A unified dinucleotide alphabet describing both RNA and DNA structures

. 2020 Jun 19 ; 48 (11) : 6367-6381.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32406923

By analyzing almost 120 000 dinucleotides in over 2000 nonredundant nucleic acid crystal structures, we define 96+1 diNucleotide Conformers, NtCs, which describe the geometry of RNA and DNA dinucleotides. NtC classes are grouped into 15 codes of the structural alphabet CANA (Conformational Alphabet of Nucleic Acids) to simplify symbolic annotation of the prominent structural features of NAs and their intuitive graphical display. The search for nontrivial patterns of NtCs resulted in the identification of several types of RNA loops, some of them observed for the first time. Over 30% of the nearly six million dinucleotides in the PDB cannot be assigned to any NtC class but we demonstrate that up to a half of them can be re-refined with the help of proper refinement targets. A statistical analysis of the preferences of NtCs and CANA codes for the 16 dinucleotide sequences showed that neither the NtC class AA00, which forms the scaffold of RNA structures, nor BB00, the DNA most populated class, are sequence neutral but their distributions are significantly biased. The reported automated assignment of the NtC classes and CANA codes available at dnatco.org provides a powerful tool for unbiased analysis of nucleic acid structures by structural and molecular biologists.

Zobrazit více v PubMed

Ramachandran G.N., Sasisekharan V.. Conformation of polypeptides and proteins. Adv. Protein Chem. 1968; 23:283–437. PubMed

Unger R., Harel D., Wherland S., Sussman J.L.. A 3D building blocks approach to analyzing and predicting structure of proteins. Proteins. 1989; 5:355–373. PubMed

Levitt M. Accurate modeling of protein conformation by automatic segment matching. J. Mol. Biol. 1992; 226:507–533. PubMed

Kabsch W., Sander C.. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983; 22:2577–2637. PubMed

Konagurthu A.S., Lesk A.M., Allison L.. Minimum message length inference of secondary structure from protein coordinate data. Bioinformatics. 2012; 28:i97–i105. PubMed PMC

Joseph A.P., Agarwal G., Mahajan S., Gelly J.-C., Swapna L.S., Offmann B., Cadet F., Bornot A., Tyagi M., Valadié H. et al. .. A short survey on protein blocks. Biophys. Rev. 2010; 2:137–145. PubMed PMC

Kim S.-H., Berman H.M., Newton M.D., Seeman N.C.. Seven basic conformations of nucleic acid structural units. Acta Cryst. 1973; B29:703–710.

Murray L.J., Arendall W.B. 3rd, Richardson D.C., Richardson J.S.. RNA backbone is rotameric. Proc. Natl Acad. Sci. U.S.A. 2003; 100:13904–13909. PubMed PMC

Hershkovitz E., Tannenbaum E., Howerton S.B., Sheth A., Tannenbaum A., Williams L.D.. Automated identification of RNA conformational motifs: theory and application to the HM LSU 23S rRNA. Nucleic Acids Res. 2003; 31:6249–6257. PubMed PMC

Duarte C.M., Wadley L.M., Pyle A.M.. RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space. Nucleic Acids Res. 2003; 31:4755–4761. PubMed PMC

Schneider B., Moravek Z., Berman H.M.. RNA conformational classes. Nucleic Acids Res. 2004; 32:1666–1677. PubMed PMC

Richardson J.S., Schneider B., Murray L.W., Kapral G.J., Immormino R.M., Headd J.J., Richardson D.C., Ham D., Hershkovits E., Williams L.D. et al. .. RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution). RNA. 2008; 14:465–481. PubMed PMC

Svozil D., Kalina J., Omelka M., Schneider B.. DNA conformations and their sequence preferences. Nucleic Acids Res. 2008; 36:3690–3706. PubMed PMC

Schneider B., Bozikova P., Necasova I., Cech P., Svozil D., Cerny J.. A DNA structural alphabet provides new insight into DNA flexibility. Acta Cryst. 2018; D74:52–64. PubMed PMC

Klein D.J., Schmeing T.M., Moore P.B., Steitz T.A.. The kink-turn: a new RNA secondary structure motif. EMBO J. 2001; 20:4214–4221. PubMed PMC

