Conformation-based refinement of 18-mer DNA structures
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LTAUSA18197
Ministerstvo Školství, Mládeže a Tělovýchovy
CAAS CZ.02.1.01/0.0/0.0/16_019/0000778
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO 86652036
Akademie Věd České Republiky, Biotechnologický ústav AV ČR
PubMed
37338420
PubMed Central
PMC10306069
DOI
10.1107/s2059798323004679
PII: S2059798323004679
Knihovny.cz E-zdroje
- Klíčová slova
- DNA structure, base pairing, dnatco.datmos.org, structure refinement, structure validation,
- MeSH
- DNA * chemie MeSH
- elektronová kryomikroskopie metody MeSH
- konformace nukleové kyseliny MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA * MeSH
Nine new crystal structures of CG-rich DNA 18-mers with the sequence 5'-GGTGGGGGC-XZ-GCCCCACC-3', which are related to the bacterial repetitive extragenic palindromes, are reported. 18-mer oligonucleotides with the central XZ dinucleotide systematically mutated to all 16 sequences show complex behavior in solution, but all ten so far successfully crystallized 18-mers crystallized as A-form duplexes. The refinement protocol benefited from the recurrent use of geometries of the dinucleotide conformer (NtC) classes as refinement restraints in regions of poor electron density. The restraints are automatically generated at the dnatco.datmos.org web service and are available for download. This NtC-driven protocol significantly helped to stabilize the structure refinement. The NtC-driven refinement protocol can be adapted to other low-resolution data such as cryo-EM maps. To test the quality of the final structural models, a novel validation method based on comparison of the electron density and conformational similarity to the NtC classes was employed.
Zobrazit více v PubMed
Afonine, P. V., Poon, B. K., Read, R. J., Sobolev, O. V., Terwilliger, T. C., Urzhumtsev, A. & Adams, P. D. (2018). Acta Cryst. D74, 531–544. PubMed PMC
Agirre, J., Atanasova, M., Bagdonas, H., Ballard, C. B., Baslé, A., Beilsten-Edmands, J., Borges, R. J., Brown, D. G., Burgos-Mármol, J. J., Berrisford, J. M., Bond, P. S., Caballero, I., Catapano, L., Chojnowski, G., Cook, A. G., Cowtan, K. D., Croll, T. I., Debreczeni, J. É., Devenish, N. E., Dodson, E. J., Drevon, T. R., Emsley, P., Evans, G., Evans, P. R., Fando, M., Foadi, J., Fuentes-Montero, L., Garman, E. F., Gerstel, M., Gildea, R. J., Hatti, K., Hekkelman, M. L., Heuser, P., Hoh, S. W., Hough, M. A., Jenkins, H. T., Jiménez, E., Joosten, R. P., Keegan, R. M., Keep, N., Krissinel, E. B., Kolenko, P., Kovalevskiy, O., Lamzin, V. S., Lawson, D. M., Lebedev, A. A., Leslie, A. G. W., Lohkamp, B., Long, F., Malý, M., McCoy, A. J., McNicholas, S. J., Medina, A., Millán, C., Murray, J. W., Murshudov, G. N., Nicholls, R. A., Noble, M. E. M., Oeffner, R., Pannu, N. S., Parkhurst, J. M., Pearce, N., Pereira, J., Perrakis, A., Powell, H. R., Read, R. J., Rigden, D. J., Rochira, W., Sammito, M., Sánchez Rodríguez, F., Sheldrick, G. M., Shelley, K. L., Simkovic, F., Simpkin, A. J., Skubak, P., Sobolev, E., Steiner, R. A., Stevenson, K., Tews, I., Thomas, J. M. H., Thorn, A., Valls, J. T., Uski, V., Usón, I., Vagin, A., Velankar, S., Vollmar, M., Walden, H., Waterman, D., Wilson, K. S., Winn, M. D., Winter, G., Wojdyr, M. & Yamashita, K. (2023). Acta Cryst. D79, 449–461.
Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D. & Zardecki, C. (2002). Acta Cryst. D58, 899–907. PubMed
Bertels, F. & Rainey, P. B. (2011). Mob. Genet. Elements, 1, 262–301. PubMed PMC
Biedermannová, L., Černý, J., Malý, M., Nekardová, M. & Schneider, B. (2022). Acta Cryst. D78, 1032–1045. PubMed PMC
Černý, J., Božíková, P., Malý, M., Tykač, M., Biedermannová, L. & Schneider, B. (2020). Acta Cryst. D76, 805–813. PubMed PMC
Černý, J., Božíková, P., Svoboda, J. & Schneider, B. (2020). Nucleic Acids Res. 48, 6367–6381. PubMed PMC
Charnavets, T., Nunvar, J., Nečasová, I., Völker, J., Breslauer, K. J. & Schneider, B. (2015). Biopolymers, 103, 585–596. PubMed PMC
Dickerson, R. E., Goodsell, D. S. & Neidle, S. (1994). Proc. Natl Acad. Sci. USA, 91, 3579–3583. PubMed PMC
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. (2010). Acta Cryst. D66, 486–501. PubMed PMC
Flores, S. C. & Altman, R. B. (2010). RNA, 16, 1769–1778. PubMed PMC
Gao, Y.-G., Robinson, H., Sanishvili, R., Joachimiak, A. & Wang, A. H.-J. (1999). Biochemistry, 38, 16452–16460. PubMed
Hoogsteen, K. (1963). Acta Cryst. 16, 907–916.
