Cysteine tRNA acts as a stop codon readthrough-inducing tRNA in the human HEK293T cell line

. 2023 Sep ; 29 (9) : 1379-1387. [epub] 20230523

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37221013

Under certain circumstances, any of the three termination codons can be read through by a near-cognate tRNA; i.e., a tRNA whose two out of three anticodon nucleotides base pair with those of the stop codon. Unless programed to synthetize C-terminally extended protein variants with expanded physiological roles, readthrough represents an undesirable translational error. On the other side of a coin, a significant number of human genetic diseases is associated with the introduction of nonsense mutations (premature termination codons [PTCs]) into coding sequences, where stopping is not desirable. Here, the tRNA's ability to induce readthrough opens up the intriguing possibility of mitigating the deleterious effects of PTCs on human health. In yeast, the UGA and UAR stop codons were described to be read through by four readthrough-inducing rti-tRNAs-tRNATrp and tRNACys, and tRNATyr and tRNAGln, respectively. The readthrough-inducing potential of tRNATrp and tRNATyr was also observed in human cell lines. Here, we investigated the readthrough-inducing potential of human tRNACys in the HEK293T cell line. The tRNACys family consists of two isoacceptors, one with ACA and the other with GCA anticodons. We selected nine representative tRNACys isodecoders (differing in primary sequence and expression level) and tested them using dual luciferase reporter assays. We found that at least two tRNACys can significantly elevate UGA readthrough when overexpressed. This indicates a mechanistically conserved nature of rti-tRNAs between yeast and human, supporting the idea that they could be used in the PTC-associated RNA therapies.

Zobrazit více v PubMed

Beznosková P, Wagner S, Jansen ME, von der Haar T, Valasek LS. 2015. Translation initiation factor eIF3 promotes programmed stop codon readthrough. Nucleic Acids Res 43: 5099–5111. 10.1093/nar/gkv421 PubMed DOI PMC

Beznosková P, Gunisova S, Valasek LS. 2016. Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast. RNA 22: 456–466. 10.1261/rna.054452.115 PubMed DOI PMC

Beznosková P, Pavlikova Z, Zeman J, Echeverria Aitken C, Valasek LS. 2019. Yeast applied readthrough inducing system (YARIS): an in vivo assay for the comprehensive study of translational readthrough. Nucleic Acids Res 47: 6339–6350. 10.1093/nar/gkz346 PubMed DOI PMC

Beznosková P, Bidou L, Namy O, Valasek LS. 2021. Increased expression of tryptophan and tyrosine tRNAs elevates stop codon readthrough of reporter systems in human cell lines. Nucleic Acids Res 49: 5202–5215. 10.1093/nar/gkab315 PubMed DOI PMC

Blanchet S, Cornu D, Argentini M, Namy O. 2014. New insights into the incorporation of natural suppressor tRNAs at stop codons in Saccharomyces cerevisiae. Nucleic Acids Res 42: 10061–10072. 10.1093/nar/gku663 PubMed DOI PMC

Blanchet S, Cornu D, Hatin I, Grosjean H, Bertin P, Namy O. 2018. Deciphering the reading of the genetic code by near-cognate tRNA. Proc Natl Acad Sci 115: 3018–3023. 10.1073/pnas.1715578115 PubMed DOI PMC

Bonetti B, Fu L, Moon J, Bedwell DM. 1995. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol 251: 334–345. 10.1006/jmbi.1995.0438 PubMed DOI

Cassan M, Rousset JP. 2001. UAG readthrough in mammalian cells: effect of upstream and downstream stop codon contexts reveal different signals. BMC Mol Biol 2: 3. 10.1186/1471-2199-2-3 PubMed DOI PMC

Chan PP, Lowe TM. 2016. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res 44: D184–D189. 10.1093/nar/gkv1309 PubMed DOI PMC

Clark WC, Evans ME, Dominissini D, Zheng G, Pan T. 2016. tRNA base methylation identification and quantification via high-throughput sequencing. RNA 22: 1771–1784. 10.1261/rna.056531.116 PubMed DOI PMC

Dabrowski M, Bukowy-Bieryllo Z, Zietkiewicz E. 2015. Translational readthrough potential of natural termination codons in eucaryotes—the impact of RNA sequence. RNA Biol 12: 950–958. 10.1080/15476286.2015.1068497 PubMed DOI PMC

