ABCE1: A special factor that orchestrates translation at the crossroad between recycling and initiation

. 2017 Oct 03 ; 14 (10) : 1279-1285. [epub] 20170512

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28498001

For many years initiation and termination of mRNA translation have been studied separately. However, a direct link between these 2 isolated stages has been suggested by the fact that some initiation factors also control termination and can even promote ribosome recycling; i.e. the last stage where post-terminating 80S ribosomes are split to start a new round of initiation. Notably, it is now firmly established that, among other factors, ribosomal recycling critically requires the NTPase ABCE1. However, several earlier reports have proposed that ABCE1 also somehow participates in the initiation complex assembly. Based on an extended analysis of our recently published late-stage 48S initiation complex from rabbit, here we provide new mechanistic insights into this putative role of ABCE1 in initiation. This point of view represents the first structural evidence in which the regulatory role of the recycling factor ABCE1 in initiation is discussed and establishes a corner stone for elucidating the interplay between ABCE1 and several initiation factors during the transit from ribosomal recycling to formation of the elongation competent 80S initiation complex.

Zobrazit více v PubMed

Wagner S, Herrmannová A, Malík R, Peclinovská L, Valášek LS. Functional and biochemical characterization of human eukaryotic translation initiation factor 3 in living cells. Mol Cell Biol 2014; 34:3041-52; PMID:24912683; https://doi.org/10.1128/MCB.00663-14 PubMed DOI PMC

Majumdar R, Bandyopadhyay A, Maitra U. Mammalian translation initiation factor eIF1 functions with eIF1A and eIF3 in the formation of a stable 40 S preinitiation complex. J Biol Chem 2003; 278:6580-7; PMID:12493757; https://doi.org/10.1074/jbc.M210357200 PubMed DOI

Hashem Y, des Georges A, Dhote V, Langlois R, Liao HY, Grassucci RA, Hellen CU, Pestova TV, Frank J. Structure of the mammalian ribosomal 43S preinitiation complex bound to the scanning factor DHX29. Cell 2013; 153:1108-19; PMID:23706745; https://doi.org/10.1016/j.cell.2013.04.036 PubMed DOI PMC

Aylett CH, Boehringer D, Erzberger JP, Schaefer T, Ban N. Structure of a Yeast 40S–eIF1–eIF1A–eIF3–eIF3j initiation complex. Nat Struct Mol Biol 2015; 22:269-71; PMID:25664723; https://doi.org/10.1038/nsmb.2963 PubMed DOI

Hinnebusch AG. The scanning mechanism of eukaryotic translation initiation. Annu Rev Biochem 2014; 83:779-812; PMID:24499181; https://doi.org/10.1146/annurev-biochem-060713-035802 PubMed DOI

Aitken CE, Lorsch JR. A mechanistic overview of translation initiation in eukaryotes. Nat Struct Mol Biol 2012; 19:568-76; PMID:22664984; https://doi.org/10.1038/nsmb.2303 PubMed DOI

Simonetti A, Brito Querido J, Myasnikov AG, Mancera-Martinez E, Renaud A, Kuhn L, Hashem Y. eIF3 peripheral subunits rearrangement after mRNA binding and start-codon recognition. Mol Cell 2016; 63:206-17; PMID:27373335; https://doi.org/10.1016/j.molcel.2016.05.033 PubMed DOI

Cuchalová L, Kouba T, Herrmannová A, Dányi I, Chiu WL, Valásek L. The RNA recognition motif of eukaryotic translation initiation factor 3 g (eIF3g) is required for resumption of scanning of posttermination ribosomes for reinitiation on GCN4 and together with eIF3i stimulates linear scanning. Mol Cell Biol 2010; 30:4671-86; PMID:20679478; https://doi.org/10.1128/MCB.00430-10 PubMed DOI PMC