Leontis N.B., Westhof E.. Analysis of RNA motifs. Curr. Opin. Struct. Biol. 2003; 13:300–308. PubMed

Harrison A.M., South D.R., Willett P., Artymiuk P.J.. Representation, searching and discovery of patterns of bases in complex RNA structures. J. Comput. Aided Mol. Des. 2003; 17:537–549. PubMed

Leontis N.B., Lescoute A., Westhof E.. The building blocks and motifs of RNA architecture. Curr. Opin. Struct. Biol. 2006; 16:279–287. PubMed PMC

Lemieux S., Major F.. Automated extraction and classification of RNA tertiary structure cyclic motifs. Nucleic Acids Res. 2006; 34:2340–2346. PubMed PMC

Petrov A.I., Zirbel C.L., Leontis N.B.. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas. RNA. 2013; 19:1327–1340. PubMed PMC

Zok T., Antczak M., Zurkowski M., Popenda M., Blazewicz J., Adamiak R.W., Szachniuk M.. RNApdbee 2.0: multifunctional tool for RNA structure annotation. Nucleic Acids Res. 2018; 46:W30–W35. PubMed PMC

Djelloul M., Denise A.. Automated motif extraction and classification in RNA tertiary structures. RNA. 2008; 14:2489–2497. PubMed PMC

Zhong C., Tang H., Zhang S.. RNAMotifScan: automatic identification of RNA structural motifs using secondary structural alignment. Nucleic Acids Res. 2010; 38:e176. PubMed PMC

Ge P., Islam S., Zhong C., Zhang S.. De novo discovery of structural motifs in RNA 3D structures through clustering. Nucleic Acids Res. 2018; 46:4783–4793. PubMed PMC

Chojnowski G., Walen T., Bujnicki J.M.. RNA Bricks–a database of RNA 3D motifs and their interactions. Nucleic Acids Res. 2014; 42:D123–D131. PubMed PMC

Schneider B., Bozikova P., Cech P., Svozil D., Cerny J.. A DNA structural alphabet distinguishes structural features of DNA bound to regulatory proteins and in the nucleosome core particle. Genes (Basel). 2017; 8:278. PubMed PMC

Berman H.M., Battistuz T., Bhat T.N., Bluhm W.F., Bourne P.E., Burkhardt K., Feng Z., Gilliland G.L., Iype L., Jain S. et al. .. The protein data bank. Acta Cryst. 2002; D58:889–898. PubMed

Chen V.B., Arendall W.B. 3rd, Headd J.J., Keedy D.A., Immormino R.M., Kapral G.J., Murray L.W., Richardson J.S., Richardson D.C.. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Cryst. 2010; D66:12–21. PubMed PMC

Polikanov Y.S., Steitz T.A., Innis C.A.. A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. Nat. Struct. Mol. Biol. 2014; 21:787–793. PubMed PMC

Garreau de Loubresse N., Prokhorova I., Holtkamp W., Rodnina M.V., Yusupova G., Yusupov M.. Structural basis for the inhibition of the eukaryotic ribosome. Nature. 2014; 513:517–522. PubMed

Ben-Shem A., Garreau de Loubresse N., Melnikov S., Jenner L., Yusupova G., Yusupov M.. The structure of the eukaryotic ribosome at 3.0 A resolution. Science. 2011; 334:1524–1529. PubMed

Maehigashi T., Dunkle J.A., Miles S.J., Dunham C.M.. Structural insights into +1 frameshifting promoted by expanded or modification-deficient anticodon stem loops. Proc. Natl Acad. Sci. U.S.A. 2014; 111:12740–12745. PubMed PMC

Cerny J., Bozikova P., Schneider B.. DNATCO: assignment of DNA conformers at dnatco.org. Nucleic Acids Res. 2016; 44:W284–W287. PubMed PMC

Noeske J., Wasserman M.R., Terry D.S., Altman R.B., Blanchard S.C., Cate J.H.. High-resolution structure of the Escherichia coli ribosome. Nat. Struct. Mol. Biol. 2015; 22:336–341. PubMed PMC