Eswarappa SM, Potdar AA, Koch WJ, Fan Y, Vasu K, Lindner D, Willard B, Graham LM, DiCorleto PE, Fox PL. 2014. Programmed translational readthrough generates antiangiogenic VEGF-Ax. Cell 157: 1605–1618. 10.1016/j.cell.2014.04.033 PubMed DOI PMC

Firth AE, Wills NM, Gesteland RF, Atkins JF. 2011. Stimulation of stop codon readthrough: frequent presence of an extended 3′ RNA structural element. Nucleic Acids Res 39: 6679–6691. 10.1093/nar/gkr224 PubMed DOI PMC

Fixsen SM, Howard MT. 2010. Processive selenocysteine incorporation during synthesis of eukaryotic selenoproteins. J Mol Biol 399: 385–396. 10.1016/j.jmb.2010.04.033 PubMed DOI PMC

Floquet C, Hatin I, Rousset JP, Bidou L. 2012. Statistical analysis of readthrough levels for nonsense mutations in mammalian cells reveals a major determinant of response to gentamicin. PLoS Genet 8: e1002608. 10.1371/journal.pgen.1002608 PubMed DOI PMC

Grentzmann G, Ingram JA, Kelly PJ, Gesteland RF, Atkins JF. 1998. A dual-luciferase reporter system for studying recoding signals. RNA 4: 479–486. 10.1017/S1355838298971576 PubMed DOI PMC

Gunisova S, Beznosková P, Mohammad MP, Vlckova V, Valasek LS. 2016. In-depth analysis of cis-determinants that either promote or inhibit reinitiation on GCN4 mRNA after translation of its four short uORFs. RNA 22: 542–558. 10.1261/rna.055046.115 PubMed DOI PMC

Harrell L, Melcher U, Atkins JF. 2002. Predominance of six different hexanucleotide recoding signals 3′ of read-through stop codons. Nucleic Acids Res 30: 2011–2017. 10.1093/nar/30.9.2011 PubMed DOI PMC

Heaphy SM, Mariotti M, Gladyshev VN, Atkins JF, Baranov PV. 2016. Novel ciliate genetic code variants including the reassignment of all three stop codons to sense codons in Condylostoma magnum. Mol Biol Evol 33: 2885–2889. 10.1093/molbev/msw166 PubMed DOI PMC

Hellen CUT. 2018. Translation termination and ribosome recycling in eukaryotes. Cold Spring Harb Perspect Biol 10: a032656. 10.1101/cshperspect.a032656 PubMed DOI PMC

Kachale A, Pavlikova Z, Nenarokova A, Roithova A, Durante IM, Miletinova P, Zahonova K, Nenarokov S, Votypka J, Horakova E, et al. 2023. Short tRNA anticodon stem and mutant eRF1 allow stop codon reassignment. Nature 613: 751–758. 10.1038/s41586-022-05584-2 PubMed DOI

Keeling KM, Wang D, Conard SE, Bedwell DM. 2012. Suppression of premature termination codons as a therapeutic approach. Crit Rev Biochem Mol Biol 47: 444–463. 10.3109/10409238.2012.694846 PubMed DOI PMC

Keeling KM, Xue X, Gunn G, Bedwell DM. 2014. Therapeutics based on stop codon readthrough. Annu Rev Genomics Hum Genet 15: 371–394. 10.1146/annurev-genom-091212-153527 PubMed DOI PMC

Kurosaki T, Maquat LE. 2016. Nonsense-mediated mRNA decay in humans at a glance. J Cell Sci 129: 461–467. 10.1242/jcs.181008 PubMed DOI PMC

Kutter C, Brown GD, Goncalves A, Wilson MD, Watt S, Brazma A, White RJ, Odom DT. 2011. Pol III binding in six mammals shows conservation among amino acid isotypes despite divergence among tRNA genes. Nat Genet 43: 948–955. 10.1038/ng.906 PubMed DOI PMC

Lee HL, Dougherty JP. 2012. Pharmaceutical therapies to recode nonsense mutations in inherited diseases. Pharmacol Ther 136: 227–266. 10.1016/j.pharmthera.2012.07.007 PubMed DOI

Linde L, Kerem B. 2008. Introducing sense into nonsense in treatments of human genetic diseases. Trends Genet 24: 552–563. 10.1016/j.tig.2008.08.010 PubMed DOI