Nielsen KH, Valášek L, Sykes C, Jivotovskaya A, Hinnebusch AG. Interaction of the RNP1 Motif in PRT1 with HCR1 Promotes 40S Binding of Eukaryotic Initiation Factor 3 in Yeast. Mol Cell Biol 2006; 26:2984-98; PMID:16581774; https://doi.org/10.1128/MCB.26.8.2984-2998.2006 PubMed DOI PMC

Llácer JL, Hussain T, Marler L, Aitken CE, Thakur A, Lorsch JR, Hinnebusch AG, Ramakrishnan V. Conformational differences between open and closed states of the eukaryotic translation initiation complex. Mol Cell 2015; 59:399-412; PMID:26212456; https://doi.org/10.1016/j.molcel.2015.06.033 PubMed DOI PMC

Hinnebusch AG, Lorsch JR. The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb Perspect Biol 2012; 4:a011544; PMID:22815232; https://doi.org/10.1101/cshperspect.a011544 PubMed DOI PMC

Nanda JS, Saini AK, Muñoz AM, Hinnebusch AG, Lorsch JR. Coordinated movements of eukaryotic translation initiation factors eIF1, eIF1A, and eIF5 trigger phosphate release from eIF2 in response to start codon recognition by the ribosomal preinitiation complex. J Biol Chem 2013; 288:5316-29; PMID:23293029; https://doi.org/10.1074/jbc.M112.440693 PubMed DOI PMC

Zhang F, Saini AK, Shin BS, Nanda J, Hinnebusch AG. Conformational changes in the P site and mRNA entry channel evoked by AUG recognition in yeast translation preinitiation complexes. Nucleic Acids Res 2015; 43:2293-312; PMID:25670678; https://doi.org/10.1093/nar/gkv028 PubMed DOI PMC

Cheung YN, Maag D, Mitchell SF, Fekete CA, Algire MA, Takacs JE, Shirokikh N, Pestova T, Lorsch JR, Hinnebusch AG. Dissociation of eIF1 from the 40S ribosomal subunit is a key step in start codon selection in vivo. Genes Dev 2007; 21:1217-30; PMID:17504939; https://doi.org/10.1101/gad.1528307 PubMed DOI PMC

Nag N, Lin KY, Edmonds KA, Yu J, Nadkarni D, Marintcheva B, Marintchev A. eIF1A/eIF5B interaction network and its functions in translation initiation complex assembly and remodeling. Nucleic Acids Res 2016; 44:7441-56; PMID:27325746; https://doi.org/https://10.1093/nar/gkw552 PubMed DOI PMC

Algire MA, Maag D, Lorsch JR. Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation. Mol Cell 2005; 20:251-62; PMID:16246727; https://doi.org/10.1016/j.molcel.2005.09.008 PubMed DOI

Valásek LS. ‘Ribozoomin’–translation initiation from the perspective of the ribosome-bound eukaryotic initiation factors (eIFs). Curr Protein Pept Sci 2012; 13:305-30; PMID:22708493; https://doi.org/10.2174/138920312801619385 PubMed DOI PMC

Kuhle B, Ficner R. Structural insight into the recognition of amino-acylated initiator tRNA by eIF5B in the 80S initiation complex. BMC Struct Biol 2014; 14:20; PMID:25350701; https://doi.org/10.1186/s12900-014-0020-2 PubMed DOI PMC

Yamamoto H, Unbehaun A, Loerke J, Behrmann E, Collier M, Bürger J, Mielke T, Spahn CM. Structure of the mammalian 80S initiation complex with initiation factor 5B on HCV-IRES RNA. Nat Struct Mol Biol 2014; 21:721-7; PMID:25064512; https://doi.org/10.1038/nsmb.2859 PubMed DOI

Fernández IS, Bai XC, Hussain T, Kelley AC, Lorsch JR, Ramakrishnan V, Scheres SH. Molecular architecture of a eukaryotic translational initiation complex. Science 2013; 342:1240585; PMID:24200810; https://doi.org/10.1126/science.1240585 PubMed DOI PMC