Chen Y., Feng S., Kumar V., Ero R., Gao Y.G.. Structure of EF-G-ribosome complex in a pretranslocation state. Nat. Struct. Mol. Biol. 2013; 20:1077–1084. PubMed

Fischer N., Neumann P., Konevega A.L., Bock L.V., Ficner R., Rodnina M.V., Stark H.. Structure of the E. coli ribosome-EF-Tu complex at <3 A resolution by Cs-corrected cryo-EM. Nature. 2015; 520:567–570. PubMed

James N.R., Brown A., Gordiyenko Y., Ramakrishnan V.. Translational termination without a stop codon. Science. 2016; 354:1437–1440. PubMed PMC

Flygaard R.K., Boegholm N., Yusupov M., Jenner L.B.. Cryo-EM structure of the hibernating Thermus thermophilus 100S ribosome reveals a protein-mediated dimerization mechanism. Nat. Commun. 2018; 9:4179. PubMed PMC

Kasari V., Pochopien A.A., Margus T., Murina V., Turnbull K., Zhou Y., Nissan T., Graf M., Novacek J., Atkinson G.C. et al. .. A role for the Saccharomyces cerevisiae ABCF protein New1 in translation termination/recycling. Nucleic Acids Res. 2019; 47:8807–8820. PubMed PMC

Desai N., Brown A., Amunts A., Ramakrishnan V.. The structure of the yeast mitochondrial ribosome. Science. 2017; 355:528–531. PubMed PMC

Shanmuganathan V., Schiller N., Magoulopoulou A., Cheng J., Braunger K., Cymer F., Berninghausen O., Beatrix B., Kohno K., von Heijne G. et al. .. Structural and mutational analysis of the ribosome-arresting human XBP1u. Elife. 2019; 8:e46267. PubMed PMC

Copp W., Denisov A.Y., Xie J., Noronha A.M., Liczner C., Safaee N., Wilds C.J., Gehring K.. Influence of nucleotide modifications at the C2′ position on the Hoogsteen base-paired parallel-stranded duplex of poly(A) RNA. Nucleic Acids Res. 2017; 45:10321–10331. PubMed PMC

Gilski M., Drozdzal P., Kierzek R., Jaskolski M.. Atomic resolution structure of a chimeric DNA-RNA Z-type duplex in complex with Ba(2+) ions: a case of complicated multi-domain twinning. Acta Cryst. 2016; D72:211–223. PubMed

Nikolov D.B., Chen H., Halay E.D., Hoffman A., Roeder R.G., Burley S.K.. Crystal structure of a human TATA box-binding protein/TATA element complex. Proc. Natl. Acad. Sci. U.S.A. 1996; 93:4862–4867. PubMed PMC

Guzikevich-Guerstein G., Shakked Z.. A novel form of the DNA double helix imposed on the TATA-box by the TATA-binding protein. Nat. Struct. Biol. 1996; 3:32–37. PubMed

Kobayashi T., Nureki O., Ishitani R., Yaremchuk A., Tukalo M., Cusack S., Sakamoto K., Yokoyama S.. Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion. Nat. Struct. Biol. 2003; 10:425–432. PubMed

Pan B., Xiong Y., Steitz T.A.. How the CCA-adding enzyme selects adenine over cytosine at position 76 of tRNA. Science. 2010; 330:937–940. PubMed PMC

Ito K., Murakami R., Mochizuki M., Qi H., Shimizu Y., Miura K., Ueda T., Uchiumi T.. Structural basis for the substrate recognition and catalysis of peptidyl-tRNA hydrolase. Nucleic. Acids. Res. 2012; 40:10521–10531. PubMed PMC

Short F.L., Pei X.Y., Blower T.R., Ong S.L., Fineran P.C., Luisi B.F., Salmond G.P.. Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot. Proc. Natl Acad. Sci. U.S.A. 2013; 110:E241–E249. PubMed PMC

Correll C.C., Beneken J., Plantinga M.J., Lubbers M., Chan Y.L.. The common and the distinctive features of the bulged-G motif based on a 1.04 A resolution RNA structure. Nucleic Acids Res. 2003; 31:6806–6818. PubMed PMC