Loughran G, Howard MT, Firth AE, Atkins JF. 2017. Avoidance of reporter assay distortions from fused dual reporters. RNA 23: 1285–1289. 10.1261/rna.061051.117 PubMed DOI PMC

Loughran G, Jungreis I, Tzani I, Power M, Dmitriev RI, Ivanov IP, Kellis M, Atkins JF. 2018. Stop codon readthrough generates a C-terminally extended variant of the human vitamin D receptor with reduced calcitriol response. J Biol Chem 293: 4434–4444. 10.1074/jbc.M117.818526 PubMed DOI PMC

Lowe TM, Chan PP. 2016. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44: W54–W57. 10.1093/nar/gkw413 PubMed DOI PMC

Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 955–964. 10.1093/nar/25.5.955 PubMed DOI PMC

Martins-Dias P, Romao L. 2021. Nonsense suppression therapies in human genetic diseases. Cell Mol Life Sci 78: 4677–4701. 10.1007/s00018-021-03809-7 PubMed DOI PMC

McCaughan KK, Brown CM, Dalphin ME, Berry MJ, Tate WP. 1995. Translational termination efficiency in mammals is influenced by the base following the stop codon. Proc Natl Acad Sci 92: 5431–5435. 10.1073/pnas.92.12.5431 PubMed DOI PMC

Namy O, Hatin I, Rousset JP. 2001. Impact of the six nucleotides downstream of the stop codon on translation termination. EMBO Rep 2: 787–793. 10.1093/embo-reports/kve176 PubMed DOI PMC

Pallanck L, Li S, Schulman LH. 1992. The anticodon and discriminator base are major determinants of cysteine tRNA identity in vivo. J Biol Chem 267: 7221–7223. 10.1016/S0021-9258(18)42508-2 PubMed DOI

Pan T. 2018. Modifications and functional genomics of human transfer RNA. Cell Res 28: 395–404. 10.1038/s41422-018-0013-y PubMed DOI PMC

Roy B, Leszyk JD, Mangus DA, Jacobson A. 2015. Nonsense suppression by near-cognate tRNAs employs alternative base pairing at codon positions 1 and 3. Proc Natl Acad Sci 112: 3038–3043. 10.1073/pnas.1424127112 PubMed DOI PMC

Rudolph KL, Schmitt BM, Villar D, White RJ, Marioni JC, Kutter C, Odom DT. 2016. Codon-driven translational efficiency is stable across diverse mammalian cell states. PLoS Genet 12: e1006024. 10.1371/journal.pgen.1006024 PubMed DOI PMC

Schueren F, Lingner T, George R, Hofhuis J, Dickel C, Gartner J, Thoms S. 2014. Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals. Elife 3: e03640. 10.7554/eLife.03640 PubMed DOI PMC

Shigematsu M, Honda S, Loher P, Telonis AG, Rigoutsos I, Kirino Y. 2017. YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs. Nucleic Acids Res 45: e70. 10.1093/nar/gkx005 PubMed DOI PMC

Skuzeski JM, Nichols LM, Gesteland RF, Atkins JF. 1991. The signal for a leaky UAG stop codon in several plant viruses includes the two downstream codons. J Mol Biol 218: 365–373. 10.1016/0022-2836(91)90718-L PubMed DOI

Swart EC, Serra V, Petroni G, Nowacki M. 2016. Genetic codes with no dedicated stop codon: context-dependent translation termination. Cell 166: 691–702. 10.1016/j.cell.2016.06.020 PubMed DOI PMC

Torres AG, Reina O, Stephan-Otto Attolini C, de Pouplana LR. 2019. Differential expression of human tRNA genes drives the abundance of tRNA-derived fragments. Proc Natl Acad Sci 116: 8451–8456. 10.1073/pnas.1821120116 PubMed DOI PMC

Yamaguchi Y, Hayashi A, Campagnoni CW, Kimura A, Inuzuka T, Baba H. 2012. L-MPZ, a novel isoform of myelin P0, is produced by stop codon readthrough. J Biol Chem 287: 17765–17776. 10.1074/jbc.M111.314468 PubMed DOI PMC

Zahonova K, Kostygov AY, Sevcikova T, Yurchenko V, Elias M. 2016. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr Biol 26: 2364–2369. 10.1016/j.cub.2016.06.064 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Ribosomal A-site interactions with near-cognate tRNAs drive stop codon readthrough

. 2025 Jan 13 ; () : . [epub] 20250113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...