Shin BS, Maag D, Roll-Mecak A, Arefin MS, Burley SK, Lorsch JR, Dever TE. Uncoupling of initiation factor eIF5B/IF2 GTPase and translational activities by mutations that lower ribosome affinity. Cell 2002; 111:1015-25; PMID:12507428; https://doi.org/10.1016/S0092-8674(02)01171-6 PubMed DOI

Fringer JM, Acker MG, Fekete CA, Lorsch JR, Dever TE. Coupled release of eukaryotic translation initiation factors 5B and 1A from 80S ribosomes following subunit joining. Mol Cell Biol 2007; 27:2384-97; PMID:17242201; https://doi.org/10.1128/MCB.02254-06 PubMed DOI PMC

Karcher A, Bu¨ttner K, Märtens B, Jansen RP, Hopfner KP. X-Ray structure of RLI, an essential twin cassette ABC ATPase involved in ribosome biogenesis and HIV capsid assembly. Structure 2005; 13:649-59; PMID:15837203; https://doi.org/10.1016/j.str.2005.02.008 PubMed DOI

Becker T, Franckenberg S, Wickles S, Shoemaker CJ, Anger AM, Armache JP, Sieber H, Ungewickell C, Berninghausen O, Daberkow I, et al.. Structural basis of highly conserved ribosome recycling in eukaryotes and archaea. Nature 2012; 482:501-6; PMID:22358840; https://doi.org/10.1038/nature10829 PubMed DOI PMC

Brown A, Shao S, Murray J, Hegde RS, Ramakrishnan V. Structural basis for stop codon recognition in eukaryotes. Nature 2015; 524:493-6; PMID:26245381; https://doi.org/10.1038/nature14896 PubMed DOI PMC

Barthelme D, Dinkelaker S, Albers SV, Londei P, Ermler U, Tampé R. Ribosome recycling depends on a mechanistic link between the FeS cluster domain and a conformational switch of the twin-ATPase ABCE1. Proc Natl Acad Sci U S A 2011; 108:3228-33; PMID:21292982; https://doi.org/10.1073/pnas.1015953108 PubMed DOI PMC

Dong J, Lai R, Nielsen K, Fekete CA, Qiu H, Hinnebusch AG. The essential ATP-binding cassette protein RLI1 functions in translation by promoting preinitiation complex assembly. J Biol Chem 2004; 279:42157-68; PMID:15277527; https://doi.org/10.1074/jbc.M404502200 PubMed DOI

Andersen DS, Leevers SJ. The essential drosophila ATP-binding cassette domain protein, pixie, binds the 40 S Ribosome in an ATP-dependent manner and is required for translation initiation. J Biol Chem 2007; 282:14752-60; PMID:17392269; https://doi.org/10.1074/jbc.M701361200 PubMed DOI

Chen Z, Dong J, Ishimura A, Daar I, Hinnebusch AG, Dean M. The essential vertebrate ABCE1 protein interacts with eukaryotic initiation factors. J Biol Chem 2006; 281:7452-7; PMID:16421098; https://doi.org/10.1074/jbc.M510603200 PubMed DOI

Jackson RJ. The missing link in the eukaryotic ribosome cycle. Mol Cell 2007; 28:356-8; PMID:17996700; https://doi.org/10.1016/j.molcel.2007.10.014 PubMed DOI

Pisarev AV, Skabkin MA, Pisareva VP, Skabkina OV, Rakotondrafara AM, Hentze MW, Hellen CU, Pestova TV. The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol Cell 2010; 37:196-210; PMID:20122402; https://doi.org/10.1016/j.molcel.2009.12.034 PubMed DOI PMC

Si K, Chaudhuri J, Chevesich J, Maitra U. Molecular cloning and functional expression of a human cDNA encoding translation initiation factor 6. Proc Natl Acad Sci U S A 1997; 94:14285-90; PMID:9405604; https://doi.org/10.1073/pnas.94.26.14285 PubMed DOI PMC

Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 2010; 11:113-27; PMID:20094052; https://doi.org/10.1038/nrm2838 PubMed DOI PMC

Beznosková P, Cuchalová L, Wagner S, Shoemaker CJ, Gunišová S, von der Haar T, Valášek LS. Translation initiation factors eIF3 and HCR1 control translation termination and stop codon read-through in yeast cells. PLOS Genet 2013; 9:e1003962; PMID:24278036; https://doi.org/10.1371/journal.pgen.1003962 PubMed DOI PMC

Beznosková P, Wagner S, Jansen ME, von der Haar T, Valášek LS. Translation initiation factor eIF3 promotes programmed stop codon readthrough. Nucleic Acids Res 2015; 43:5099-111; PMID:25925566; https://doi.org/10.1093/nar/gkv421 PubMed DOI PMC

Gabaldón T, Huynen MA. Prediction of protein function and pathways in the genome era. Cell Mol Life Sci 61:930-44; PMID:15095013; https://doi.org/10.1007/s00018-003-3387-y PubMed DOI PMC

Rodnina MV, Wintermeyer W, Green R. Ribosomes Structure, Function, and Dynamics. Springer Science & Business Media, 2011; https://doi.org/10.1007/978-3-7091-0215-2 DOI

Kerr ID. Sequence analysis of twin ATP binding cassette proteins involved in translational control, antibiotic resistance, and ribonuclease L inhibition. Biochem Biophys Res Commun 2004; 315:166-73; PMID:15013441; https://doi.org/10.1016/j.bbrc.2004.01.044 PubMed DOI

Hopfner KP, Karcher A, Shin DS, Craig L, Arthur LM, Carney JP, Tainer JA. Structural biology of Rad50 ATPase. Cell 2000; 101:789-800; PMID:10892749; https://doi.org/10.1016/S0092-8674(00)80890-9 PubMed DOI

Rees DC, Johnson E, Lewinson O. ABC transporters: the power to change. Nat Rev Mol Cell Biol 2009; 10:218-27; PMID:19234479; https://doi.org/10.1038/nrm2646 PubMed DOI PMC

Barthelme D, Dinkelaker S, Albers SV, Londei P, Ermler U, Tampé R. Ribosome recycling depends on a mechanistic link between the FeS cluster domain and a conformational switch of the twin-ATPase ABCE1. Proc Natl Acad Sci 2011; 108:3228-33; PMID:21292982; https://doi.org/10.1073/pnas.1015953108 PubMed DOI PMC

Karcher A, Schele A, Hopfner KP. X-ray structure of the complete ABC Enzyme ABCE1 from Pyrococcus abyssi. J Biol Chem 2008; 283:7962-71; PMID:18160405; https://doi.org/10.1074/jbc.M707347200 PubMed DOI

Nürenberg E, Tampé R. Tying up loose ends: ribosome recycling in eukaryotes and archaea. Trends Biochem Sci 2013; 38:64-74; PMID:23266104; https://doi.org/10.1016/j.tibs.2012.11.003 PubMed DOI

Pisarev AV, Hellen CU, Pestova TV. Recycling of eukaryotic posttermination ribosomal complexes. Cell 2007; 131:286-99; PMID:17956730; https://doi.org/10.1016/j.cell.2007.08.041 PubMed DOI PMC

Young DJ, Guydosh NR, Zhang F, Hinnebusch AG, Green R. Rli1/ABCE1 recycles terminating ribosomes and controls translation reinitiation in 3′UTRs In Vivo. Cell 2015; 162:872-84; PMID:26276635; https://doi.org/10.1016/j.cell.2015.07.041 PubMed DOI PMC

Khoshnevis S, Gross T, Rotte C, Baierlein C, Ficner R, Krebber H. The iron–sulphur protein RNase L inhibitor functions in translation termination. EMBO Rep 2010; 11:214-9; PMID:20062004; https://doi.org/10.1038/embor.2009.272 PubMed DOI PMC