Placido D., Brown B.A. 2nd, Lowenhaupt K., Rich A., Athanasiadis A.. A left-handed RNA double helix bound by the Z alpha domain of the RNA-editing enzyme ADAR1. Structure. 2007; 15:395–404. PubMed PMC

Sussman D., Wilson C.. A water channel in the core of the vitamin B(12) RNA aptamer. Structure. 2000; 8:719–727. PubMed

Yang X., Gerczei T., Glover L.T., Correll C.C.. Crystal structures of restrictocin-inhibitor complexes with implications for RNA recognition and base flipping. Nat. Struct. Biol. 2001; 8:968–973. PubMed

Serganov A., Polonskaia A., Phan A.T., Breaker R.R., Patel D.J.. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature. 2006; 441:1167–1171. PubMed PMC

Authier A., Chapuis G.. A Little Dictionary of Crystallography. 2014; Paris: International Union of Crystallography.

Adams P.D., Afonine P.V., Bunkoczi G., Chen V.B., Davis I.W., Echols N., Headd J.J., Hung L.W., Kapral G.J., Grosse-Kunstleve R.W. et al. .. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Cryst. 2010; D66:213–221. PubMed PMC

Agresti A. An Introduction to Categorical Data Analysis. 2007; 2nd ednHoboken, NJ: Wiley-Interscience.

Yesselman J.D., Denny S.K., Bisaria N., Herschlag D., Greenleaf W.J., Das R.. Sequence-dependent RNA helix conformational preferences predictably impact tertiary structure formation. Proc. Natl Acad. Sci. U.S.A. 2019; 116:16847–16855. PubMed PMC

Zhou X., Blocker A.W., Airoldi E.M., O'Shea E.K.. A computational approach to map nucleosome positions and alternative chromatin states with base pair resolution. Elife. 2016; 5:e16970. PubMed PMC

Bottaro S., Lindorff-Larsen K.. Mapping the universe of RNA Tetraloop Folds. Biophys. J. 2017; 113:257–267. PubMed PMC

Czudnochowski N., Ashley G.W., Santi D.V., Alian A., Finer-Moore J., Stroud R.M.. The mechanism of pseudouridine synthases from a covalent complex with RNA, and alternate specificity for U2605 versus U2604 between close homologs. Nucleic Acids Res. 2014; 42:2037–2048. PubMed PMC

D’Ascenzo L., Leonarski F., Vicens Q., Auffinger P.. Revisiting GNRA and UNCG folds: U-turns versus Z-turns in RNA hairpin loops. RNA. 2017; 23:259–269. PubMed PMC

Huang L., Wang J., Lilley D.M.J.. The structure of the guanidine-II Riboswitch. Cell Chem. Biol. 2017; 24:695–702. PubMed PMC

Edwards A.L., Reyes F.E., Heroux A., Batey R.T.. Structural basis for recognition of S-adenosylhomocysteine by riboswitches. RNA. 2010; 16:2144–2155. PubMed PMC

Gaines C.S., Piccirilli J.A., York D.M.. The L-platform/L-scaffold framework: a blueprint for RNA-cleaving nucleic acid enzyme design. RNA. 2020; 26:111–125. PubMed PMC

Liu Y., Wilson T.J., McPhee S.A., Lilley D.M.. Crystal structure and mechanistic investigation of the twister ribozyme. Nat. Chem. Biol. 2014; 10:739–744. PubMed

Salter J., Krucinska J., Alam S., Grum-Tokars V., Wedekind J.E.. Water in the active site of an all-RNA hairpin ribozyme and effects of Gua8 base variants on the geometry of phosphoryl transfer. Biochemistry. 2006; 45:686–700. PubMed PMC

DasGupta S., Suslov N.B., Piccirilli J.A.. Structural basis for substrate helix remodeling and cleavage loop activation in the varkud satellite ribozyme. J. Am. Chem. Soc. 2017; 139:9591–9597. PubMed PMC

Martick M., Lee T.S., York D.M., Scott W.G.. Solvent structure and hammerhead ribozyme catalysis. Chem. Biol. 2008; 15:332–342. PubMed PMC

Ren A., Vusurovic N., Gebetsberger J., Gao P., Juen M., Kreutz C., Micura R., Patel D.J.. Pistol ribozyme adopts a pseudoknot fold facilitating site-specific in-line cleavage. Nat. Chem. Biol. 2016; 12:702–708. PubMed PMC

Liu H., Yu X., Chen Y., Zhang J., Wu B., Zheng L., Haruehanroengra P., Wang R., Li S., Lin J. et al. .. Crystal structure of an RNA-cleaving DNAzyme. Nat. Commun. 2017; 8:2006. PubMed PMC

Ekesan S., York D.M.. Dynamical ensemble of the active state and transition state mimic for the RNA-cleaving 8–17 DNAzyme in solution. Nucleic Acids Res. 2019; 47:10282–10295. PubMed PMC

Zhao Q., Han Q., Kissinger C.R., Hermann T., Thompson P.A.. Structure of hepatitis C virus IRES subdomain IIa. Acta Cryst. 2008; D64:436–443. PubMed

Goddard T.D., Brilliant A.A., Skillman T.L., Vergenz S., Tyrwhitt-Drake J., Meng E.C., Ferrin T.E.. Molecular visualization on the holodeck. J. Mol. Biol. 2018; 430:3982–3996. PubMed PMC

Trausch J.J., Batey R.T.. A disconnect between high-affinity binding and efficient regulation by antifolates and purines in the tetrahydrofolate riboswitch. Chem. Biol. 2014; 21:205–216. PubMed PMC

Schmeing T.M., Huang K.S., Kitchen D.E., Strobel S.A., Steitz T.A.. Structural insights into the roles of water and the 2′ hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol. Cell. 2005; 20:437–448. PubMed

Tishchenko S., Kostareva O., Gabdulkhakov A., Mikhaylina A., Nikonova E., Nevskaya N., Sarskikh A., Piendl W., Garber M., Nikonov S.. Protein-RNA affinity of ribosomal protein L1 mutants does not correlate with the number of intermolecular interactions. Acta Cryst. 2015; D71:376–386. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Refinement of the Sugar Puckering Torsion Potential in the AMBER DNA Force Field

. 2025 Jan 28 ; 21 (2) : 833-846. [epub] 20250102

Structural characterization of two prototypical repressors of SorC family reveals tetrameric assemblies on DNA and mechanism of function

. 2024 Jul 08 ; 52 (12) : 7305-7320.

Outcomes of the EMDataResource cryo-EM Ligand Modeling Challenge

. 2024 Jul ; 21 (7) : 1340-1348. [epub] 20240625

Are kuravirus capsid diameters quantized? The first all-atom genome tracing method for double-stranded DNA viruses

. 2024 Feb 09 ; 52 (3) : e12.

Isotopic Depletion Increases the Spatial Resolution of FPOP Top-Down Mass Spectrometry Analysis

. 2024 Jan 30 ; 96 (4) : 1478-1487. [epub] 20240116

Outcomes of the EMDataResource Cryo-EM Ligand Modeling Challenge

. 2024 Jan 25 ; () : . [epub] 20240125

When will RNA get its AlphaFold moment?

. 2023 Oct 13 ; 51 (18) : 9522-9532.

Conformation-based refinement of 18-mer DNA structures

. 2023 Jul 01 ; 79 (Pt 7) : 655-665. [epub] 20230620

Knowledge-based prediction of DNA hydration using hydrated dinucleotides as building blocks

. 2022 Aug 01 ; 78 (Pt 8) : 1032-1045. [epub] 20220721

Developing Community Resources for Nucleic Acid Structures

. 2022 Apr 06 ; 12 (4) : . [epub] 20220406

Structural variability of CG-rich DNA 18-mers accommodating double T-T mismatches

. 2020 Dec 01 ; 76 (Pt 12) : 1233-1243. [epub] 20201124

Structural alphabets for conformational analysis of nucleic acids available at dnatco.datmos.org

. 2020 Sep 01 ; 76 (Pt 9) : 805-813. [epub] 20200817

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...