Conformational diversity of single-stranded DNA from bacterial repetitive extragenic palindromes: Implications for the DNA recognition elements of transposases
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25951997
PubMed Central
PMC4690160
DOI
10.1002/bip.22666
Knihovny.cz E-zdroje
- Klíčová slova
- REP associated tyrosine transposases (RAYTs), bacterial repetitive extragenic palindromes (REP), circular dichroism spectroscopy, interstrand guanine tetraplex, landscape of RAYT DNA recognition elements,
- MeSH
- DNA bakterií chemie metabolismus MeSH
- jednovláknová DNA chemie metabolismus MeSH
- obrácené repetice genetika MeSH
- transposasy chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA bakterií MeSH
- jednovláknová DNA MeSH
- transposasy MeSH
Repetitive extragenic palindrome (REP)-associated tyrosine transposase enzymes (RAYTs) bind REP DNA domains and catalyze their cleavage. Genomic sequence analyses identify potential noncoding REP sequences associated with RAYT-encoding genes. To probe the conformational space of potential RAYT DNA binding domains, we report here spectroscopic and calorimetric measurements that detect and partially characterize the solution conformational heterogeneity of REP oligonucleotides from six bacterial species. Our data reveal most of these REP oligonucleotides adopt multiple conformations, suggesting that RAYTs confront a landscape of potential DNA substrates in dynamic equilibrium that could be selected, enriched, and/or induced via differential binding. Thus, the transposase-bound DNA motif may not be the predominant conformation of the isolated REP domain. Intriguingly, for several REPs, the circular dichroism spectra suggest guanine tetraplexes as potential alternative or additional RAYT recognition elements, an observation consistent with these REP domains being highly nonrandom, with tetraplex-favoring 5'-G and 3'-C-rich segments. In fact, the conformational heterogeneity of REP domains detected and reported here, including the formation of noncanonical DNA secondary structures, may reflect a general feature required for recognition by RAYT transposases. Based on our biophysical data, we propose guanine tetraplexes as an additional DNA recognition element for binding by RAYT transposase enzymes.
Cancer Institute of New Jersey Rutgers University New Brunswick NJ 08903
Department of Chemistry and Chemical Biology Rutgers University 610 Taylor Rd Piscataway NJ 08854
Zobrazit více v PubMed
Higgins CF. Ames GF. Barnes WM. Clement JM. Hofnung M. Nature. 1982;298:760–762. PubMed
Di Nocera PP. De Gregorio E. Rocco F. BMC Genomics. 2013;14:522. PubMed PMC
Bertels F. Rainey PB. PLoS Genet. 2011;7:e1002132. PubMed PMC
Bertels F. Rainey PB. Mobile Genet Elem. 2011;1:262–268. PubMed PMC
Gilson E. Saurin W. Perrin D. Bachellier S. Hofnung M. Nucleic Acids Res. 1991;19:1375–1383. PubMed PMC
Bachellier S. Clement JM. Hofnung M. Res Microbiol. 1999;150:627–639. PubMed
Espeli O. Moulin L. Boccard F. J Mol Biol. 2001;314:375–386. PubMed
Aranda-Olmedo I. Tobes R. Manzanera M. Ramos JL. Marques S. Nucleic Acids Res. 2002;30:1826–1833. PubMed PMC
Rocco F. De Gregorio E. Di Nocera PP. FEMS Microbiol Lett. 2010;308:185–192. PubMed
Nunvar J. Huckova T. Licha I. BMC Genomics. 2010;11:44. PubMed PMC
Chandler M. de la Cruz F. Dyda F. Hickman AB. Moncalian G. Ton-Hoang B. Nat Rev Microbiol. 2013;11:525–538. PubMed PMC
Gonzalez-Prieto C. Agundez L. Linden RM. Llosa M. Trends Biotechnol. 2013;31:305–312. PubMed
Ton-Hoang B. Siguier P. Quentin Y. Onillon S. Marty B. Fichant G. Chandler M. Nucleic Acids Res. 2012;40:3596–3609. PubMed PMC
Messing SA. Ton-Hoang B. Hickman AB. McCubbin AJ. Peaslee GF. Ghirlando R. Chandler M. Dyda F. Nucleic Acids Res. 2012;40:9964–9979. PubMed PMC
Gilson E. Bachellier S. Perrin S. Perrin D. Grimont PA. Grimont F. Hofnung M. Res Microbiol. 1990;141:1103–1116. PubMed
Nunvar J. Licha I. Schneider B. BMC Genomics. 2013;14:385. PubMed PMC
Breslauer K. J. Methods Enzymol. 1995;259:221–242. PubMed
Henry ER. Hofrichter J. Methods Enzymol. 1992;210:129–192.
Johnson WC. Methods Enzymol. 1992;210:426–447. PubMed
Gray RD. Chaires JB. Curr Protoc Nucleic Acid Chem. 2011;17 Chapter, Unit17 14. PubMed PMC
Marky LA. Breslauer K. J. Biopolym. 1987;26:1601–1620. PubMed
Bush CA. In: In Basic Principles in Nucleic Acid Chemistry. T'so POP, editor. New York: Academic; 1974. pp. 91–169.