Yarunin A, Panse VG, Petfalski E, Dez C, Tollervey D, Hurt EC. Functional link between ribosome formation and biogenesis of iron–sulfur proteins. EMBO J 2005; 24:580-8; PMID:15660135; https://doi.org/10.1038/sj.emboj.7600540 PubMed DOI PMC

Kispal G, Sipos K, Lange H, Fekete Z, Bedekovics T, Janáky T, Bassler J, Aguilar Netz DJ, Balk J, Rotte C, et al.. Biogenesis of cytosolic ribosomes requires the essential iron–sulphur protein Rli1p and mitochondria. EMBO J 2005; 24:589-98; PMID:15660134; https://doi.org/10.1038/sj.emboj.7600541 PubMed DOI PMC

Gavin AC, Bösche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, et al.. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002; 415:141-7; PMID:11805826; https://doi.org/10.1038/415141a PubMed DOI

Pisarev AV, Skabkin MA, Pisareva VP, Skabkina OV, Rakotondrafara AM, Hentze MW, Hellen CU, Pestova TV. The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol Cell 2010; 37:196-210; PMID:20122402; https://doi.org/10.1016/j.molcel.2009.12.034 PubMed DOI PMC

Szamecz B, Rutkai E, Cuchalová L, Munzarová V, Herrmannová A, Nielsen KH, Burela L, Hinnebusch AG, Valásek L. eIF3a cooperates with sequences 5′ of uORF1 to promote resumption of scanning by post-termination ribosomes for reinitiation on GCN4 mRNA. Genes Dev 2008; 22:2414-25; PMID:18765792; https://doi.org/10.1101/gad.480508 PubMed DOI PMC

Pöyry TA, Kaminski A, Connell EJ, Fraser CS, Jackson RJ. The mechanism of an exceptional case of reinitiation after translation of a long ORF reveals why such events do not generally occur in mammalian mRNA translation. Genes Dev 2007; 21:3149-62; PMID:18056426; https://doi.org/10.1101/gad.439507 PubMed DOI PMC

Chen B, Boël G, Hashem Y, Ning W, Fei J, Wang C, Gonzalez RL Jr, Hunt JF, Frank J. EttA regulates translation by binding the ribosomal E site and restricting ribosome-tRNA dynamics. Nat Struct Mol Biol 2014; 21:152-9; PMID:24389465; https://doi.org/10.1038/nsmb.2741 PubMed DOI PMC

Boël G, Smith PC, Ning W, Englander MT, Chen B, Hashem Y, Testa AJ, Fischer JJ, Wieden HJ, Frank J, et al.. The ABC-F protein EttA gates ribosome entry into the translation elongation cycle. Nat Struct Mol Biol 2014; 21:143-51; PMID:24389466; https://doi.org/10.1038/nsmb.2740 PubMed DOI PMC

Krásný L, Tiserová H, Jonák J, Rejman D, Sanderová H. The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. Mol Microbiol 2008; 69:42-54; PMID:18433449; https://doi.org/10.1111/j.1365-2958.2008.06256.x PubMed DOI

Kuehner JN, Brow DA. Regulation of a eukaryotic gene by GTP-dependent start site selection and transcription attenuation. Mol Cell 2008; 31:201-11; PMID:18657503; https://doi.org/10.1016/j.molcel.2008.05.018 PubMed DOI

Heuer, A. et al. Structure of the 40S-ABCE1 post-splitting complex in ribosome recycling and translation initiation. Nat Struct Mol Biol 2017. 24, 453–460; PMID: 28368393; https://doi.org/2782403710.1038/nsmb.3396 PubMed DOI

Kiosze-Becker, K. et al. Structure of the ribosome post-recycling complex probed by chemical cross-linking and mass spectrometry. Nat Commun 2016. 7, 13248; PMID: 27824037; https://doi.org/10.1038/ncomms13248 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...