Iyer, R. R., Pluciennik, A., Burdett, V. & Modrich, P. L. (2006). Chem. Rev. 106, 302–323. PubMed
Kabsch, W. (2010). Acta Cryst. D66, 125–132. PubMed PMC
Jaumot, J., Escaja, N., Gargallo, R., González, C., Pedroso, E. & Tauler, R. (2002). Nucleic Acids Res. 30, e92. PubMed PMC
Kim, J. L., Nikolov, D. B. & Burley, S. K. (1993). Nature, 365, 520–527. PubMed
Kolenko, P., Svoboda, J., Černý, J., Charnavets, T. & Schneider, B. (2020). Acta Cryst. D76, 1233–1243. PubMed PMC
Kumar, K. S. D., Gurusaran, M., Satheesh, S. N., Radha, P., Pavithra, S., Thulaa Tharshan, K. P. S., Helliwell, J. R. & Sekar, K. (2015). J. Appl. Cryst. 48, 939–942.
Kunz, C., Saito, Y. & Schär, P. (2009). Cell. Mol. Life Sci. 66, 1021–1038. PubMed PMC
Leontis, N. B. & Westhof, E. (2001). RNA, 7, 499–512. PubMed PMC
Li, S., Olson, W. K. & Lu, X.-J. (2019). Nucleic Acids Res. 47, W26–W34. PubMed PMC
Liebschner, D., Afonine, P. V., Baker, M. L., Bunkóczi, G., Chen, V. B., Croll, T. I., Hintze, B., Hung, L.-W., Jain, S., McCoy, A. J., Moriarty, N. W., Oeffner, R. D., Poon, B. K., Prisant, M. G., Read, R. J., Richardson, J. S., Richardson, D. C., Sammito, M. D., Sobolev, O. V., Stockwell, D. H., Terwilliger, T. C., Urzhumtsev, A. G., Videau, L. L., Williams, C. J. & Adams, P. D. (2019). Acta Cryst. D75, 861–877. PubMed
McCall, M., Brown, T. & Kennard, O. (1985). J. Mol. Biol. 183, 385–396. PubMed
McNicholas, S., Potterton, E., Wilson, K. S. & Noble, M. E. M. (2011). Acta Cryst. D67, 386–394. PubMed PMC
Mueller, U., Förster, R., Hellmig, M., Huschmann, F. U., Kastner, A., Malecki, P., Pühringer, S., Röwer, M., Sparta, K., Steffien, M., Ühlein, M., Wilk, P. & Weiss, M. S. (2015). Eur. Phys. J. Plus, 130, 141.
Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F. & Vagin, A. A. (2011). Acta Cryst. D67, 355–367. PubMed PMC
Neidle, S. (2008). Principles of Nucleic Acid Structure. London: Academic Press.
Nikolova, E. N., Kim, E., Wise, A. A., O’Brien, P. J., Andricioaei, I. & Al-Hashimi, H. M. (2011). Nature, 470, 498–502. PubMed PMC
Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H. & Ferrin, T. E. (2021). Protein Sci. 30, 70–82. PubMed PMC
Ramakrishnan, B. & Sundaralingam, M. (1993). Biochemistry, 32, 11458–11468. PubMed
Saenger, W. (1984). Principles of Nucleic Acid Structure. New York: Springer-Verlag.
Schneider, B., Božíková, P., Nečasová, I., Čech, P., Svozil, D. & Černý, J. (2018). Acta Cryst. D74, 52–64. PubMed PMC
Skelly, J. V., Edwards, K. J., Jenkins, T. C. & Neidle, S. (1993). Proc. Natl Acad. Sci. USA, 90, 804–808. PubMed PMC
Vagin, A. & Teplyakov, A. (2010). Acta Cryst. D66, 22–25. PubMed
Villar-Guerra, R. del, Trent, J. O. & Chaires, J. B. (2018). Angew. Chem. Int. Ed. 57, 7171–7175. PubMed PMC
Vorlíčková, M., Kejnovská, I., Bednářová, K., Renčiuk, D. & Kypr, J. (2012). Chirality, 24, 691–698. PubMed
Westhof, E. (2014). FEBS Lett. 588, 2464–2469. PubMed