Zuker M. Nucleic Acids Res. 2003;31:3406–3415. PubMed PMC
Kypr J. Kejnovska I. Renciuk D. Vorlickova M. Nucleic Acids Res. 2009;37:1713–1725. PubMed PMC
Karsisiotis AI. Hessari NM. Novellino E. Spada GP. Randazzo A. Webba da Silva M. Angew Chem Int Ed Engl. Vol. 50. 2011. pp. 10645–10648. PubMed
Gray DM. Biopolymers. 1974;13:2087–2102. PubMed
Poon K. Macgregor RB., Jr Biophys Chem. 2000;84:205–216. PubMed
Mergny JL. Lacroix L. Nucleic Acids Res. 1998;26:4797–4803. PubMed PMC
Bucek P. Jaumot J. Avino A. Eritja R. Gargallo R. Chem Eur J. 2009;15:12663–12671. PubMed
Kaushik M. Suehl N. Marky LA. Biophys Chem. 2007;126:154–164. PubMed
Kuo MH. Wang ZF. Tseng TY. Li MH. Hsu ST. Lin JJ. Chang TC. J Am Chem Soc. 2015;137:210–218. PubMed
Bacolla A. Wells RD. Mol Carcinog. 2009;48:273–285. PubMed
Zhao J. Bacolla A. Wang G. Vasquez KM. Cell Mol Life Sci. 2010;67:43–62. PubMed PMC
Leroy JL. Gehring K. Kettani A. Gueron M. Biochemistry. 1993;32:6019–6031. PubMed
Frank-Kamenetskii MD. Mirkin SM. Annu Rev Biochem. 1995;64:65–95. PubMed
Keniry MA. Biopolymers. 2000;56:123–146. PubMed
Völker J. Klump HH. Breslauer K. J. Proc Natl Acad Sci USA. 2008;105:18326–18330. PubMed PMC
Wells RD. Collier DA. Hanvey JC. Shimizu M. Wohlrab F. FASEB J. 1988;2:2939–2949. PubMed
Mirkin SM. Frank-Kamenetskii MD. Annu Rev Biophys Biomol Struct. 1994;23:541–576. PubMed
Gros J. Rosu F. Amrane S. De Cian A. Gabelica V. Lacroix L. Mergny JL. Nucleic Acids Res. 2007;35:3064–3075. PubMed PMC
Campbell N. Collie GW. Neidle S. Curr Protoc Nucleic Acid Chem. 2012;17:16. Chapter, Unit17. PubMed
Murchie AIH. Lilley DM. J. Methods Enzymol. 1992;211:158–180. PubMed
Miyoshi D. Karimata H. Sugimoto N. J Am Chem Soc. 2006;128:7957–7963. PubMed
Trakselis MA. Graham BW. Nature. 2012;492:195–197. PubMed
Bansal M. Kumar A. Yella VR. Curr Opin Struct Biol. 2014;25C:77–85. PubMed
Bikard D. Loot C. Baharoglu Z. Mazel D. Microbiol Mol Biol Rev. 2010;74:570–588. PubMed PMC
Ditlevson JV. Tornaletti S. Belotserkovskii BP. Teijeiro V. Wang G. Vasquez KM. Hanawalt PC. Nucleic Acids Res. 2008;36:3163–3170. PubMed PMC
Ebbinghaus SW. Gee JE. Rodu B. Mayfield CA. Sanders G. Miller DM. J Clin Invest. 1993;92:2433–2439. PubMed PMC
Belotserkovskii BP. De Silva E. Tornaletti S. Wang G. Vasquez KM. Hanawalt PC. J Biol Chem. 2007;282:32433–32441. PubMed
Siddiqui-Jain A. Grand CL. Bearss DJ. Hurley LH. Proc Natl Acad Sci USA. 2002;99:11593–11598. PubMed PMC
Broxson C. Beckett J. Tornaletti S. Biochemistry. 2011;50:4162–4172. PubMed
Kang C. Zhang XH. Ratliff R. Moyzis R. Rich A. Nature. 1992;356:126–131. PubMed
Ahmed S. Henderson E. Nucleic Acids Res. 1992;20:507–511. PubMed PMC
Kendrick S. Kang HJ. Alam MP. Madathil MM. Agrawal P. Gokhale V. Yang D. Hecht SM. Hurley LH. J Am Chem Soc. 2014;136:4161–4171. PubMed PMC
Han H. Hurley LH. Trends Pharmacol Sci. 2000;21:136–142. PubMed
Lam EY. Beraldi D. Tannahill D. Balasubramanian S. Nat Commun. 2013;4:1796. PubMed PMC
Gray LT. Vallur AC. Eddy J. Maizels N. Nat Chem Biol. 2014;10:313–318. PubMed PMC
Todd AK. Neidle S. Nucleic Acids Res. 2011;39:4917–4927. PubMed PMC
Burge S. Parkinson GN. Hazel P. Todd AK. Neidle S. Nucleic Acids Res. 2006;34:5402–5415. PubMed PMC
Bochman ML. Paeschke K. Zakian VA. Nat Rev Genet. 2012;13:770–780. PubMed PMC
Lexa M. Kejnovsky E. Steflova P. Konvalinova H. Vorlickova M. Vyskot B. Nucleic Acids Res. 2014;42:968–978. PubMed PMC
Neidle S. Read MA. Biopolymers. 2000;56:195–208. PubMed
Wei D. Todd AK. Zloh M. Gunaratnam M. Parkinson GN. Neidle S. J Am Chem Soc. 2013;135:19319–19329. PubMed
Conformation-based refinement of 18-mer DNA structures
Structural variability of CG-rich DNA 18-mers accommodating double T-T mismatches