNA genome of the tick-borne encephalitis virus: their role as a new antiviral target and in virus biology

. 2022 May 06 ; 50 (8) : 4574-4600.

Revealing structural peculiarities of homopurine GA repetition stuck by i-motif clip

. 2021 Nov 18 ; 49 (20) : 11425-11437.

Quadruplex-Forming Motif Inserted into 3'UTR of Ty1his3-AI Retrotransposon Inhibits Retrotransposition in Yeast

. 2021 Apr 20 ; 10 (4) : . [epub] 20210420

Natural and magnetic circular dichroism spectra of nucleosides: effect of the dynamics and environment

. 2021 Feb 17 ; 11 (14) : 8411-8419. [epub] 20210223

Enzymatic synthesis of hypermodified DNA polymers for sequence-specific display of four different hydrophobic groups

. 2020 Dec 02 ; 48 (21) : 11982-11993.

Characterization of G-Quadruplex Motifs in espB, espK, and cyp51 Genes of Mycobacterium tuberculosis as Potential Drug Targets

. 2019 Jun 07 ; 16 () : 698-706. [epub] 20190430

Europium (III) as a Circularly Polarized Luminescence Probe of DNA Structure

. 2019 Jan 31 ; 9 (1) : 1068. [epub] 20190131

Long-read sequencing technology indicates genome-wide effects of non-B DNA on polymerization speed and error rate

. 2018 Dec ; 28 (12) : 1767-1778. [epub] 20181106

Multimerization rules for G-quadruplexes

. 2017 Sep 06 ; 45 (15) : 8684-8696.

Altered biochemical specificity of G-quadruplexes with mutated tetrads

. 2016 Dec 15 ; 44 (22) : 10789-10803. [epub] 20161026

Conformational diversity of single-stranded DNA from bacterial repetitive extragenic palindromes: Implications for the DNA recognition elements of transposases

. 2015 Oct ; 103 (10) : 585-96.

Unique C. elegans telomeric overhang structures reveal the evolutionarily conserved properties of telomeric DNA

. 2015 May 19 ; 43 (9) : 4733-45. [epub] 20150408

Guanine quadruplexes are formed by specific regions of human transposable elements

. 2014 Nov 27 ; 15 (1) : 1032. [epub] 20141127

Quadruplex-forming sequences occupy discrete regions inside plant LTR retrotransposons

. 2014 Jan ; 42 (2) : 968-78. [epub] 20131007

Crystal structures of B-DNA dodecamer containing the epigenetic modifications 5-hydroxymethylcytosine or 5-methylcytosine

. 2013 Nov ; 41 (21) : 9891-900. [epub] 20130820

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace