Ribosomal A-site interactions with near-cognate tRNAs drive stop codon readthrough

. 2025 Jan 13 ; () : . [epub] 20250113

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39806023
Odkazy

PubMed 39806023
DOI 10.1038/s41594-024-01450-z
PII: 10.1038/s41594-024-01450-z
Knihovny.cz E-zdroje

Transfer RNAs (tRNAs) serve as a dictionary for the ribosome translating the genetic message from mRNA into a polypeptide chain. In addition to this canonical role, tRNAs are involved in other processes such as programmed stop codon readthrough (SC-RT). There, tRNAs with near-cognate anticodons to stop codons must outcompete release factors and incorporate into the ribosomal decoding center to prevent termination and allow translation to continue. However, not all near-cognate tRNAs promote efficient SC-RT. Here, with the help of Saccharomyces cerevisiae and Trypanosoma brucei, we demonstrate that those tRNAs that promote efficient SC-RT establish critical contacts between their anticodon stem (AS) and ribosomal proteins Rps30/eS30 and Rps25/eS25 forming the decoding site. Unexpectedly, the length and well-defined nature of the AS determine the strength of these contacts, which is reflected in organisms with reassigned stop codons. These findings open an unexplored direction in tRNA biology that should facilitate the design of artificial tRNAs with specifically altered decoding abilities.

Zobrazit více v PubMed

Hellen, C. U. T. Translation termination and ribosome recycling in eukaryotes. Cold Spring Harb. Perspect. Biol. 10, a032656 (2018). PubMed DOI PMC

Floquet, C., Hatin, I., Rousset, J. P. & Bidou, L. Statistical analysis of readthrough levels for nonsense mutations in mammalian cells reveals a major determinant of response to gentamicin. PLoS Genet. 8, e1002608 (2012). PubMed DOI PMC

Mancera-Martinez, E., Brito Querido, J., Valasek, L. S., Simonetti, A. & Hashem, Y.ABCE1: a special factor that orchestrates translation at the crossroad between recycling and initiation. RNA Biol. 14, 1279–1285 (2017). PubMed DOI PMC

Heuer, A. et al. Structure of the 40S–ABCE1 post-splitting complex in ribosome recycling and translation initiation. Nat. Struct. Mol. Biol. 24, 453–460 (2017). PubMed DOI

Becker, T. et al. Structural basis of highly conserved ribosome recycling in eukaryotes and archaea. Nature 482, 501–506 (2012). PubMed DOI PMC

Palma, M. & Lejeune, F. Deciphering the molecular mechanism of stop codon readthrough. Biol. Rev. Camb. Philos. Soc. 96, 310–329 (2021). PubMed DOI

Schueren, F. & Thoms, S. Functional translational readthrough: a systems biology perspective. PLoS Genet. 12, e1006196 (2016). PubMed DOI PMC

Bonetti, B., Fu, L., Moon, J. & Bedwell, D. M. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J. Mol. Biol. 251, 334–345 (1995). PubMed DOI

Namy, O., Hatin, I. & Rousset, J. P. Impact of the six nucleotides downstream of the stop codon on translation termination. EMBO Rep. 2, 787–793 (2001). PubMed DOI PMC

Harrell, L., Melcher, U. & Atkins, J. F. Predominance of six different hexanucleotide recoding signals 3′ of read-through stop codons. Nucleic Acids Res. 30, 2011–2017 (2002). PubMed DOI PMC

Beznosková, P., Gunišová, S. & Valášek, L. S. Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast. RNA 22, 456–466 (2016). PubMed DOI PMC

Firth, A. E., Wills, N. M., Gesteland, R. F. & Atkins, J. F. Stimulation of stop codon readthrough: frequent presence of an extended 3′ RNA structural element. Nucleic Acids Res. 39, 6679–6691 (2011). PubMed DOI PMC

Karijolich, J. & Yu, Y. T. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474, 395–398 (2011). PubMed DOI PMC

Blanchet, S. et al. Deciphering the reading of the genetic code by near-cognate tRNA. Proc. Natl Acad. Sci. USA 115, 3018–3023 (2018). PubMed DOI PMC

Amrani, N. et al. A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432, 112–118 (2004). PubMed DOI

Beznosková, P. et al. Translation initiation factors eIF3 and HCR1 control translation termination and stop codon read-through in yeast cells. PLoS Genet. 9, e1003962 (2013). PubMed DOI PMC

Beznosková, P., Wagner, S., Jansen, M. E., von der Haar, T. & Valášek, L. S. Translation initiation factor eIF3 promotes programmed stop codon readthrough. Nucleic Acids Res. 43, 5099–5111 (2015). PubMed DOI PMC

Roy, B., Leszyk, J. D., Mangus, D. A. & Jacobson, A. Nonsense suppression by near-cognate tRNAs employs alternative base pairing at codon positions 1 and 3. Proc. Natl Acad. Sci. USA 112, 3038–3043 (2015). PubMed DOI PMC

Beznosková, P., Pavlíková, Z., Zeman, J., Echeverria Aitken, C. & Valášek, L. S. Yeast applied readthrough inducing system (YARIS): an invivo assay for the comprehensive study of translational readthrough. Nucleic Acids Res. 47, 6339–6350 (2019). PubMed DOI PMC

Beznosková, P., Bidou, L., Namy, O. & Valášek, L. S. Increased expression of tryptophan and tyrosine tRNAs elevates stop codon readthrough of reporter systems in human cell lines. Nucleic Acids Res. 49, 5202–5215 (2021). PubMed DOI PMC

Blanchet, S., Cornu, D., Argentini, M. & Namy, O. New insights into the incorporation of natural suppressor tRNAs at stop codons in Saccharomyces cerevisiae. Nucleic Acids Res. 42, 10061–10072 (2014). PubMed DOI PMC

Ogle, J. M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001). PubMed DOI

Ogle, J. M., Murphy, F. V., Tarry, M. J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111, 721–732 (2002). PubMed DOI

Shao, S. et al. Decoding mammalian ribosome–mRNA states by translational GTPase complexes. Cell 167, 1229–1240 (2016). PubMed DOI PMC

Loveland, A. B., Demo, G., Grigorieff, N. & Korostelev, A. A. Ensemble cryo-EM elucidates the mechanism of translation fidelity. Nature 546, 113–117 (2017). PubMed DOI PMC

Demeshkina, N., Jenner, L., Westhof, E., Yusupov, M. & Yusupova, G. A new understanding of the decoding principle on the ribosome. Nature 484, 256–259 (2012). PubMed DOI

Richter, J. D. & Coller, J. Pausing on polyribosomes: make way for elongation in translational control. Cell 163, 292–300 (2015). PubMed DOI PMC

Stadler, M. & Fire, A. Wobble base-pairing slows in vivo translation elongation in metazoans. RNA 17, 2063–2073 (2011). PubMed DOI PMC

Budkevich, T. et al. Structure and dynamics of the mammalian ribosomal pretranslocation complex. Mol. Cell 44, 214–224 (2011). PubMed DOI PMC

Zeng, F. et al. Conserved heterodimeric GTPase Rbg1/Tma46 promotes efficient translation in eukaryotic cells. Cell Rep. 37, 109877 (2021). PubMed DOI PMC

Bowen, A. M. et al. Ribosomal protein uS19 mutants reveal its role in coordinating ribosome structure and function. Translation (Austin) 3, e1117703 (2015). PubMed

Kachale, A. et al. Short tRNA anticodon stem and mutant eRF1 allow stop codon reassignment. Nature 613, 751–758 (2023). PubMed DOI

Pan, T. Modifications and functional genomics of human transfer RNA. Cell Res. 28, 395–404 (2018). PubMed DOI PMC

Johansson, M.J.O. & Byström, A.S. Transfer RNA modifications and modifying enzymes in Saccharomyces cerevisiae. In Fine-Tuning of RNA Functions by Modification and Editing (ed. Grosjean, H.) (Springer, 2005).

Dabrowski, M., Bukowy-Bieryllo, Z. & Zietkiewicz, E. Translational readthrough potential of natural termination codons in eucaryotes—the impact of RNA sequence. RNA Biol. 12, 950–958 (2015). PubMed DOI PMC

Nedialkova, D. D. & Leidel, S. A. Optimization of codon translation rates via tRNA modifications maintains proteome integrity. Cell 161, 1606–1618 (2015). PubMed DOI PMC

Pineyro, D., Torres, A.G. & de Pouplana, L.R. Biogenesis and evolution of functional tRNAs. In Fungal RNA Biology (eds Sesma, A. & von der Haar, T.) (Springer, 2014).

Lozupone, C. A., Knight, R. D. & Landweber, L. F. The molecular basis of nuclear genetic code change in ciliates. Curr. Biol. 11, 65–74 (2001). PubMed DOI

Valasek, L. S. et al. Embraced by eIF3: structural and functional insights into the roles of eIF3 across the translation cycle. Nucleic Acids Res. 45, 10948–10968 (2017). PubMed DOI PMC

Valášek, L., Trachsel, H., Hašek, J. & Ruis, H. Rpg1, the Saccharomyces cerevisiae homologue of the largest subunit of mammlian translation initiation factor 3, is required for translational activity. J. Biol. Chem. 273, 21253–21260 (1998). PubMed DOI

Akhmaloka, Susilowati, Subandi, P. E. & Madayanti, F. Mutation at tyrosine in AMLRY (GILRY like) motif of yeast eRF1 on nonsense codons suppression and binding affinity to eRF3. Int J. Biol. Sci. 4, 87–95 (2008). PubMed DOI PMC

Panek, T. et al. Nuclear genetic codes with a different meaning of the UAG and the UAA codon. BMC Biol. 15, 8 (2017). PubMed DOI PMC

Valášek, L. S., Kučerová, M., Zeman, J. & Beznosková, P. Cysteine tRNA acts as a stop codon readthrough-inducing tRNA in the human HEK293T cell line. RNA 29, 1379–1387 (2023). PubMed DOI PMC

Schultz, D. W. & Yarus, M. tRNA structure and ribosomal function. I. tRNA nucleotide 27–43 mutations enhance first position wobble. J. Mol. Biol. 235, 1381–1394 (1994). PubMed DOI

Uhlenbeck, O. C. & Schrader, J. M. Evolutionary tuning impacts the design of bacterial tRNAs for the incorporation of unnatural amino acids by ribosomes. Curr. Opin. Chem. Biol. 46, 138–145 (2018). PubMed DOI PMC

Geslain, R. & Pan, T. Functional analysis of human tRNA isodecoders. J. Mol. Biol. 396, 821–831 (2010). PubMed DOI

Holm, M. et al. mRNA decoding in human is kinetically and structurally distinct from bacteria. Nature 617, 200–207 (2023). PubMed DOI PMC

Bulygin, K. N., Graifer, D. M., Hountondji, C., Frolova, L. Y. & Karpova, G. G. Exploring contacts of eRF1 with the 3′-terminus of the P site tRNA and mRNA stop signal in the human ribosome at various translation termination steps. Biochim. Biophys. Acta 1860, 782–793 (2017). DOI

Brown, A., Shao, S., Murray, J., Hegde, R. S. & Ramakrishnan, V. Structural basis for stop codon recognition in eukaryotes. Nature 524, 493–496 (2015). PubMed DOI PMC

Matheisl, S., Berninghausen, O., Becker, T. & Beckmann, R. Structure of a human translation termination complex. Nucleic Acids Res. 43, 8615–8626 (2015). PubMed DOI PMC

des Georges, A. et al. Structure of the mammalian ribosomal pre-termination complex associated with eRF1·eRF3·GDPNP. Nucleic Acids Res. 42, 3409–3418 (2014). PubMed DOI

Bhaskar, V. et al. Dynamics of uS19 C-terminal tail during the translation elongation cycle in human ribosomes. Cell Rep. 31, 107473 (2020). PubMed DOI

Bulygin, K., Malygin, A., Gopanenko, A., Graifer, D. & Karpova, G. The functional role of the C-terminal tail of the human ribosomal protein uS19. Biochim. Biophys. Acta 1863, 194490 (2020). DOI

Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334, 1524–1529 (2011). PubMed DOI

Rabl, J., Leibundgut, M., Ataide, S. F., Haag, A. & Ban, N. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331, 730–736 (2011). PubMed DOI

Hertz, M. I., Landry, D. M., Willis, A. E., Luo, G. & Thompson, S. R. Ribosomal protein S25 dependency reveals a common mechanism for diverse internal ribosome entry sites and ribosome shunting. Mol. Cell. Biol. 33, 1016–1026 (2013). PubMed DOI PMC

Genuth, N. R. & Barna, M. Heterogeneity and specialized functions of translation machinery: from genes to organisms. Nat. Rev. Genet. 19, 431–452 (2018). PubMed DOI PMC

Mort, M., Ivanov, D., Cooper, D. N. & Chuzhanova, N. A. A meta-analysis of nonsense mutations causing human genetic disease. Hum. Mutat. 29, 1037–1047 (2008). PubMed DOI

Valášek, L. S., Lukeš, J. & Paris, Z. Stops making sense—for the people? Clin. Transl. Med 13, e1270 (2023). PubMed DOI PMC

Chan, P. P. & Lowe, T. M. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 44, D184–D189 (2016). PubMed DOI

Grentzmann, G., Ingram, J. A., Kelly, P. J., Gesteland, R. F. & Atkins, J. F. A dual-luciferase reporter system for studying recoding signals. RNA 4, 479–486 (1998). PubMed PMC

Muhlrad, D. & Parker, R. Recognition of yeast mRNAs as ‘nonsense containing’ leads to both inhibition of mRNA translation and mRNA degradation: implications for the control of mRNA decapping. Mol. Biol. Cell 10, 3971–3978 (1999). PubMed DOI PMC

Chomczynski, P. & Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nat. Protoc. 1, 581–585 (2006). PubMed DOI

Laslett, D. & Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16 (2004). PubMed DOI PMC

Chan, P. P., Lin, B. Y., Mak, A. J. & Lowe, T. M. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 49, 9077–9096 (2021). PubMed DOI PMC

Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). PubMed DOI PMC

Slabodnick, M. M. et al. The macronuclear genome of stentor coeruleus reveals tiny introns in a giant cell. Curr. Biol. 27, 569–575 (2017). PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...